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The effect of a randomly fluctuating gap, created by a random staggered potential, is studied in a

monolayer and a bilayer of graphene. The density of states, the one-particle scattering rate, and the

transport properties (diffusion coefficient and conductivity) are calculated at the neutrality point. All of

these quantities vanish at a critical value of the average staggered potential, signaling a continuous

transition to an insulating behavior. Transport quantities are directly linked to the one-particle scattering

rate. Although the behavior is qualitatively the same in mono- and bilayers, the effect of disorder is much

stronger in the latter.
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Graphene, a sheet of carbon atoms, or bilayer graphene
are semimetals with good conducting properties [1–3]. In
particular, the minimal conductivity at the neutrality point
(NP) is very robust and almost unaffected by disorder or
thermal fluctuations [3–6]. Recent experiments with hy-
drogenated graphene [7] and biased bilayer graphene [8–
10] have revealed that a staggered potential (SP) can be
created in graphene and bilayer graphene which breaks the
sublattice symmetry. This opens a gap at the Fermi energy,
leading to an insulating behavior. With this opportunity,
one enters a new field, where one can switch between a
conducting and an insulating regime of a two-dimensional
material, either by a chemical process (e.g., oxidation or
hydrogenation) or by applying an external electric field
[11].

It is clear that the opening of a uniform gap destroys the
metallic state immediately. This means that the (minimal)
conductivity at the NP drops from a finite value of order
e2=h directly to zero. In a realistic system, however, the
gap may not be uniform. This means that locally gaps
open, whereas in other regions of the sample there is no
gap. The situation can be compared with a classical ran-
dom network of broken and unbroken bonds. The conduc-
tivity of such a network is nonzero as long as there is a
percolating cluster of unbroken bonds. In such a system,
the transition from conducting to insulating behavior is
presumably a second-order percolation transition [12].

Disorder in graphene has been the subject of a number of
recent numerical studies [13,14]. The results can be sum-
marized by the statement that chiral-symmetry-preserving
disorder provides delocalized states, whereas a chiral-
symmetry-breaking potential disorder leads to Anderson
localization, even at the NP.

Conductivity and other transport properties in graphene
can be evaluated by solving the Bethe-Salpeter equation
for the average two-particle Green’s function (Cooperon)
[15–19]. Unfortunately, the Bethe-Salpeter equation is
usually a complex matrix equation which is difficult to
handle. Therefore, a different approach will be employed
here that eliminates a part of the complexity by focusing on

continuous symmetries and spontaneous symmetry break-
ing. This allows us to identify a (massless) diffusion mode
in the system with a randomly fluctuating gap. Conse-
quently, diffusion can stop only when the spontaneous
symmetry breaking vanishes. It will be discussed in this
Letter that this can happen if the average SP approaches a
critical value. Moreover, there is no drop of the conduc-
tivity but a continuous decay to zero, depending on the
fluctuations of the SP. The fact that the density of states
does not vanish at the NP of the pure bilayer leads to a
much bigger effect of a random SP in comparison with a
monolayer.
Model.—Quasiparticles in monolayer graphene (MLG)

or bilayer graphene (BLG) are described in tight-binding
approximation by a nearest-neighbor hopping Hamiltonian

H ¼ �t
X
hr;r0i

cyr cr0 þ
X
r

mrc
y
r cr þ H:c:; (1)

where the underlying structure is either a honeycomb
lattice (MLG) or two honeycomb lattices with Bernal
stacking (BLG).
The sublattice symmetry of the honeycomb lattice is

broken by a SP mr which is positive (negative) on sub-
lattice A (B) [20,21]. Such a potential can be the result of
chemical absorption of other atoms (e.g., oxygen or hydro-
gen [7]) or of an external gate voltage applied to the two
layers of BLG [8]. Neither in MLG nor in BLG are the
potential mr and, therefore, the gap uniform, because of
fluctuations in the coverage of the MLG by additional
noncarbon atoms or by the fact that the graphene sheets
are not planar [22–24]. Deviations from the planar struc-
ture in the form of ripples cause fluctuations in the distance
between the two sheets in BLG which results in an inho-
mogeneous potential mr along each sheet. It is assumed
that the gate voltage is adjusted at the NP such that on
average the SP is exactly antisymmetric: hmAi ¼ �hmBi.
At first glance, the Hamiltonian in Eq. (1) is a standard

hopping Hamiltonian with random potential m, frequently
used to study the generic case of Anderson localization
[25]. The dispersion, however, is special in the case of
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graphene due to the honeycomb lattice: At low energies, it
consists of two valleys K and K0 [18,23]. It is assumed that
weak disorder scatters only at small momentum such that
intervalley scattering is not relevant. Then each valley
contributes separately to transport, and the contribution
of the two valleys to the conductivity � is additive: � ¼
�K þ �K0 . This allows us to consider for the low-energy
properties a Dirac-type Hamiltonian for each valley sepa-
rately:

H ¼ h1�1 þ h2�2 þm�3; (2)

with Pauli matrices �j and with hj

hj ¼ irj ðMLGÞ; h1 ¼r2
1�r2

2; h2 ¼ 2r1r2 ðBLGÞ:
(3)

rj is the differential operator in j (¼1; 2) direction.

