
Rabi Oscillations in Landau-Quantized Graphene
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We investigate the relation between the canonical model of quantum optics, the Jaynes-Cummings

Hamiltonian and Dirac fermions in quantizing magnetic field. We demonstrate that Rabi oscillations are

observable in the optical response of graphene, providing us with a transparent picture about the structure

of optical transitions. While the longitudinal conductivity reveals chaotic Rabi oscillations, the Hall

component measures coherent ones. This opens up the possibility of investigating a microscopic model of

a few quantum objects in a macroscopic experiment with tunable parameters.
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Graphene, a single sheet of carbon atoms in a honey-
comb lattice has attracted enormous interest recently [1].
Its quasiparticle states are pseudospinors, where the spinor
structure is a consequence of the twofold sublattice struc-
ture of the honeycomb lattice (Fig. 1). They obey a two-
dimensional Dirac equation, whose speed of light is re-
placed by the Fermi velocity (being 1=300th the speed of
light). This implies a number of striking properties, includ-
ing the unconventional quantum Hall effect [2], Klein
tunneling [3] and Zitterbewegung [4–7] due to particle-
hole excitations. In an applied magnetic field, perpendicu-
lar to the carbon sheet, the formation of Landau levels En

with an unusual dependence En �
ffiffiffi
n

p
on the Landau level

index n was predicted, and also observed experimentally
[8,9].

Coupling of a (pseudo)spinor to an external quantum
field is a common feature in quantum optics. In this con-
text, one of the simplest, fully quantum mechanical model
is the Jaynes-Cummings (JC) Hamiltonian[10]

HJC ¼ Vðaþ�� þ �þaÞ þ ��z; (1)

which describes a single two-state atom, represented by the
Pauli matrices, that is interacting with a (single-mode
quantized) electromagnetic field [11]. aþ (a) are the pho-
ton creation (annihilation) operators, and V is the coupling
strength between the atom and the electromagnetic field.
The interaction leads to a periodic exchange of energy
between the electromagnetic field and the two-level sys-
tem, known as Rabi oscillations. This effect can be inter-
preted as a periodic change between absorption and
stimulated emission of photons. It is simply a consequence
of the fact that the atom is not in an eigenstate after the
absorption of n photons. Avery similar situation occurs for
the Landau levels of graphene. In terms of the Hamiltonian
in Eq. (1), the two-level atom in the JC model (represented
by �’s) corresponds to a pseudospin 1=2 due to the two
sublattices in graphene, and the photon operators aþ and a
are translated to operators in graphene that are acting on

Landau levels [12]: aþ ¼ �þ=
ffiffiffiffiffiffiffiffiffi
2eB

p
and a ¼ ��=

ffiffiffiffiffiffiffiffiffi
2eB

p
,

where �� ¼ �x � �y with � ¼ pþ eA are the (Peierls

substituted) momentum operators with the vector potential
A. Formally, they act as creation and annihilation operators
of a harmonic oscillator and obey a bosonic commutation
relation ½��; �þ� ¼ 2eB. Moreover, the coupling constant
V depends on the magnetic field strength B and the Fermi

velocity in graphene vF ¼ 106 m=s through V ¼
vF

ffiffiffiffiffiffiffiffiffi
2eB

p
. Finally, � represents a possible excitonic gap

[13] or a substrate induced band gap [14] in epitaxial
graphene. The above analogy has already been exploited
in Ref. [5] when studying the classical carrier dynamics in
graphene.
The pseudospinor state in the nth Landau level is not an

eigenstate of the quasiparticle Hamiltonian of graphene. If
we prepare an initial quasiparticle state of graphene in a
certain Landau level by switching on an external magnetic
field, the quasiparticles will go from the initial nonequilib-
rium state to other Landau levels. Depending on the damp-
ing due to (impurity) scattering, the quasiparticles oscillate
between different Landau levels until they reach their
equilibrium state, which is a superposition of Landau
levels. Recent experiments on high-mobility samples of
graphene have indicated that damping due to impurity
scattering can be negligible on experimentally relevant
time scales [15,16].

FIG. 1 (color online). A small fragment of the honeycomb
lattice is shown, the filled red and empty black circles denote
the two sublattices.

PRL 102, 036803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 JANUARY 2009

0031-9007=09=102(3)=036803(4) 036803-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.102.036803


In this Letter we shall discuss the nonequilibrium cur-
rent dynamics of high-mobility graphene. Quantum states
are prepared by a short electric pulse and the subsequent
current dynamics is controlled by oscillations between
Landau levels.

