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Abstract
We calculate density–density correlations of an expanding gas of strongly attractive ultra-cold
spin-1/2 fermions in an optical lattice. The phase diagram of the tightly bound fermion pairs
exhibits a Bose–Einstein condensed state and a Mott insulating state with a single molecule per
lattice site. We study the effects of quantum fluctuations on the correlations in both phases and
show that they are especially important in the Bose–Einstein condensate state, leading to the
appearance of singular peaks. In the Mott insulating state, the correlations are characterized
by sharp dips. This can be utilized in experiments to distinguish between these two phases.

                                                              

1. Introduction

Experiments with ultra-cold atoms have opened many
directions to study ground-state properties of complex many-
body systems, such as Bose–Einstein condensation and
fermion pairing. The introduction of optical lattices has added
the possibility of creating new ground states [1]. A prominent
example is the formation of a Mott insulating (MI) phase for
strongly interacting bosons [2] or fermions [3].

Another interesting direction was brought to the field
by the unprecedented control over the interaction between
atoms via a magnetic Feshbach resonance [4]. By means
of the latter it became possible to turn fermions with two
hyperfine internal states into bosons [5] by pairing. For
weak attraction, the Bardeen–Cooper–Schrieffer (BCS) theory
predicts an instability towards formation of large Cooper pairs,
whose size can be much larger than the separation between
atoms in the Fermi gas. If the attraction is made stronger,
then these Cooper pairs become smaller and eventually, for
very strong interaction, they behave as point-like (hard-core)
bosonic molecules. Although there is no sharp distinction
between the BCS state and a condensate of local pairs
of fermions, the cross-over from the weakly interacting to
the strongly interacting Fermi gas is of substantial interest
[6]. In the presence of an optical lattice, the tightly bound
molecules in the BEC (Bose–Einstein condensate) regime may
undergo a quantum phase transition from a BEC state to a
MI state with one particle per lattice site. This leaves us

with the question of how to identify the two phases by simple
measurements.

A clear signature of superfluidity in a system of bosons is
the presence of sharp density peaks due to phase coherence in
time-of-flight experiments [2]. In the MI phase, on the other
hand, the density peaks are washed out due to the absence
of phase coherence (see [7]). To characterize this phase,
it is useful to study the noise correlations in the Fermi gas
[8]. Noise correlations have been investigated for weakly
interacting Fermi gases in an optical lattice. As a characteristic
feature, a correlation hole was observed experimentally [9].

In this paper, we study density–density correlations of
an expanding gas of ultra-cold spin-1/2 fermions realized
in an optical lattice. We discuss that the density–density
correlations reveal the fermionic nature of the gas in the MI
state and its bosonic nature in the Bose–Einstein condensate
(BEC). We show that the effects of quantum fluctuations on
the correlations are important.

2. Model

An effective Hamiltonian for fermions in an optical lattice
near a Feshbach resonance was derived in [10]. Under typical
experimental conditions, the resulting Hamiltonian can be
mapped to an effective single-band model, which comprises
the local dressed bosonic molecules and individual fermionic
atoms separately. In this paper we consider a purely fermion
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model in an optical lattice with attractive interaction and with
two internal states, denoted by the pseudospin projections
↑ and ↓, respectively. The number of fermions in the two
components is equal. The fermionic field operator ψ̂σ (r) is
expanded in a basis of Wannier functions [11] as

ψ̂σ (r) =
∑
i,n

wn(r − Ri)ĉi,n,σ , (1)

which allows us to use the tight-binding representation. Here,
ĉi,n,σ is the annihilation operator for particles in the Wannier
state n at lattice site Ri . For a deep optical lattice, only the
lowest Wannier state is taken into account with ĉi,σ ≡ ĉi,0,σ .
In this case, the lattice Hamiltonian in d dimensions reads

Ĥ = − t̄

2d

∑
σ=↑,↓

∑
〈i,j〉

ĉ
†
iσ ĉjσ − J

2d

∑
〈i,j〉

ĉ
†
i↑ĉj↑ĉ

†
i↓ĉj↓

−
∑

σ=↑,↓

∑
i

μσ ĉ
†
iσ ĉiσ . (2)

Nearest-neighbor tunneling of the individual fermions is
described by the parameter t̄ . Moreover, there is also a nearest-
neighbor attraction with parameter J which can be understood
as a tunneling term of fermionic pairs (molecular tunneling). A
similar model of a mixture of hard-core bosons and fermions in
a lattice was discussed in [12]. However, in our model the hard-
core bosons b̂i are given by pairs of fermion operators ĉi↑ĉi↓.
This means that the fermions can transmute dynamically into
hard-core bosons by local pairing.

