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Dynamics of two-site Fermi-Hubbard and Bose-Hubbard systems
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This paper analyzes dynamical properties of small Fermi-Hubbard and Bose-Hubbard systems, focusing on the
structure of the underlying Hilbert space. We evaluate time-dependent quantities such as the return probability
to the initial state and the spin imbalance of spin-1/2 fermions. For the symmetric two-site Fermi-Hubbard
model we find that the spin imbalance and the return probability are controlled by two and three frequencies,
respectively. The spin imbalance and the return probability are identical for the asymmetric Falicov-Kimball
limit and controlled by only one frequency. In general, the transition probabilities between the initial state and
the energy eigenstates depend strongly on the particle-particle interaction. This is discussed for “self-trapping”
of spinless bosons in a double-well potential. We observe that the available Hilbert space is reduced significantly
by strong interaction.
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The dynamics of many-body quantum states has been
studied with a high accuracy in ultracold gases, either for
bosons [1–5] or for fermions [6,7]. The main advantage of
employing an ultracold gas is that there are many parameters
in the experiment that can be adjusted to control the initial
state as well as the dynamics of the system. This means, in
particular, that an ultracold gas can be prepared in almost any
state |�0〉, not just in the ground state. After its preparation
at time t = 0, the state evolves in time t > 0 for a system
with Hamiltonian H , which describes the kinematics and the
interaction of the atomic particles, according to

|�t 〉 = e−iH t |�0〉. (1)

In the following we consider the simplest possible case,
namely, a model with two sites. As the first example we
study two fermions with spin-1/2, and the second example
is a system of N spinless bosons in a double well. Despite
their simplicity, these examples reveal dynamical properties
that may also have implications for more complex systems.
For instance, an interesting question is whether or not all states
of the underlying Hilbert space can be reached from a given
initial state, which time scales appear, and how this can be
controlled by adjusting the parameters of the system such as
the tunneling rate and the interaction strength.

The dynamics of atomic systems with a finite number of
atoms has been an active field of research for several decades,
with a focus on oscillating behavior between different atomic
states [8,9]. More recently, ultracold gases in an optical lattice
have been a successful platform for such investigations [1,4,
10]. In particular, small systems of spin-1/2 fermions have also
attracted considerable attention from the quantum computation
community [8,11]. A typical initial state is a (paramagnetic)
Mott state, where the orientation of the individual spins can be
used for information storage. Since for N particles this state
has an exponential degeneracy 2N , the time evolution in terms
of, for instance, a Hubbard Hamiltonian can lead to a complex
dynamics. Of particular interest is how the spin population of
a given site changes with time.
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Experiments with a Bose gas in an optical double well have
revealed that the population dynamics is controlled by direct
tunneling of atoms and by a second-order (superexchange) pro-
cess, characterized by two frequencies [1,10]. The appearance
of the characteristic frequencies in finite bosonic systems was
calculated in strong-coupling perturbation theory [12,13] and
in time-dependent Hartree approximation [14,15]. In a more
recent paper by Trotzky et al. [4] the spin imbalance of two
spin-1/2 atoms in a double well was studied. Such a system can
be described by a two-site Bose-Hubbard (BH) model, which is
often called the two-mode approximation [14]. With increasing
values of J/U , where J is the tunneling rate and U is the
local interaction strength, the oscillating spin imbalance was
increasingly influenced by a second frequency. This implies
that both,the tunneling rate of the atoms and the interaction
strength determine the dynamics of the many-body system. In
this paper we study this effect in terms of a Fermi-Hubbard
(FH) model. The focus is on the return probability of the
many-body state. This is an important quantity for recovering
information that was stored in the initial state.

There are several options for an analytic calculation of
physical quantities in a finite many-body system. Perturbative
methods are very successful and reliable approaches to
physical problems and can be considered exact if their regimes
of validity are respected. On the contrary, in most cases they
fail near a singularity, where their validity is violated. Never-
theless, they can still be used in these cases as approximation
methods by using an asymptotic partial summation of the
perturbation series. Hartree-Fock approximations belong to
this type of approximation and have been used in the case
of finite many-body systems [14,15]. Other self-consistent
approaches to many-body systems have been very successful,
such as the dynamical mean-field theory [16]. A disadvantage
of all these approaches is that the (nonlinear) self-consistent
equations are very complex, such that their treatment usually
requires intensive numerical work.

