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PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other charge-
density excitations)

Abstract – The electromagnetic response of graphene and the spectrum of collective plasmon
excitations are studied as a function of wave vector and frequency. Our calculation is based on the
tight-binding band structure, including both valleys. As a result, near the Dirac points we find
plasmons whose dispersion is similar to that obtained in the single-valley approximation by Dirac
fermions with some anisotropy though. In contrast to the calculation for a single Dirac cone, we
find a stronger damping of the plasmon modes due to interband absorption. Our calculation also
reveals effects due to deviations from the linear Dirac spectrum as we increase the Fermi energy,
indicating an anisotropic behavior with respect to the wave vector of the external electromagnetic
field.

                    

Introduction. – Graphene, a single layer of carbon
atoms arranged as a honeycomb lattice, is a semimetal
with remarkable transport properties [1–4]. This is due to
the band structure [5] of the material which consists of two
bands which touch each other at two nodes. The electronic
spectrum around these two nodes is linear and can be
approximated by Dirac cones [1]. Many unusal transport
properties are controlled by the fact that the Fermi energy
is at the nodes, where the density of states vanishes.
However, graphene has been gated such that the Fermi
energy can be freely tuned. This has opened a wide field for
experiments [6]. In the following we will discuss collective
excitation of the 2D electron gas in graphene, caused by an
external electromagnetic field. Although this is a standard
problem in semiconductor physics, it was studied in the
case of graphene only in the Dirac approximation around
the nodes [7–11].
We consider an electron gas which is subject to an

external potential Vi(q, ω). The response of the electron
gas is a screening potential Vs(q, ω) which is caused by
the rearrangement of the electrons due to the external
potential. Therefore, the total potential, acting on the
electrons, is

V (q, ω) = Vi(q, ω)+Vs(q, ω). (1)

Vs can be evaluated self-consistently [12] and is expressed
via the dielectric function ε(q, ω). Then the total potential
reads [13]

V (q, ω) =
1

ε(q, ω)
Vi(q, ω). (2)

The dielectric function is determined by the specific
Hamiltonian of the electron gas. In the present case this
is the tight-binding Hamiltonian on a honeycomb lattice.
The aim of our study is to compare the dielectric

function of the full honeycomb lattice with previous
studies of the single Dirac cone. In contrast to the latter,
we can not rely on a closed expression for the integrals but
have to integrate over the Brillouin zone numerically.

Model. – Using the tight-binding approximation,
(quasi-)electrons in graphene are described by the
Hamiltonian [14]

H = h1σ1+h2σ2 (3)

with Fourier components

h1 =−t
3∑
j=1

cos(bj ·k), h2 =−t
3∑
j=1

sin(bj ·k). (4)

σ1,2 are the Pauli matrices and b1,2,3 are the nearest-
neighbor vectors on the honeycomb lattice:

b1 = d(
√
3/6, 1),

b2 = d(
√
3/6,−1), (5)

b3 = d(−1/
√
3, 0),

t is the hopping parameter (≈2.8 eV) and d is the
lattice constant (≈1.42 Å). The Hamiltonian H satisfies
the eigenvalue equation H|kl〉=Ekl|kl〉 with eigen-
values Ekl = (−1)lEk and the positive square root
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χ(q, ω) = lim
δ→0

∑
    

∫
BZ

1

4
|κ∗kκk+q+ s|2

(
f(Ek)− f(−Ek)
Ek− sEk+q+ω− iδ +

f(Ek)− f(−Ek)
Ek− sEk+q−ω+ iδ

)
d2k

ΩBZ
, (8)

Ek =
√
h21+h

2
2. Thus, the index l refers either to the

conduction band (l= 2) or to the valence band (l= 1).