3. Phase diagram

We apply the functional integral formalism developed for the
Hamiltonian in equation (2) in [13, 14]. The partition function
of a grand-canonical ensemble of fermions with chemical
potential μ at inverse temperature β can be expressed in
terms of an integral over a fermionic (Grassmann) field ψ

and complex molecular fields φ, χ as

Z =
∫

e− ∫ β

0 dτLD[ψ, φ, χ ] (3)

with the Lagrangian

L =
∑
i,j

φ̄i v̂
−1
i,j φj +

1

2J

∑
i

χ̄iχi −
∑
i,j

Ĉ†
i Ĝ−1

ij Ĉj , (4)

where we have used the notation Ĉ† = (ψ↑, ψ̄↓) and Ĉ =
(ψ↓, ψ̄↑)T , and with the inverse fermionic Green’s matrix

Ĝ−1 =
( −iφ − χ ∂τ + μ + t̄

∂τ − μ − t̄ iφ̄ + χ̄

)
. (5)

Here v̂i,j = J
2d

δ|i−j |,1. t̂ is the nearest-neighbor tunneling
matrix with elements t̄/2d.

The integration over the complex molecular fields φ, χ

can be performed in saddle-point approximation [13, 14]. For
a vanishing fermionic tunneling, i.e. by assuming a situation
where all fermions are paired up, the phase diagram is depicted
in figure 1. There are three phases: the BEC of molecules with
the condensed fraction n0 = (J 2 − 4μ2)/(4J 2), the MI state
with one particle per site and n0 = 0, and the empty phase.
Fluctuations around the saddle point provide the low-energy
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Figure 1. Phase diagram for t̄ = 0 and kBT = 0. The three phases
are the BEC with a non-vanishing condensed density, the MI states
with vanishing condensed density and with one molecule per lattice
site, and the empty phase. μ and J are in arbitrary energy units.

excitations of the bosonic molecules. They are gapless in the
BEC phase:

εk =
√

4J 2gkn0 + 4g2
kμ

2, (6)

where gk = 1 − 1/d
∑d

i=1 cos ki is the dispersion of the free
Bose gas. On the other hand, the excitations of the MI state
have a gap � = 2μ − J > 0:

εk = � + Jgk. (7)

4. Density–density correlations

In a typical experiment with ultra-cold atoms, it is not easy
to identify the spin projection. Therefore, the detected
fermion density should be described by a superposition of
both spin projections. For this purpose, we introduce the
spin-independent fermionic density n̂ = n̂↑ + n̂↓. Then the
truncated density–density correlation function in a time-of-
flight experiment is given under the assumption that the atoms
expand freely after they have been released from the optical
lattice as [15]

Cr,r′ ≡ 〈n̂(r)n̂(r′)〉 − 〈n̂(r)〉〈n̂(r′)〉

=
(

M

h̄t

)2d

〈n̂(k)n̂(k′)〉 − 〈n̂(r)〉〈n̂(r′)〉. (8)

Here k is related to r by k = Mr/h̄t with the mass of
atoms M ∝ h̄/J . Free expansion assumes that atoms evolve
independently. This can be achieved by switching off an
optical lattice as well as by switching the magnetic field to
values far from the strongly attractive regime suddenly before
the expansion [8, 16]. The above formula then reveals that the
density distribution, observed after a fixed time-of-flight, is
related to the momentum distribution of the particles trapped
in the lattice before the expansion. It is widely used to
analyse ground state properties of ultra-cold atoms trapped
by an optical lattice [17].
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Now we use the expansion of equation (1) to express
the density–density correlation of equation (8) in terms of the
coordinates of the underlying optical lattice as