Within this approximation, the SP mr is a random variable
with mean value hmrim ¼ �m and variance hðmr � �mÞ�
ðmr0 � �mÞim ¼ g�r;r0 . The following transport calculations

will be based entirely on the Hamiltonian of Eq. (2). This is
justified, since additional terms, which may break the
symmetry (nearest-neighbor hopping term, weak coupling
between the valleys), are small and can be included as a
small energy shift of the NP. The average Hamiltonian
hHim is translational invariant and can be diagonalized
by Fourier transformation: k1�1 þ k2�2 þ �m�3 for MLG

with eigenvalues Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ k2

p
. For BLG the average

Hamiltonian is ðk21 � k22Þ�1 þ 2k1k2�2 þ �m�3 with eigen-

values Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2 þ k4

p
.

Symmetries.—Transport properties are controlled by the
symmetry of the Hamiltonian and of the corresponding
one-particle Green’s function Gði�Þ ¼ ðHþ i�Þ�1. In the
absence of sublattice-symmetry breaking (i.e., for m ¼ 0),
the Hamiltonian H ¼ h1�1 þ h2�2 has a continuous chi-
ral symmetry

H ! e��3He��3 ¼ H; (4)

with a continuous parameter�, sinceH anticommutes with
�3. The SP term m�3 breaks the continuous chiral sym-
metry. However, the behavior under transposition hTj ¼
�hj for MLG and hTj ¼ hj for BLG provides a discrete

symmetry:

H ! ��jH
T�j ¼ H; (5)

where j ¼ 1 for MLG and j ¼ 2 for BLG. This symmetry
is broken for the one-particle Green’s functionGði�Þ by the
i� term. To see whether or not the symmetry is recovered
for � ! 0, the difference of Gði�Þ and the transformed
Green’s function ��jG

Tði�Þ�j must be evaluated:

Gði�Þ þ �jG
Tði�Þ�j ¼ Gði�Þ �Gð�i�Þ: (6)

For the diagonal elements, this is the density of states at the
NP �ðE ¼ 0Þ � �0 in the limit � ! 0. Thus the order
parameter for spontaneous symmetry breaking is �0.

Conductivity.—The conductivity can be calculated from
the Kubo formula. Here we focus on interband scattering
between states of energy !=2 and�!=2, which is a major
contribution to transport near the NP. The frequency-
dependent conductivity then reads [26]

�0ð!Þ ¼ � e2

2h
!2hh�!=2jr2kj��!=2iim; (7)

where j�Ei is an eigenstate of H in Eq. (2) with energy E.
In other words, the conductivity is proportional to a matrix
element of the position operator rk (k ¼ 1; 2) with respect
to energy eigenfunctions from the lower and the upper
band. The matrix element h�!=2jr2kj��!=2i is identical

with the two-particle Green’s functionX
r

r2kTr2½Gr0ð�!=2� i�ÞG0rð!=2þ i�Þ�: (8)

This indicates that transport properties are expressed by the
two-particle Green’s function Gði�ÞGð�i�Þ. Each of the
two Green’s functionsGði�Þ andGð�i�Þ can be considered
as a random variable which are correlated due to the
common random variable mr. Their distribution is defined
by a joint distribution function P½Gði�Þ; Gð�i�Þ�. In terms
of transport theory, both Green’s functions must be in-
cluded on equal footing. This is possible by introducing
the extended Green’s function

Ĝði�Þ ¼ Gði�Þ 0
0 Gð�i�Þ

� �
¼ H þ i� 0

0 H � i�

� ��1

:

In the present case, one can use the symmetry transforma-
tion of H in Eq. (5) to write the extended Green’s function
as

�0 0
0 i�j

� �
Hþ i� 0

0 HT þ i�

� ��1 �0 0
0 i�j

� �
:

This introduces an extended Hamiltonian Ĥ ¼
diagðH;HTÞ which is invariant under a global ‘‘rotation’’

