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Surface acoustic wave �SAW� propagation is a powerful method to investigate two-dimensional �2D� elec-
tron systems. We show how SAW observables are influenced by coupling to the 2D massless Dirac electrons
of graphene and argue that Landau oscillations in SAW propagation can be observed as function of gate voltage
for constant field. Contrary to other transport measurements, the zero-field SAW propagation gives the wave-
vector dependence of graphene conductivity for small wave numbers. We predict a crossover from Schrödinger
to Dirac-like behavior as a function of gate voltage, with no attenuation in the latter for clean samples.
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Sound waves in solids may be used as a diagnostic tool to
investigate the low-frequency long-wavelength response of
electrons. In metals they couple via the stress dependence of
the Fermi energy. In semiconductors the piezoelectric
mechanism which generates internal electric fields that accel-
erate the charge carriers is most effective provided the com-
pound has a piezoelectrically active structure. Close to
smooth surfaces the acoustic modes may become localized in
the direction of the surface normal and propagate as surface
acoustic waves �SAWs�. The most prominent ones are Ray-
leigh waves1 where the displacement vector u�t� lies in the
plane formed by the surface-normal vector n̂ and the acoustic
propagation vector q � x̂ which is parallel to the surface �nor-
mal to n̂� ẑ, cf. Fig. 1�. The Rayleigh SAW may be thought
as consisting of the longitudinal and transverse components
whose amplitudes depend on the normal direction. The Ray-
leigh wave is therefore an elliptically polarized wave in the
xz plane which decays exponentially into the bulk �−z� with
an acoustic decay length that is of the order of the ultrasound
wavelength.

Because of these properties the Rayleigh SAW exhibit
interesting effects due to the coupling to charge carriers, par-
ticularly in the presence of a magnetic field. Two of those are
well known and have been explored experimentally. �i�
When the field is within the surface plane and perpendicular
to the xz plane then due to the breaking of time-reversal
invariance the velocity of propagation of SAW with wave
vectors q and −q is different. This nonreciprocal SAW effect
has been investigated for metals in detail in Refs. 2 and 3.
�ii� In semiconductor heterostructures the charge carriers are
confined close to the surface �xy� and a two-dimensional
electron gas �2DEG� forms. This may be nicely investigated
by Rayleigh SAW which are localized on the surface sheet.
For fields perpendicular to the surface they probe the longi-
tudinal wave-vector-dependent conductivity of the 2DEG.
Since the latter exhibits the typical Landau quantum oscilla-
tions under suitable conditions this may be directly seen in
the SAW propagation velocity and attenuation as function of
magnetic field. This idea was spectacularly confirmed for the
2DEG in GaAs heterojunctions.4,5 Extended investigations
have shown that this method also allows uniquely to deter-
mine the wave-vector dependence of longitudinal
conductivity.6 Thereby the carrier concentration is fixed and

the field B or filling factor is varied. We mention that the
carrier concentration can in principle be varied in a gated
normal 2DEG.

The 2DEG in GaAs heterostructure contains electrons
with nonrelativistic parabolic dispersion and hence a finite
band mass. Recently graphene, a single sheet honeycomb
carbon layer, has been identified as a genuine 2DEG system.7

It contains quasirelativistic massless Dirac electrons with a
linear dispersion around the Dirac point K where the slope is
given by the Fermi velocity vF=106 m /s, obeying to

H = vF��xpx + �ypy� , �1�

where the pseudospin variables ��� arise from the two-
sublattice structure. Transport and thermodynamic properties
of this system has been much discussed and investigated, in
particular in an external field.8,9 They are distinctly different
from the nonrelativistic case which is mostly due to two
effects: �i� because of the linear dispersion the density of
states �DOS� at the Dirac point E=0 vanishes according to
N�E�= �E� /D2 �per valley and spin; D2=2�vF