Cr,r′ =
(

M

h̄t

)2d

|w̃(k)|2|w̃(k′)|2
∑

i,i ′,j,j ′

×
∑

α,β=↑,↓
eik(Ri−Ri′ )+ik′(Rj −Rj ′ )〈ĉ†iα ĉ

†
jβ ĉj ′β ĉi ′α

〉
,

+ 〈n̂(r)〉δ(r − r′) − 〈n̂(r)〉〈n̂(r′)〉, (9)

where w̃ is a Fourier transform of the Wannier function.
Using the saddle-point approximation of the complex fields
(φ, χ ), we can evaluate

〈
ĉ
†
iα ĉ

†
jβ ĉj ′β ĉi ′α

〉
. Since the fermion field

appears only in a quadratic form in equation (4), the integration
is given by a Wick contraction of pairs of fermions:〈
ĉ
†
iα ĉ

†
jβ ĉj ′β ĉi ′α

〉 = 〈
ĉ
†
iα ĉi ′α

〉〈
ĉ
†
jβ ĉj ′β

〉 − 〈
ĉ
†
iα ĉj ′β

〉〈
ĉ
†
jβ ĉi ′α

〉
+

〈
ĉ
†
iα ĉ

†
jβ

〉〈ĉj ′β ĉi ′α〉. (10)

The fermionic expectation values on the right-hand side are
matrix elements of the fermionic Green’s function Ĝ of
equation (5):

〈
ĉ
†
i↑ĉj↑

〉 = 〈
ĉ
†
i↓ĉj↓

〉 = 1

β

∑
n

G12
ij (ωn) (11)

and〈
ĉ
†
i↓ĉ

†
j↑

〉 = 1

β

∑
n

G11
ij (ωn), 〈ĉi↑ĉj↓〉 = 1

β

∑
n

G22
ij (ωn),

(12)

where we have summed over Matsubara frequencies ωn. These
expressions also include quantum fluctuations of the bosonic
molecules when we take into account Gaussian fluctuations
around the saddle-point solutions. For instance, we can
integrate over these fluctuations to evaluate the correlation
function 〈

ĉ
†
iα ĉ

†
jβ ĉj ′β ĉi ′α

〉 − 〈
ĉ
†
iα ĉ

†
jβ

〉〈ĉj ′β ĉi ′α〉. (13)

In general, the Green’s function Ĝij is not diagonal in
space due to the presence of the fermionic tunneling t̄ but the
decay is exponential with distance |Ri −Rj |. The exponential
behaviour can be approximated by taking only the diagonal
part into account. In other words, in a strongly interacting
Fermi gas, the formation of bosonic molecules and their
dynamics is the dominant feature, and the individual tunneling
of fermions is negligible. Moreover, the Green’s function
depends on the fields φ and χ . In that case, the density–
density correlations reduce to

Cr,0 = 〈n̂(r)〉δ(r) + 2

(
M

h̄t

)2d

|w̃(k)|2|w̃(0)|2

×
[

−
∣∣∣∣
∑

i

eikRi
〈
ĉ
†
i↑ĉi↑

〉∣∣∣∣
2

+

∣∣∣∣
∑

i

eikRi 〈ĉi↑ĉi↓〉
∣∣∣∣
2

+ S(k)

]
.

(14)

The first two terms constitute the density–density correlation
function for fermions [15], whereas the third and the fourth
terms account for the presence of the condensed molecules.
In particular, the fourth term describes the effect of quantum

fluctuations and can be expressed as a momentum distribution
of the molecules [14]:

S(k) =
∑
i,j

ek(Ri−Rj)
(〈
b̂†

i b̂j
〉 − 〈

b̂†
i

〉〈b̂j〉
)
, (15)

where b̂
†
i = ĉ

†
i↓ĉ

†
i↑. Phase fluctuations can destroy these

terms, for instance, in the case of a MI state of the molecules.
It is important to note that fermionic terms contribute with
a negative sign in equation (14), in contrast to the phase-
coherent molecules, which contribute with a positive sign.
This indicates a competition of the fermionic and the molecular
contribution to the density–density correlation function. This
provides a concept for measuring the properties of a strongly
interacting Fermi gas.

5. Results

The expressions
〈
ĉ
†
i↑ĉi↑

〉
and 〈ĉi↑ĉi↓〉 are constant due to

translational invariance:

Cr,0 ∝ N2δk,G

(
−1 +

N0N
N2

)
+ S(k), (16)

where we have denoted 2N = 2
∑

i

〈
ĉ
†
i↑ĉi↑

〉
as the total number

of fermions and N0N = ∣∣∑
i〈ĉi↑ĉi↓〉∣∣2 ∝ N 2| iφ + χ |2. N

is the number of lattice sites. The ratio n0 = N0/N is the
condensate fraction, i.e. the relative contribution of condensed
molecules.