The Hamiltonian HJC can be diagonalized, and the

resulting eigenvalues are obtained as En� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ V2ðnþ 1Þp

, where n ¼ 0; 1; 2 . . . non-negative in-
teger, � ¼ �. In the nonrelativistic limit (� � V), the
usual Landau level spectrum is obtained as �ð�þ!cðnþ
1ÞÞ with the cyclotron frequency of massive (Dirac) fermi-
ons !c ¼ v2

FeB=�. In addition, there is a special eigen-
state, stemming from the Landau level at the Dirac point
with E� ¼ ��, which formally corresponds to n ¼ �1
and � ¼ �1. Having determined the spectrum of the
Hamiltonian, we turn to the investigation of the current
correlations. Since �xðyÞ (the pseudospin variable) is the

current density in x (y) direction due to the equation of
motion jxðyÞ ¼ i½H; xðyÞ� ¼ vF�xðyÞ, we can calculate the

dynamical correlation function CxxðtÞ ¼ h�xðtÞ�xð0Þi and
Cxy ¼ h�xðtÞ�yð0Þi (symmetric and antisymmetric dipole-

dipole correlator). In quantum optics, these describe the
transitions between the two atomic states, and tell us about
the spectrum of Rabi oscillations [17]. On the other hand,
CxxðtÞ and CxyðtÞ play the role of the longitudinal and Hall

current-current correlation functions in the Dirac case, and
leads eventually to the optical conductivity of graphene
[18,19]. Therefore, we expect the well-known Rabi oscil-
lations of quantum optics to be observable in the response
functions of Landau-quantized Dirac fermions [20].
We start with the general correlator Cð’; tÞ ¼

h�xðtÞð cosð’Þ�x þ sinð’Þ�yÞi, evaluated using the (struc-

tureless) bosonic a operators. This defines both CxxðtÞ ¼
Cð0; tÞ and CxyðtÞ ¼ Cð�=2; tÞ, and reads as

Cð’; tÞ ¼ gcfðE�ÞX
�¼�

expðiðE0� þ E�Þt� i’ÞP�!0� þ X
n�0

��s¼�

gcfðEn�Þ expðiðEn� þ En�s�Þtþ is’ÞPn�!n�s�; (2)

where fðEÞ ¼ 1=½expððE��Þ=TÞþ 1� is the Fermi func-
tion, gc ¼ NfAceB=2� is the degeneracy of the Landau
levels including spins, Ac is the area of the unit cell, to be
taken as unity in the Dirac approach, Nf ¼ 2 stands for the
spin degeneracy. From this, it follows immediately that a
En� Landau level with n > 0 and given � possesses four
possible optical transitions to the adjacent levels as En�1��

(on the same side and on the other side of the Dirac cone),
the n ¼ 0 level three transitions to E1�� and E� and the E�
level two transitions to E0�. The nonzero transition matrix
elements are given by

Pn�!n�s� ¼ 1

4

�
1þ s�

En�

��
1þ s�

En�s�

�
for n � 0;

P�!0� ¼ 1

2

�
1� �

E0�

�
; (3)

which satisfy
P

m�Pn�!m� ¼ 1, and agree with the tran-
sition probabilities for Rabi oscillations of atoms induced
by external electromagnetic field. These approach 1=4 in
the classical limit (of bosons) n ! 1, in which case the
field contains many bosons, whose quantum character can
then be neglected [21]. Interestingly, the� ¼ 0 limit yields
the classical matrix elements for any n � 0. However, the
E� level never reaches the classical limit, and is responsible
for the anomalous optical properties of graphene in mag-
netic field [22]. The evaluation of the microwave conduc-
tivities of graphene follows readily from Eq. (2), and the
response function is �xaðtÞ ¼ ��ðtÞ2e2v2

FImCxaðtÞ,
which yields to the optical (a ¼ x) and microwave Hall
(a ¼ y) conductivity as �xað!Þ ¼ ~�xað!Þ=i! upon
Fourier transformation [23]. These are identical to those

[24] obtained using standard many-body techniques in the
� ! 0 limit (where � is the damping [23,24]).
Equation (2), together with the relation to the JC