2 /Ac, where Ac
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FIG. 1. �Color online� Schematic setup for SAW propagation on
monolayer graphene sandwiched between piezoelectric slabs with
dielectric constant � as adapted from Ref. 12. SAW transducer and
detector are attached to the top slab with thickness qd�1 �q
=SAW wave number�. The SAW displacement u�t� at fixed posi-
tion traces an ellipse in the xz plane and the decay length in the z
direction is �2� /q�d. Direction of field B is normal to the
surface.
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is the area of the hexagonal cell�. As a consequence the
screening properties of Dirac electrons will be different from
those of the nonrelativistic case.10,11 �ii� The Landau quanti-
zation in an external magnetic field leads to relativistic Lan-
dau levels �LLs� at E��n�=�	c

�n+1 with �= 
1, n
=0,1 ,2 , . . . and the Landau scale 	c=vF

�2e�B�. In addition
there is a field-independent level always at E�=0.

There has been considerable discussion whether the Dirac
point and the linear DOS in single layer graphene is stable
against perturbations such as buckling, disorder or excitonic
gap formation. We ignore these subtle issues here and refer
to the literature.9 Furthermore we note that the chemical po-
tential � may be easily moved away from the Dirac point by
applying a gate voltage Vg via Vg�n��2 �Ref. 13� �with n
as the carrier density�. Preliminary SAW experiments in zero
field have been performed in Ref. 14. In this setup the aim
was rather to detect surface adsorbates via their change of
graphene electronic properties and ensuing SAW propagation
anomalies. In the present work we want to look at intrinsic
properties of graphene and investigate the field dependence,
gate voltage �chemical potential� and wave-vector depen-
dence of the SAW propagation velocity and attenuation. A
possible experimental setup which we have in mind is shown
schematically in Fig. 1. The graphene sheet is sandwiched
between two insulating piezoelectric layers with the same
background dielectric constant �, similar to Ref. 15. The
SAW r.f. transducer and the detector are mounted on the top
layer. Its thickness d is assumed to be much smaller than the
penetration depth of the SAW along −z. There may also be
alternatives where the coupling of SAW in the piezoelectric
substrate to the Dirac electrons happens purely capacitively
across an empty space.

The analysis of SAW propagation in this setup has two
distinct steps. First the mechanical and electrodynamic
boundary-value problem for the SAW has to be solved which
gives the SAW velocity change in terms of the �magneto-
�conductive properties of the graphene sheet. This problem
has been analyzed and solved in Ref. 12. In a second step we
calculate the magnetoconductivity of Dirac electrons as func-
tion of field and chemical potential which leads to the SAW
velocity change and attenuation as function of field and gate
voltage. In this part we follow the procedure described in
Ref. 16. Alternatively we consider the zero-field case and
investigate the wave-vector �or frequency� dependence of
SAW properties, which is related to the wave-vector-
dependent �B=0� polarization given in Refs. 10 and 11.

If one neglects the influence of the 2D relativistic electron
gas the SAW propagation is a purely mechanical problem
which is determined by the elastic constants. We don’t make
any specific assumptions about the bulk and top layer mate-
rial but rather treat it as an isotropic piezoelectric medium
characterized by longitudinal �L� and transverse �T� elastic
constants or velocities c� or v�=��c� /� ��=L ,T�, respec-
tively, where  is the mass density. The stress-free boundary
condition for the geometry in Fig. 1 is �iz=0 �i=x ,y ,z�. The
solution of the boundary problem17 leads to the velocity of
the surface Rayleigh waves vs=�vT. Here vs is smaller than
the transverse bulk velocity by a factor 0.87���0.95 de-
pending on the ratio cL /cT. Due to the piezoelectric coupling
an external potential is created which has an effect on the

2DEG via the density response function. The latter is com-
pletely determined by conservation laws and linear-response
relations. The induced density in the 2DEG leads to an ad-
ditional energy density which has to be added to the elastic
energy density causing a renormalization of the elastic con-
stants or velocity. Because of the dissipative component in
the density response the SAW velocity change is accompa-
nied by attenuation. It may be seen as Landau damping due
to particle-hole excitations in the graphene sheet. By the
above procedure12 the SAW velocity change �vs and attenu-
ation coefficient � are obtained as

�vs�q,B,��
vs

−
i��q,B,��

q
=

��qd�2/2
1 + i�xx�q,	,B,��/�m

. �2�

Here 	=vsq is the SAW frequency and q �x the wave num-
ber. The penetration depths �L

−1 ,�T
−1 of displacement compo-

nents ux ,uz into the bulk along the −z direction are on the
order of the wavelength �=2� /q. The effective coupling
��qd� of SAW to the graphene 2DEG is a complicated ex-
pression composed of phenomenological parameters12 which
will not be given here. It depends nonmonotonically on qd
and in the limit qd�1 or ��L,T�q�1 assumed here is simply
a constant to be determined by experiment.