5.1. BEC

For momenta close to the reciprocal lattice vectors G, the main
contribution in the BEC comes from the term S(k) since it is
singular for εk ∼ 0:

Cr,0 ∝ S(k) ≈ 4Jn0 + Jgk

εk
(1 − 2gk). (17)

This result connects the density–density correlation function
with the spectrum of the molecular condensate given in
equation (6). The infrared divergence of the momentum
distribution is a general property of a BEC at T = 0 [18].
The related 2D plot of the correlation function is shown in
figure 2.

5.2. MI

For larger densities, the phase coherence in the molecular state
is destroyed and a MI state with one bosonic molecule (i.e. a
pair of fermions) appears. Due to strong phase fluctuations,
the second term in equation (16) vanishes, and the correlation
function becomes

Cr,0 ∝ −N2δk,G + S(k) (18)

with the non-singular term

S(k) ≈ J 2

4μ2
(1 − 2gk). (19)

Since the number of fermions N is large in equation (18), the
contribution of S(k) is negligible in time-of-flight experiments
of the MI. Thus, the MI state is characterized by sharp dips
in contrast to the singular peaks in the BEC, which appear
on positions corresponding to the reciprocal lattice vectors G,
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Figure 2. Density–density correlation function in units of
(h̄t/Ma)−2d of a strongly attractive spin-1/2 Fermi gas in an optical
lattice with J = 1, μ = 0.4 and kBT = 0, where the gas forms a
BEC. The number of molecules per lattice site is 0.9. The singular
behaviour at the positions corresponding to the reciprocal lattice
vectors is due to long-range phase coherence of the condensed
molecules. There is also small modulation due to the tunneling of
molecules. The axes are given in units of h̄t/Ma, where a is the
lattice spacing.

Figure 3. Density–density correlation function as in figure 2 but
with J = 1, μ = 0.6 and kBT = 0. The number of molecules per
lattice site is 1. The singular behaviour in figure 2 is replaced by
dips here. This is due to the anticommuting nature of fermionic
operators and thus reflects the fermionic nature of the MI state.

similar to a Bragg diffraction pattern. However, in contrast
to the latter, where the diffraction pattern is created by light
scattering on atoms of a crystal, here the pattern is created by
the atomic state itself in the expansion process of the cloud.

Equation (19) describes the bosonic nature of the
molecules in the MI state There are hole excitations in the
MI phase (particle excitations are suppressed by the hard-
core nature of the bosons) and their dynamics contributes to
the interference pattern via the factor ∝gk. A similar situation
was observed experimentally in the case of a bosonic Mott
insulator in [19]. The 2D plot of the correlation function is
shown in figure 3.

6. Discussion

The density–density correlation function of an expanding
cloud provides a clear picture of the state when it was still

trapped by an optical lattice. It consists of four different
contributions in equation (14), two of which are related to the
fermionic nature of the atoms. The second term leads to a
fermionic dip in the density–density correlation function in
the MI state. The third term measures the condensate fraction
in the case of condensed bosonic molecules and together with
the singular fourth term leads to the sharp peaks. Even though
the third term can compete with the second term, the singular
term is the most relevant in the BEC phase.

The competing behaviour of the fermionic dips and the
condensate peaks in the density–density correlation function
is a result of the anticommuting properties of the fermionic
operators. This provides a simple concept to distinguish
different states in a cloud of attractively interacting fermions.
This behaviour is rather different in a bosonic cloud, where
all atoms contribute with the same sign to the density–density
correlation function because the bosonic operators commute
[20].

In conclusion, we have studied an expanding cloud of
strongly interacting spin-1/2 fermions after its release from
an optical lattice. The properties are described in terms of the
density–density correlation function. At lower densities a BEC
is formed by the paired fermions, visible in the density–density
correlation function as sharp peaks. At higher densities, a
Mott-insulating phase appears, characterized by dips in the
density–density correlation function. This distinct behaviour
can be used in future experiments to distinguish between these
two phases in a gas of strongly attractive spin-1/2 fermions in
an optical lattice.
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