Hamiltonian provides us with a particularly simple picture
about the optical selection rules and transitions by relating
them to the Rabi oscillations. Therefore, the optical con-
ductivity by varying the frequency sweeps through all
possible transitions, and measures the frequency of the
Rabi oscillations, with quantum or classical character.
This provides a unique opportunity to investigate a basic
phenomenon of quantum electrodynamics in a condensed
matter experiment. By changing the external magnetic
field applied to graphene, the coupling between the atom
and electromagnetic field in the JC model can be tuned
continuously, facilitating the exploration of various re-
gimes, the quantum to classical crossover.
In quantum optics, one has the freedom to prepare the

initial state of both the atom and the electromagnetic field
[10,11]. The atom is usually prepared in its excited state,
and the field is prepared in a number state or in a coherent
state [20,25]. Then one can study the time evolution of the
atomic population, which exhibits Rabi oscillations, when
jumping between the ground and excited state, causing
collapse and revival phenomenon. However, qualitatively
different behavior describes chaotic or thermal fields [26].
Quiescent periods and interfering revivals are also present,
but the resulting pattern of oscillations follows an appar-
ently random evolution. A coherent state, which is the most
classical single-mode quantum state, is strongly peaked
around the average boson number �n. Therefore, Rabi os-
cillations mainly involve frequencies around E �n�, and the
collapse time is independent of the field strength, i.e., �n. As
opposed to this, a thermal or chaotic field has a broad,

PRL 102, 036803 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

23 JANUARY 2009

036803-2



monotonically decreasing distribution of boson states, and
can be represented as a mixture of coherent states with a
Gaussian distribution of the mean values. As a result, the
very wide range of boson numbers gives such a broad
distribution of Rabi frequencies that almost no trace of
coherent oscillations remains after ensemble averaging,
and the resulting initial collapse time depends on the field
strength �n. The revival times depend on �n for both initial
conditions.

For graphene, an arbitrary preparation of the initial
states is not accessible, but requires thermal, ensemble
averaging. In this respect, it is closer to the second type
of thermal initial condition for the JC model. The average
boson number in the JC model corresponds to the total
number of fermions in graphene, determined by the chemi-
cal potential and the cutoff. This can be introduced by the

energy scale D ¼ V
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
, above which we neglect all

states (with n > N). We mention that the inclusion of a
cutoff is required to obtain correctly the f-sum rule for
graphene [27].

Using this prescription, we investigate the real-time
evolution of the longitudinal current-current correlation
function based on Eq. (2). The results are shown in
Fig. 2, including valley (� ! ��) and spin degeneracies.
Similarly to observations in quantum optics [10,26], the
initial collapse is followed by a revival of oscillation,
which are also sensitive to the presence of finite � and
�. They both enlarge the quiescent period after the short
time collapse, and cause additional steplike structures in
the envelope of oscillations with a period of

maxð�;�Þ�=v2
FeB. For longer times, collapse and revival

are observable in Fig. 3, which gradually become wider
and overlap. This revival time depends on the value of the

cutoff like 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
=V ¼ �D=v2

FeB, as is apparent

from the figure, and is controllable by the magnetic field.
The Hall response (�xyð!Þ) evolves differently. In the dc

limit, by taking both valley and spin degeneracies into
account, it produces the unconventional quantum Hall
steps as a function of �. In connection with the JC model,
these steps, occurring when � coincides with a Landau
level energy, correspond to the bare Rabi frequencies,
which can be revealed in a static, dc experiment, but still
gaining information about the dynamics of the system. The
microwave Hall conductivity obeys to the same selection
rules and possesses the same transition matrix elements as
the longitudinal conductivity. However, the extra phase
factor in Eq. (2) is responsible for the different behavior.
The time evolution of the Hall correlator is shown in

Fig. 4, and turns out to be independent of the applied cutoff
scheme, hence being universal. It exhibits coherent Rabi
oscillations, which vanish at the Dirac point (this is equiva-
lent to the statement, that the Hall conductivity is zero
exactly at the Dirac point). Upon increasing�, oscillations
shows up with beating property, observed in quantum
optics as well [10]. The characteristic frequency of the
envelope of the oscillations for � � ðV;�Þ is V2=2� ¼
v2
FeB=�, which is the cyclotron frequency of massless