Dielectric function. – The dielectric function can
be calculated from the Lindhard formula. Assuming that
the wavelength of the electromagnetic wave is much
larger than the lattice spacing, the longitudinal component
reads [12]

ε(q, ω) = 1− 2πe
2

q
χ(q, ω), (6)

where

χ(q, ω) = lim
δ→0

∑
kll′

f(Ek,l)− f(Ek′l′)
Ekl−Ek′l′ + �ω+ i�δ |〈k

′l′|eiq·r|kl〉|2

(7)
with k′ = k+q. f(E) = 1/(eβ(E−µ)+1) is the Fermi-Dirac
distribution function at inverse temperature β = 1/kBT
with chemical potential µ. In order to determine χ(q, ω)
we obtain, after some straightforward calculations for
eq. (7), an expression for the polarizability (�= 1) as

see eq. (8) above

where κk = (h1− ih2)/Ek. ΩBZ is the area of the two-
dimensional Brillouin zone ΩBZ =

∫
BZ
d2k. The index s

describes intraband (for s= 1) and interband scattering
(for s=−1). The integral of eq. (8) is evaluated numeri-
cally for different values of the chemical potential µ and
different directions of the wave vector q, using the limit of
zero temperature.

Plasmons. – Poles in ω of the inverse longitudinal
dielectric function 1/ε(q, ω) for a given wave vector q
correspond to collective excitations of electrons which are
called plasmons. These poles are located either on the real
axis or in the complex plane away from the real axis. The
latter can be considered as damped plasmons, generated
by scattering with individual electrons. An imaginary
term can appear in the integral χ(q, ω) of eq. (8) if the
denominator Ek− sEk+q+ω vanishes inside the Brillouin
zone. In other words, if (q, ω) is inside the band which is
produced by the spectrum of the electrons, i.e. where an
electronic wave vector k exists that satisfies

Ek+q− sEk = ω (s=±1), (9)

(cf. fig. 1), scattering between plasmons and electrons is
possible and will lead to damping of plasmons. On the
other hand, outside the spectrum of electrons (i.e., when
there is no electron wave vector k which solves eq. (9)) we
obtain undamped plasmons.
As an approximation we can expand the electronic

dispersion around the nodes in the E = 0 plane. This gives
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Fig. 1: Contourplot of the electronic dispersion for different
energies. The Brillouin zone is indicated by the hexagon which
connects the Dirac nodes.

two independent Dirac cones (valleys) with linear disper-
sion Ek ∼ γk around each node. Then the poles of the
inverse dielectric function can be evaluated exactly [7, 8].
In this case the plasmon dispersion follows a square root:
ωP ∼ cq1/2.
Collective excitations, on the other hand, depend on

the spectral properties of the electrons. Therefore, devi-
ations from Dirac cones can affect them. We found that
these deviations lead to a stronger damping of the elec-
trons, since electronic excitations require lower energies on
the honeycomb lattice in comparison with the linearized
(Dirac) spectrum.
In the following we study the imaginary part of the

inverse dielectric function [9]

Im

(
1

ε(q, ω)

)
=

−ε′′
ε′2+ ε′′2

, (10)

where ε′ (ε′′) is the real (imaginary) part of the dielectric
function itself. Equation (10) is related to the energy
loss which can be measured in experiments using high-
resolution angle-resolved reflection electron energy loss
spectroscopy (HREELS) [15,16]. Our results agree with
those experiments for low energies in ref. [15], whereas
the high-energy results of ref. [16] are beyond our tight-
binding approximation. This quantity becomes a sharp
Dirac delta function for a pole of 1/ε(q, ω) on the real
axis. If the pole is away from the real axis it becomes a
Lorentzian which has a width ε′′, implying that the width
of the Lorentzian is a measure for damping by electron
scattering.

Discussion. – The polarizability χ of eq. (8) is evalu-
ated numerically and the corresponding dielectric function
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ωp(q) =

√
(4a+ v2F q) q (q

4v4F +4q
3v2Fa+16k

2
F a
2)
(
v2F q+2a

)
4 (4a+ v2F q) akF

(11)

is obtained from eq. (6) for different values of the frequency
ω, the wave vector q and chemical potential (Fermi
energy) µ. All energies are measured in units of the elec-
tronic bandwidth (∆= 3t), and wave vectors are measured
in units of the inverse lattice constant.
The electronic dispersion is plotted for several Fermi

energies in fig. 1. The contours are Fermi surfaces that
indicate at which wave vectors electronic intraband scat-
tering occurs for a given Fermi energy. For µ= 0.08 we
have intraband scattering only very close to the Dirac
points and the dispersion is Dirac like. In this regime
the carrier density can be estimated as [4] n= k2F /π≈
3× 1013 cm−1. For µ= 0.25 this gives as a rough approxi-
mation n≈ 1× 1014 cm−1. Such high densities may not be
available from an external gate but from chemical doping.
As we increase µ we see the effect of “warping” and for
µ= 1/3 intraband scattering between different valleys is
very likely because we have a connected Fermi surface.
Finally, for µ=−0.92 we have only a circular Fermi surface
around k= 0 with parabolic dispersion. This case corre-
sponds with a conventional 2D electron gas.
The plots in fig. 2 show the anisotropy of the plasmon