An alternative to the perturbative approach and to self-
consistent approximations is the recursive projection method
(RPM) [17,18]. It is a systematic exploration of the Hilbert
space, using a recursive calculation of the resolvent (z − H )−1.
The RPM enables us to extract systematically the poles of the
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resolvent in a subspace of the underlying physical Hilbert
space. This method, combined with a truncation of recursion,
is related to the Lanczos procedure [19]. The RPM has been
explained elsewhere in the literature [17,18]; here we give only
a brief summary and apply it to the Hubbard models.

Recursive projection method: The structure of our physical
system is completely determined by a Hamiltonian H that
acts on Hilbert space H. Then the central idea of the RPM
is that the dynamics starts from an initial state which lives
in a subspace H0 ⊂ H. It should consist of a basis that is
dynamically separable, meaning that the Hamiltonian does
not allow movement directly from one basis state to another.
Once this subspace has been chosen specifically, the rest of
the RPM is entirely determined by the Hamiltonian H , and the
dynamics, given by the time-evolution operator, determines
which part of H is reached by the physical system. This
depends on the transition probabilities between the initial
states and the eigenstates of H . A problem is to control
the trajectories of the system through H. This can be solved
by considering the resolvent (z − H )−1 rather than the time
evolution operator. These quantities are related as

e−iH t =
∫

�

(z − H )−1e−izt dz

2πi
, (2)

where the closed contour � encloses all (real) eigenvalues
of H . Now we project with projector P0 onto the Hilbert
space H0. The corresponding projected resolvent is G0(z) =
P0(z − H )−1P0. Then the RPM includes two steps.

1. Hilbert space H2j+2 (j = 0, 1, . . .) is created by acting
with the operator (1 − P0 − P2 − · · · − P2j )HP2j on
H. In other words, a basis set from all the states created
by (1 − P0 − P2 − · · · − P2j )HP2j is a basis of H2j+2.

2. The resolvent G2j on H2j is evaluated through the
recurrence relation

G2j = (
z − H ′

2j

)−1

2j
, (3)

with the effective Hamiltonian H ′
2j on H2j :

H ′
2j = P2jHP2j + P2jHG2j+2HP2j . (4)

The recursion terminates in a finite-dimensional Hilbert
space with the effective Hamiltonian H ′

2n = P2nHP2n.
This is the only effective Hamiltonian that is explicitly
given, provided we know the projection Pn. To use this
as the initial effective Hamiltonian, we introduce k =
n − j as the running index in the recurrence relation.
Then we have

G2(n−k) = (
z − H ′

2(n−k)

)−1

2(n−k)
, (5)

and with gk ≡ G2(n−k), hk ≡ H ′
2(n−k), we obtain the

recurrence relation

gk = (z − hk)−1
2(n−k) , (6)

where

hk = P2(n−k)HP2(n−k) + P2(n−k)Hgk−1HP2(n−k), (7)

with h0 = P2nHP2n.

Model: The FH model describes locally interacting
fermions with spin σ =↑,↓; the BH model, locally interacting

spinless bosons. For fermions this reads

HF = −
∑

σ=↑,↓
Jσ (c†1σ c2σ + c

†
2σ c1σ ) + U (n1↑n1↓ + n2↑n2↓),

(8)

with fermionic creation operators c
†
jσ , annihilation operators

cjσ , and density operators njσ = c
†
jσ cjσ . For bosons with

bosonic creation operators b
†
j , annihilation operators bj, and

density operators nj = b
†
j bj, the Hamiltonian reads

HB = −J (b†1σ b2σ + b
†
2σ b1σ ) + U

(
n2

1 + n2
2

)
. (9)

This Hamiltonian is also known as the two-mode approxima-
tion of a continuous Bose gas in a double-well potential [14].

There are two interesting quantities directly related to
|�t 〉. One is the return probability to the initial state Pt =
|〈�0|�t 〉|2; the other is the spin imbalance between the two
sites in a double well [4],

N12(t) = 1
2 〈�t |n↑1 − n↓1 + n↓2 − n↑2|�t 〉. (10)

The latter describes the exchange dynamics of the two spins ↑
and ↓, located at the two sites. N12 vanishes if the sites are not
singly occupied.