The central quantity is the longitudinal electronic conduc-
tivity �xx�q ,	 ;B ,�� where 	=vsq. The normalization con-
stant is �m=vs�ef f /2� with �ef f = ��0+�� /2 for qd�1. The
typical SAW frequency of �0.1 GHz is extremely small
��5�10−3 K� compared to the typical electron-hole excita-
tion energy 	given by the chemical potential � so that one
may use the static limit �xx�q ;B ,��=�xx�q ,	=0;B ,��
. We
will consider two different cases: �i� finite field case in the
presence of scatterers, which allows to neglect the possible q
dependence of the conductivity,18 if the scattering rate ex-
ceeds vFq �in which case �xx is real� and �ii� zero-field ultra-
clean case. For the former, due to Landau quantization, os-
cillations in �vs�B ,�� will appear both as function of field
and as function of the chemical potential ��Vg� or gate volt-
age Vg. One may keep the field constant and instead observe
the SAW Landau oscillations as function of gate voltage. For
the first case we need the field dependent conductivity
�xx�B ,�� which was derived for localized disorder with con-
centration ni �vacancies representing the unitary limit19� in
the self-consistent Born approximation �SCBA� in Ref. 16.
The result is shown in the top panel of Fig. 2 as function of
the chemical potential for a constant magnetic field and sev-
eral values of �m /�xx��=0��vs�ef fh /8e2 with 	c

=D /�N+1, N=1000 and T=0.001D, corresponding roughly
to a few tens of K. In this range, the LL spacing is much
larger than the temperature. Clearly the Landau oscillations
in the conductivity also influence the SAW properties. When
the chemical potential crosses a LL, the conductivity peaks,
and �vs develops a dip. In between LL’s, the conductivity is
suppressed, causing the enhancement of the SAW velocity.
For large chemical potential when the graphene sheet be-
comes more metallic, both �vs and � are suppressed.

The SAW velocity measurement in zero field presents a
unique feature which cannot be realized by the conventional
transport measurements, which usually probe the conductiv-
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ity at 	�vFq, i.e., in the dynamic limit. Due to the finite
SAW frequency the density response of the Dirac electrons
may be probed at finite wave vector q=	 /vs with 	�vFq,
thus probing the static properties of the electric response.
Measurement of �vs for various frequencies 	 can therefore
determine the density response of Dirac electrons for finite
wave vector 	 /vs. This has actually been proposed and car-
ried out for the nonrelativistic 2DEG in Ref. 6.

The q ��x� and 	 dependent longitudinal conductivity is
calculated similarly to the polarization function10,11 and is
given in the limit of 	=vsq� �� ,vFq� as

�xx�q� =
4vse

2

�vF
� vs

vF
f1vFq

2�
� + if2vFq

2�
�� , �3�

where

f1�x� =
�1 − x2

x
��1 − x� , �4�

f2�x� = −
1

x
+

1

2x
��1 −

1

x2 − x arccos1

x
����x − 1� ,

�5�

and is shown in Fig. 3. It depends only on vFq /�, thus ex-
hibits scaling behavior. For small frequencies, �xx vanishes
with 	 as follows from Eq. �6� via 	=vsq, which explains
the vs term on the r.h.s of Eq. �3�. The real part of the con-
ductivity, which determines the attenuation, is suppressed by
the additional vs /vF factor, thus the propagation velocity is
more strongly influenced by the presence of graphene than
the attenuation.