Ĥ ! eSĤeS ¼ Ĥ; S ¼ 0 ��j

�0�j 0

� �
(9)

with continuous parameters � and �0, since Ĥ anticom-
mutes with S. The i� term of the Green’s function also
breaks this symmetry. For ��0 ¼ ��2=4, the diagonal

element of Ĝ� eSĜeS is proportional to the density of
states �0, similar to Eq. (6). Thus, the symmetry is sponta-
neously broken for � ! 0 if �0 is nonzero. Since this is a
continuous symmetry, there is a massless mode which
describes diffusion [27]. Symmetry breaking should be
studied for average quantities. Therefore, the average den-
sity of states must be evaluated.
Spontaneous symmetry breaking.—The average one-

particle Green’s function can be calculated from the aver-
age Hamiltonian hHim by employing the self-consistent
Born approximation (SCBA) [15,16,21]

hGði�Þim � ðhHim � 2�Þ�1 � G0ði�;msÞ: (10)
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The self-energy � is a 2� 2 tensor due to the spinor
structure of the quasiparticles: � ¼ �ði��0 þms�3Þ=2.
Scattering by the random SP produces an imaginary part of
the self-energy � (i.e., a one-particle scattering rate) and a
shift ms of the average SP �m (i.e., �m ! m0 � �mþms). �
is determined by the self-consistent equation

� ¼ g�3ðhHim � 2�Þ�1
rr �3: (11)

For simplicity, the dc limit !� 0 is considered here. Then
the average density of states at the NP is proportional to the
scattering rate:

�0 ¼ 1

�
ImG0;rr ¼ � 1

g�
Im� ¼ �

2g�
: (12)

This demonstrates that scattering by the random SP creates
a nonzero density of states at the NP. It should be noticed
that the entire calculation of the scattering rate � is based
on the average one-particle Green’s function. Therefore, it
is not related to the continuous symmetry of Eq. (9). On the
other hand, �> 0 reflects spontaneous breaking of this
symmetry.

Equation (11) can also be written in terms of two equa-
tions, one for the one-particle scattering rate � and another
for the shift of the SP ms:

� ¼ gI�; ms ¼ � �mgI=ð1þ gIÞ: (13)

I is a function of �m and � and also depends on the
Hamiltonian. For MLG it reads with momentum cutoff �

I ¼ 1

2�
ln

�
1þ �2

�2 þ ð �mþmsÞ2
�

(14)

and for BLG

I � 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð �mþmsÞ2

p ð��1Þ: (15)

A nonzero solution � requires gI ¼ 1 in the first part of
Eq. (13), such that ms ¼ � �m=2 from the second part.
Since the integrals I are monotonically decreasing func-
tions for large �m, a real solution with gI ¼ 1 exists only for
j �mj � mc. For both MLG and BLG, the solutions read

�2 ¼ ðm2
c � �m2Þ�ðm2

c � �m2Þ=4; (16)

where the model dependence enters only through the criti-
cal average SP mc:8<

:
2�ffiffiffiffiffiffiffiffiffiffiffiffiffi

e2�=g�1
p � 2�e��=g ðMLGÞ
g=2 ðBLGÞ:

(17)

mc is much bigger for BLG (cf. Fig. 1), a result which
indicates that the effect of disorder is much stronger in
BLG. This is also reflected by the scattering rate at �m ¼ 0
which is � ¼ mc=2. This difference can be easily under-
stood by comparing �0 of both models in the absence of
disorder, where the scattering rate � vanishes. The spec-
trum without a SP is linear for MLG and quadratic for
BLG. Then the density of states is linear and vanishes at the
NP for MLG, whereas it is constant for BLG. [This follows

also from the expression in Eq. (12) by taking the limit g !
0, since � ¼ g=4 for �m ¼ 0 gives �0 ¼ 1=8� in the case

of BLG, and � ¼ �e��=g gives �0 / e��=g=g� 0 in the
case of MLG.] Consequently, there is much more scatter-
ing in the presence of disorder (with a much bigger �) near
the NP for BLG than for MLG.
Diffusion.—The average matrix element of the position

operator hh�!=2jr2kj��!=2iim in the conductivity expres-

sion of Eq. (7) can be evaluated from an effective field
theory [27]. If �> 0, the corresponding spontaneous
breaking of the symmetry in Eq. (9) creates a single mass-
less mode and a divergent matrix element for !� 0 [28]:

hh�!=2jr2kj��!=2iim � � �2

ð!=2Þ2 h�
0
i�jr2kj�0�i�i; (18)