The return probability to the initial state is obtained from the
inverse Laplace transform of the resolvent through the relation

〈�0|�t 〉 =
∫

�

e−izt 〈�0|(z − H )−1|�0〉 dz

2πi
. (11)

The many-body spectral density can be calculated from this
expression for z = E + iε as

−Im〈�0|(E + iε − H )−1|�0〉, (12)

which is a rational function with poles z = Ej (j = 0, 1, . . .).
By plotting this expression as a function of E, we can identify
graphically the poles Ej (j = 0, 1, . . .) of G0 and the overlap
of |Ej 〉 with the initial state. The energy levels Ej are the lo-
cations of the Lorentzian peaks, and |〈Ej |�0〉|2/ε correspond
to the height of the Lorentzian peaks. The knowledge of Ej

and |〈Ej |�0〉|2 enables us to determine the expression for the
dynamical overlap function.

Dynamics of two fermions in a double well: Considering
only two fermions with opposite spin, the Hamiltonian acts
on a four-dimensional Hilbert space and can be diagonalized
directly with eigenvalues 0, U , and U/2 ±

√
(U 2/4) + 4J 2

for the symmetric case J↓ = J↑ ≡ J . Also, the RPM with one
fermion per well is simple because it terminates already for
n = 1, after creating a single pair of an empty and a doubly
occupied well. The effective Hamiltonians then read

H ′
2 = U, H ′

0 = 1

z − U
P0H

2P0. (13)

H ′
0 can also be expressed as a Heisenberg spin Hamiltonian

[18]:

H ′
0 =

∑
<j,j′>

[
a↑↓

(
Sx

j Sx
j′ + S

y

j S
y

j′
) + a↑↑

(
Sz

j S
z
j′ − 1/4

)]
,

(14)
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FIG. 1. The spin imbalance for the initial state |�0〉 = |↑, ↓〉
is plotted for U = 2 with J/U = 0.05 (solid curve) and J/U =
0.3 (dashed curve). Two frequencies contribute to each curve,
corresponding to the lowest and highest energy levels of the system.

with z-dependent spin-spin coupling coefficients,

a↑↑ = 2
J 2

↑ + J 2
↓

U − z
, a↑↓ = 4

J↑J↓
U − z

, (15)

and with the spin-1/2 operators Sx = (c†↑c↓ + c
†
↓c↑)/2, Sy =

−i(c†↑c↓ − c
†
↓c↑)/2, and Sz = (n↑ − n↓)/2. The singly oc-

cupied eigenstates of H ′
0 are linear combinations of |↑,↓〉

and |↓,↑〉. If λ is an eigenvalue of (z − U )H ′
0 with λ =

−(J↑ ± J↓)2, for the poles of the projected resolvent G0,
we get

z = U

2

[
1 ±

√
1 − (4λ/U 2)

] ∼
{

U − λ/U

λ/U
(16)

from the RPM. The asymptotic expressions hold for λ/U ∼ 0.
For a strong interaction parameter U , only one pole is
accessible by perturbation theory, such that the appearance

of two poles can be understood as a simple nonperturbative
effect: the Brillouin-Wigner perturbation theory in powers
of λ/U [21] gives only the low-energy pole for G0(z),
namely, z = λ/U [12], and neglects the high-energy pole
z ∼ U − (λ/U ). Experimentally, however, both energies have
been observed in a double-well potential [4].

The spin imbalance of Eq. (10) can be rewritten in terms
of the spin operator Sz as 〈�t |Sz

1 − Sz
2|�t 〉, since Sz = (n↑ −

n↓)/2. To understand the dynamics of the two-site FH model,
we study the spin imbalance and the return probability for
two specific cases: the symmetric FH model, with J↓ = J↑ =
1/2, and the Falicov-Kimball limit, J↑ = 0, J↓ > 0 [20]. The
eigenvalues z3/4 = U/2 ±

√
(U 2/4) + 1 of the symmetric FH

model appear as frequencies in

〈�0|�t 〉 = C0 + C1e
−iz3t + C2e

−iz4t

and in the spin imbalance (cf. Fig. 1)

〈�t |Sz
1 − Sz

2|�t 〉 = C1 cos(z4t) + C2 cos(z3t),

with coefficients C0 = 1/2 and

C1/2 = 1

(
√

U 2 + 4 ± U )
√

U 2 + 4
.