The density response or polarizability ��q� is related to
the longitudinal conductivity by

��qx,	� =
iqx

2

	
�xx�qx,	� , �6�

which follows from the charge continuity equation, and in-
volves only the longitudinal component of the conductivity
with q= �qx ,0�, qx=q. Using the equation for the SAW ve-
locity change and neglecting the attenuation we may easily
obtain

��q� � q�m� �2

2�vs�q�
−

1

vs
� �7�

from the measured velocity change. The density response for
monolayer graphene has also been calculated in Ref. 10, 11,
and 20, and SAW measurements can yield to the static po-
larizability as well.

There are two limits to be considered depending on
whether q is larger or smaller than twice the radius of the
Fermi circle kF=� /vF. For 2kF�q what we refer to as
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FIG. 2. �Color online� Landau oscillations for constant field
�corresponding to N=1000 LL within the cutoff frequency D� as
function of the chemical potential � tuned by the gate voltage for
T=0.001D and concentration ni=0.001, and vFq�2�. Upper
panel: longitudinal conductivity. Middle/lower panel: SAW velocity
change/attenuation for �m /�xx��=0�=10 �black dashed-dotted
line�, 1 �blue solid line� and 1/10 �red dashed line�.
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FIG. 3. �Color online� Real �red dashed line� and imaginary
�blue solid line� part of the conductivity for B=0 as function of
chemical potential and wave number �inset� with ��0�=e2vs /vF. The
Dirac and Schrödinger-like regions are separated at vFq=2�.
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Schrödinger-like behavior, �xx=8vse
2kF� vs

vF
− i� /�vF

2q, which
holds true in a normal metal as well, and reveals the impor-
tant kF /q dependence of the conductivity. On the other hand,
the peculiarity of graphene is the tunability of its Fermi en-
ergy with a gate voltage, which provides access to the 2kF
�q region, termed Dirac-like regime, in which case �0=
−ie2vs /vF exactly at the neutrality point ��=0�. Thus, there
is practically no attenuation in this regime, only velocity
renormalization. Typical SAW wavelengths range from
2–150 �m,21 which are translated to vFq�2–200 K using
vF for graphene. Graphene samples being ballistic over the
micron-submicron scale imply a scattering rate around 50 K,
thus, the above Dirac to Schrödinger-like crossover can in
principle be observed in clean samples with a tiny residual
scattering rate at the neutrality point. The resulting behavior
of SAW observables are shown in Fig. 4, which resembles
closely that of the bare conductivity. We also suppose that
SAW at �=0 can identify the role of inhomogeneities ex-

tending over several lattice constant �e.g., ripples, puddles�
in graphene. When the SAW wavelength becomes compa-
rable to their spatial extension, all waves passing through are
scattered, and the sample is not transparent any more but
acoustically opalescent. Typical ripple size is estimated to be
on the 1–10 nm scale,22 which would require a strong reduc-
tion of the SAW wavelength with respect to that in a normal
2DEG. Charge inhomogeneities due to puddles have a char-
acteristic length scale of a few micrometers.23 Measurement
of the q-dependent conductivity via the SAW technique pro-
vides a comfortable tool to probe the charge distribution by
tuning the wave vector q such that it is commensurate with
the typical puddle size. In addition, the large wavelength of
SAW enables us to study scattering close to the individual
Dirac points without intervalley scattering by tuning the
wave vector properly. This can be important to distinguish
different scenarios, such as the question of long-range and
short-range scattering.

In summary we have studied SAW propagation in mono-
layer graphene. By exploiting the chemical-potential depen-
dence of its conductivity, Landau oscillations are predicted in
both the SAW velocity change and attenuation by varying the
gate voltage, a feature which is accessible due to the quasire-
lativistic excitation spectrum in graphene. Without magnetic
field, the SAW frequency changes measure directly the
wave-vector dependence of the longitudinal conductivity,
which can reveal a Dirac to Schrödinger-like crossover, with
no attenuation in the Dirac regime.
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FIG. 4. �Color online� Schematic view of the SAW velocity
change �blue solid line� and attenuation �red dashed line� as a func-
tion of the chemical potential for B=0 clean graphene. For small �,
the attenuation is negligible in the Dirac regime.
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