dispersion as a consequence of the band structure of
graphene. Remarkable is the strong deviation from the
Dirac case for qx = qy in fig. 2(c). In fig. 3 it can be seen
how the plasmon dispersion changes with the Fermi energy
µ. The curvature of ωP (q) is negative for low energies
(a square-root behavior close to the Dirac points), it
increases with µ and becomes positive for energies higher
and larger momenta q. This behavior indicates a crossover
from the square-root law of Dirac fermions to the behavior
of the conventional 2D electron gas [17]

see eq. (11) above

with a= 2ne2/m, the effective electron mass m, and the
Fermi velocity vF . Expansion for small q gives

ω2p ≈ aq+
3

4
v2F q

2, (12)

which is compared with the findings for graphene at µ=
−0.92 (cf. fig. 4). Thus, electrons in graphene behave like
in a conventional 2D electron gas. This means that if it
is possible to vary the Fermi energy between the linear
and the parabolic regime, the behavior of the fermions
in graphene could be “switched” from relativistic Dirac
fermions to ordinary electrons.
In the theory presented above we have made two

approximations. First, we have used the tight-binding
approximation, which ignores effects on the atomic scale.
Second, using the Lindhard formulas (6), (7) we have
ignored the local field effects [18]. Both assumptions
restrict the absolute value of the wave vector q by the
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Fig. 2: (Color online) Plasmon dispersion for µ= 0.25 and
different directions of the q vector a) qx = 0, b) qy = 0,
c) qy = qx. The square-root behavior of the Dirac case is also
shown as a dotted curve.

conditions qa0 � 1 and qd� 4π/3, therefore the plas-
mons spectra are plotted in figs. 2 and 3 at qd� 1.5,
which is still within the applicability conditions of the
theory.
In fig. 5, however, we also present our results for the

plasmon spectrum at larger values of q, up to qd� 4.
In spite of at so large q the theory is not quantitatively
applicable, one can expect that it provides a reasonable
qualitative description of the plasmon spectra in graphene.
One sees that, while the low-frequency plasmon mode with
the frequency ωP ∼√q gets a large damping and disap-
pears at ω/∆� 0.5, at even higher energies ω/∆� 0.8
the plasmon mode reappears again. Both plasmon
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Fig. 3: (Color online) Plasmon dispersion for qx = 0 and
different values of the Fermi energy µ. a) µ= 0.33, b) µ= 0.5.
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Fig. 4: (Color online) Plasmon dispersion for qx = 0 and µ=
−0.92. Here we compare with the conventional (parabolic) 2D
electron gas (dash-dotted curve). The curve is the plasmon
dispersion of a conventional 2D electron gas of eq. (11), below
the dotted line is the intraband single-particle excitation area
of a 2D electron gas.

branches look like two parts of the same dispersion curve,
“teared” to the low- and high-frequency pieces by the area
of the substantial interband damping at 0.5� ω/∆� 0.8.
This interesting result needs to be studied further within
a more advanced theory which takes into account the
local field effects [18].

Conclusion. – In this paper we have studied the
dielectric function of graphene and the plasmon dispersion
in tight-binding approximation, and compared the results
with similar calculations for a single Dirac cone. There are
differences due to the full energy spectrum of the electrons.
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Fig. 5: (Color online) Plasmon dispersion for µ= 0.25 and
qx = 0.

It turns out that the damping of the plasmons is stronger,
which indicates more scattering between plasmons and
single electrons on the honeycomb lattice. Moreover,
the plasmon dispersion is not isotropic. Although the
dispersion fits well the square-root behavior ωP ∼ q1/2 at
small q values, there are substantial deviations for larger
values. Finally, a new branch appears in the plasmon
dispersion for higher energies ω and larger wave vectors
q which needs to be subject of further investigations.
Our results reflect a crossover from Dirac-like behavior
to conventional electron gas behavior by changing the
electron density with the help of a gate.
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