where j�0
Ei is eigenfunction of the translational-invariant

Hamiltonian hHim with eigenvalue E. This relation is
similar to the relation of the average one-particle Green’s
function in the SCBA of Eq. (10). Like in the latter case,
the averaging process leads to a change of energies!=2 !
i� (i.e., a replacement of the frequency by the scattering
rate). Moreover, in the relation of the matrix element there
is an extra prefactor��2=ð!=2Þ2. This is important for the
transport properties, since it cancels the factor !2 in the
conductivity of Eq. (7). The relation in Eq. (18) can be
understood as a factorization of the averaged matrix ele-
ment into a product of a power law (i.e., �!�2) and a
smooth scaling function �2h�0

i�jr2kj�0�i�i. This means that

the states j��!=2i are delocalized for ! ¼ 0 in the pres-
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FIG. 1. Upper panel: dc conductivity in units of e2=h for ML
graphene (full curve) and BL graphene (dashed curve) vs the
average staggered potential �m, calculated from Eq. (19) for g ¼
1 and � ¼ 1. Lower panel: Critical average staggered potential
as a function of g (variance of the staggered potential fluctua-
tions) for ML graphene (full curve) and BL graphene (dashed
curve).
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ence of weak SP disorder and localized for ! � 0 with a
decreasing localization length as one goes away from the
NP. Such a behavior was also found for bond disorder in
analytic [26] and in numerical studies [14].

After evaluating h�0
i�jr2kj�0�i�i, the conductivity in

Eq. (7) reads

�0 � a

�

�2

�2 þ �m2=4

e2

h
; (19)

where a ¼ 1 (a ¼ 2) for MLG (BLG). First, this result
indicates that the relevant quantity is the one-particle scat-
tering rate �. The difference between MLG and BLG is
only due to the parameter a ¼ 1; 2 and due to the specific
�m dependence of �. Second, the result reflects a diffusive
behavior as long as the scattering rate � does not vanish,
with diffusion coefficient D ¼ �0=�0 / �=ð�2 þ �m2=4Þ
due to the Einstein relation.

Equation (16) gives a vanishing scattering rate for �m 	
mc, where the critical value mc is twice the scattering rate
at �m ¼ 0. Moreover, a global gap opens only for �m>mc,
since the average density of states at the NP is proportional
to �. There is a qualitative difference in the details of the
transport properties at �m ¼ 0, on the one hand, and for
�m � 0, on the other:

�m ¼ 0.—A fluctuating SP with variance g not too large
(here we work in the weak disorder regime) has no effect
on the minimal conductivity. In terms of the Einstein
relation �0 / �0D, this means that an increase of �0 due
to increased scattering is compensated by a reduction of the
diffusion coefficient. Such a behavior was also observed in
the chiral-invariant case with random bond disorder which
is related to ripples [3,16,22,27].

�m � 0.—The conductivity decreases with �m and even-
tually goes to zero at �m ¼ mc. This is due to two effects,
namely, the reduction of the density of states and the
reduction of the diffusion coefficient with �m, caused by a
fluctuating gap.

The different spectra of MLG and BLG have quantita-
tive consequences for the conductivity through�: For BLG
it is twice as big as for MLG at �m ¼ 0 (this was also found
earlier for g ¼ 0 [29]) and also decays on a larger scale for
0< �m � mc, since the critical value ismc ¼ g=2 for BLG,
whereas it is mc � expð��=gÞ for MLG. As shown in
Fig. 1, the conductivity of MLG vanishes for a given g at
much lower values of �m.

Our result of the random SP represents a case that is
different from random bond disorder (i.e., for a system
with chiral symmetry) and random scalar potential (which
breaks the chiral symmetry but not the sublattice symme-
try). The former does not localize states at the NP, whereas
the latter has presumably always localized states, with a
very large localization length though. In a recent paper,
Zhang et al. suggested a Kosterlitz-Thouless (KT) transi-
tion for a long-range random scalar potential [13]. The KT
transition is a phase transition that has no spontaneous
symmetry breaking but a single massless mode in the

ordered phase due to Uð1Þ phase fluctuations. In the case
of the random SP, the situation is very different: There is
spontaneous symmetry breaking in the diffusive phase due
to �> 0. Moreover, the symmetry of the fluctuations in
Eq. (9) has two components rather than one. Therefore, the
transition to the insulating behavior in the case of a random
SP cannot be linked to the conventional KT transition.
A possible experimental realization of a random gap was

recently observed by Adam et al. [30]. It still remains to be
seen whether or not the observed transition, which was
studied by varying the gate voltage at a fixed gap, can be
related to a nonzero average SP. This would require a
tuning of the gap fluctuations and measurement of the local
density of states.
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