Then the time-dependent behavior of the return probability
is characterized by three different frequencies: z3, z4, and
z3 − z4.

Falicov-Kimball limit: In this case the eigenvalues are
doubly degenerate for all values of J↓: z3/4 = U/2 ±√

(U 2/4) + J 2
↓ . This simplifies the dynamics. In particular,

the spin imbalance becomes identical to the return probability,
〈�t |Sz

1 − Sz
2|�t 〉 = Pt , and the transition matrix element reads

〈�0|�t 〉 = C1e
−iz3t + C2e

−iz4t ,

with C1 = (z3 − U )/(z3 − z4) and C2 = −(z4 − U )/(z3 −
z4). The oscillating behavior is characterized by a single
frequency:

Pt = C2
1 + C2

2 + 2C1C2 cos(
√

U 2 + 4J 2
↓ t).
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FIG. 2. Spectral density of the BH model of N = 40 bosons, U = 0.05, and ε = 0.02. For J = 0.05 (solid curve) and J = 0.2 (dashed
curve), there is only one dominant energy level, of 41 energy levels (left). The initial state is the state where all atoms are in one well. This is
a signature of “self-trapping.” The spectral density of the BH model of N = 40 bosons, U = 0.05, ε = 0.02, and J = 1 (right). This clearly
indicates that, with increasing tunneling rate J , more and more states can be reached dynamically with reasonable probability.
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Dynamics of N bosons in a double well: A system of
N spinless bosons, distributed over two wells, lives in an
(N + 1)-dimensional Hilbert space. Using the basis |n1, n2〉,
a special case for the initial state is n1 = N , n2 = 0: |�0〉 =
|N, 0〉. Then all projected spaces H2j are one dimensional
and spanned by |N − j, j 〉. The RPM leads to the recurrence
relation

gk = 1

z − U [k2 + (N − k)2] − J 2(N − k + 1)kgk−1
, (17)

with initial value g0 = 1/(z − UN2). Then the projected
resolvent for the initial state |�0〉 = |N, 0〉 reads

〈N, 0|G0|N, 0〉 = 〈N, 0|(z − H )−1|N, 0〉 = gN .

The evaluation of gN from Eq. (17) is a simple task and leads to
a rational function, consisting of a polynomial of order N + 1
in the denominator.

According to the Hartee approximation of the double-well
potential [14], the spectral properties change qualitatively
when the number of bosons exceeds a critical value Nc ≈
J/U , where the regime with N > Nc is characterized by
“self-trapping,” in which the symmetry of the two wells
is spontaneously broken. For N < Nc, on the contrary, the
regime is characterized by an oscillating behavior with
frequencies related to the tunneling rate. When the number
of particles N approaches the critical value Nc, the frequency
of the oscillations goes down to zero, indicating a real
critical behavior. However, this is an artifact of the classical
nonlinear equation obtained by the Hartree approximation. For
a quantum system on a finite-dimensional Hilbert space, we

expect no genuine critical behavior. Nevertheless, a crossover
between two regimes is possible, where in one regime the time
scale for escaping from the initial states can be very large and
the escape is very unlikely. Such a behavior can be studied by
the many-body spectral function.

There are two types of characteristic quantities: the energy
levels Ek and the transition probabilities |〈�0|Ek〉|2 between
the initial state and the eigenstates of the Hamiltonian. Both
quantities appear explicitly in the many-body spectral density
of Eq. (12). For the initial state |N, 0〉 the many-body spectral
density is plotted for several parameter values in Fig. 2. This
clearly indicates that the distribution of transition probabilities
is narrow for strong interactions and becomes broader with in-
creasing U . For sufficiently large U all transition probabilities
|〈�0|Ek〉|2 are extremely small except for one (cf. upper panel
in Fig. 2). This implies that the system cannot escape from its
initial state. This strong-interaction behavior can be linked to
the semiclassical self-trapping of the Hartree approximation.

Conclusions: The dynamics of finite FH and BH models is
characterized by a discrete set of energy levels and nonzero
overlaps of the eigenfunctions with the initial state. By
employing the RPM, we have calculated these quantities to
determine the spin imbalance, return probability, and many-
body spectral function for the FH and BH models in a double
well.
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