Dirac fermions [2]. Even though the spectrum is linear,
the finite chemical potential provides us with an energy
scale for the cyclotron mass. Only the energy levels with
jEn�j<� contribute to the Hall response at T ¼ 0.
Therefore, for �>�, ImCxyðtÞ ¼ 0 and no oscillations

are present. This means, that only a finite, narrow range of
frequencies determine the Rabi oscillations. Thus,
although the initial field state is always a thermal one in
graphene, both coherent and chaotic Rabi oscillation can
be observed in different quantities, together with collapse
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FIG. 2 (color online). The real-time evolution of CxxðtÞ is
shown at T ¼ 0, taking both valley and spin degeneracies into
account. We introduced a cutoff D, and the number of levels is
measured as D ¼ V

ffiffiffiffi
N

p
, corresponding to different magnetic

field strengths. The left/right panels show N ¼ 10 000
(blue)/N ¼ 100 (red) with D ¼ V

ffiffiffiffi
N

p
for ð�;�Þ=V ffiffiffiffi

N
p ¼ ð0; 0Þ

(a),(e), (0.4,0) (b),(f), (0.4,0.2) (c),(g), and (0,0.2) (d),(h). These
structures correspond to thermal field induced random oscilla-
tion in quantum optics [26].
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FIG. 3 (color online). The real-time evolution of CxxðtÞ is
shown for long times for T ¼ 0, ð�;�Þ ¼ ð0; 0Þ. We introduced
a cutoff D, and the number of levels is measured as D ¼ V

ffiffiffiffi
N

p
,

corresponding to different magnetic field strengths with N ¼
10 000 (blue) and N ¼ 100 (red). Collapse and revival shows up
with time similarly to the thermal field Jaynes-Cummings model.
The revivals gradually get wider and overlap. The presence of
thermal revivals are related to the finite average boson number in
the Jaynes-Cummings model, which translate to a finite cutoff in
the Dirac case. As opposed to Fig. 2, these revivals at long times
are caused by the finite cutoff.
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and revival. The correlation function Cð’; tÞ measures in
principle the crossover from thermal to coherent behavior
with changing ’, and provides us with the unique oppor-
tunity to observe the crossover by not changing the initial
field state, but by measuring a different component of the
current.

Time-resolved current-voltage measurements can reveal
the real-time dependence of correlation functions, simi-
larly to the current-voltage characteristics of Josephson
junctions [28]. By applying a sharp current or electric field
pulse as E ¼ E0�ðtÞ, the resulting current through the
sample parallel or perpendicular to E0 after the initial pulse
is directly related to the above correlation functions. More
precisely, within linear response theory, it follows as
hjaðtÞi ¼ �2e2v2

FE0

R
t
0 dt

0ImCxaðt0Þ with a ¼ x or y.
This opens up the possibility to reconstruct the time-
dependence of ImCxaðt0Þ, or to obtain the frequency de-
pendent longitudinal and Hall responses. Another method
invokes the femto- or attosecond laser pulse technique.
After shining the sample with a short laser pulse, the
measurement of transmittance or reflectance in time is
determined by the CðtÞ correlation functions. The most
conventional way to deduce these correlation functions is
provided through optical conductivity or current fluctua-
tion measurement. Via the fluctuation dissipation theorem,
they contain the same information, and upon Fourier trans-
forming from frequency space to get the real time depen-
dence, one is expected to be able to observe the presence of
Rabi oscillations. Similar measurements have already been
carried out without magnetic field [18,19].

The above calculations can easily be extended to other
correlation functions such as thermal conductivities. We
also may speculate that various extensions to single layer

graphene such as bi- and multilayer structures [29] (with
spin-orbit coupling) can be mapped onto different multi-
mode, multiatom, and nonlinear versions of the JC model.
In conclusion, we have shown that the equivalence of the

Hamiltonians of graphene in magnetic field and of the JC
model influences their correlation functions as well, caus-
ing both thermal and coherent Rabi oscillation in the
electric response of graphene. Finally, we speculate that
Rabi oscillations and Zitterbewegung are two closely re-
lated phenomena named differently in different fields of
physics, both arising from the coupling of positive and
negative energy states.
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FIG. 4 (color online). The real-time evolution of CxyðtÞ is
shown for T ¼ 0. The explicit value of the number of levels
(N) does not influence the resulting pattern. The chemical
potential varied as �=V ¼ 1:2 (a),(d), 3.2 (b),(e) and 10 (c),(f)
with � ¼ 0 (left panel, blue) and � ¼ 2V (right panel, red), and
the frequency of the envelope function is v2

FeB=�, the cyclotron
frequency of massless Dirac fermions. For T ¼ 0 and �>�,
ImCxyðtÞ ¼ 0. Note the different horizontal scales.
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