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The appearance of long-range correlations near the Dirac point of a Dirac-type spinor model with random
vector potential is studied. These correlations originate from a spontaneously broken symmetry and their
corresponding Goldstone modes. Using a strong-disorder expansion, correlation functions and matrix elements
are analyzed and compared with results from a weak-disorder expansion. The local density of states correlation
and the overlap between states above and below the Dirac point are characterized by a long-range behavior.
The correlation range decreases with the distance from the Dirac point. Transport is diffusive and the diffusion
coefficient is proportional to the one-particle scattering time for any strength of disorder. A consequence of the
special properties of particle-hole scattering is a constant microwave conductivity for weak, as well as for
strong disorder, describing a deviation from conventional Drude-type transport. Some properties of the model
can be linked to a kind of Kondo scale, which is generated by disorder. Finally, the properties of the wave
functions at the Dirac point are characterized by their participation ratios, indicating a critical state at the Dirac
point.
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I. INTRODUCTION

The electronic properties of graphene are closely related
to the existence of a spinor wave function and the two Dirac
nodes in the band structure.1–3 This implies an unconven-
tional behavior which is associated with the Klein paradox.4

An important effect is the scattering between the hole and the
particle sector of the Dirac cones, leading, for instance, to the
zitterbewegung.5–10 A constant contribution to the microwave
conductivity is another consequence of this effect, causing a
deviation from conventional Drude-type transport.11–13 The
latter has been studied only for weak disorder. It would be
interesting to analyze these effects, their modification or
even their destruction in the presence of strong disorder.

The presence of disorder in graphene has been discussed
in a number of recent papers, considering different physical
conditions. It seems that disorder should appear in the effec-
tive Dirac-type Hamiltonian in the form of a random vector
potential due to instability of the translational order in two
dimensions �2D�.14,3,15–17 Scattering by a random vector po-
tential affects only the phase of the wave functions. Its influ-
ence on transport is such that no localization has been ob-
served, even for very strong disorder.18 However, it is
believed that disorder has a substantial effect on the magne-
toresistance, observed as a suppression of the weak-
localization peak.14,19 Another effect, which might be caused
by disorder, are fluctuations of the charge distribution near
the Dirac point. Recent experiments have revealed that in
graphene long-range charge fluctuations exist.20

The Dirac point is very special because it is associated
with zero-energy modes and a vanishing density of states
�DOS�. Consequently, it might be very sensitive to disorder.
It is known that, depending on the type of disorder, the prop-
erties of Dirac fermions are strongly affected by
randomness.21,22 An example is the prediction of a dramatic
change of the density of states due to disorder. On the other
hand, some quantities, such as conductivity, are remarkably
robust.23,21,24,25 Of particular interest is the question how dis-

order affects the interband scattering. Weak disorder has no
effect on particle-hole scattering, only on the interparticle
scattering �cf. Ref. 11�. All this indicates that the Dirac point
is an interesting object to study in more detail, especially
when disorder is strong.

To understand the effect of a random vector potential in a
Dirac-type Hamiltonian, it has to be noticed that the Dirac
point is characterized by a chiral symmetry. We discuss this
symmetry and its spontaneous breaking by the random vec-
tor potential. It is known that the spontaneously broken sym-
metry implies a robust diffusion mode for weak disorder24

and for strong disorder.18 In this paper we will demonstrate
that the local density of states correlations have a long-
ranged behavior, although the average density of states is
finite. Some properties can be linked to a kind of Kondo
scale, generated by disorder.26,27 The analysis of the scatter-
ing between different parts of the Dirac cone leads to corre-
lations between different energy states, whose correlation are
expressed in terms of transition matrix elements. A special
case is the corresponding matrix elements of the position
operator with respect to �E energy states, which appear as
important contributions to the microwave conductivity. Fi-
nally, the second moment of the local density of states can be
associated with the inverse participation ratio. This quantity
characterizes the properties of the wave functions at the
Dirac point.

In order to study the effect of symmetry breaking in the
presence of disorder, we apply a perturbation theory for
strong disorder. Strong-disorder expansions have been quite
successful in different fields of physics. In the case of Dirac
fermions it has been observed that the expansion has a num-
ber of advantages in comparison with a weak-disorder
expansion.18 The main reason is that the leading order of the
expansion is quite simple. Nevertheless, the strong-disorder
expansion cannot be applied directly to one-particle Green’s
function of the Dirac-type Hamiltonian because it has, in
contrast to a Schrödinger-type Hamiltonian, divergent contri-
butions from self-crossing loops. �The strong-disorder ex-
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pansion can be formulated as an expansion in terms of the
hopping elements of the Hamiltonian.� These problems can
be avoided by applying the expansion to the saddle-point
integration. Then the integration is restricted to the most im-
portant contributions, namely the saddle-point manifold,
which takes into account the underlying symmetries of the
model. In this case the strong-coupling expansion can be
controlled and leads in leading order to a model with diffu-
sion propagator. It describes the Goldstone modes which are
generated by spontaneous symmetry breaking �SSB�. The re-
sults of this expansion can be compared to those of the more
common weak-disorder expansion. The latter gives in lead-
ing order a factorization of average two-particle Green’s
function into a product of two average one-particle Green’s
functions, which can be treated within the self-consistent
Born approximation. Both approaches are compared to study
similarities and differences of both regimes.

The paper is organized as follows. In Sec. II we introduce
the generalized Dirac model and discuss spontaneous sym-
metry breaking. This includes the definition of some physical
quantities, which are studied in the rest of the paper. The
framework of functional integration for our model is pre-
sented in Sec. III, and the corresponding symmetries are ana-
lyzed in Sec. IV. Then the averaging with respect to the
random vector potential and the related saddle-point integra-
tion are performed �Sec. V�. The results of the calculations
are discussed and compared with weak-disorder approxima-
tions in Sec. VI.

II. MODEL AND SPONTANEOUS SYMMETRY BREAKING

In this paper we study the generalized Dirac Hamiltonian
for a spinor-1/2 state in a random vector potential

H = H0 + v�1, H0 = h1�1 + h2�2. �1�

� j �j=0,1 ,2 ,3� are Pauli matrices, h j is an operator that acts
in space, and v is space diagonal with random variables vr.
The latter are independently Gaussian distributed with zero
mean and variance g. Special cases for H0 are 2D Dirac
fermions, whose Fourier components are

h j = k j

and the tight-binding model on a honeycomb lattice with

h1 = − t�
j=1

3

cos�a� j · k��,h2 = − t�
j=1

3

sin�a� j · k�� ,

with the lattice vectors of the honeycomb lattice

a�1 = �− �3/2,1/2�, a�2 = �0,− 1�, a�3 = ��3/2,1/2� .

H0 can be diagonalized as H0=dia g�ek ,−ek� with ek

=�h1
2+h2

2. The Hamiltonian H is invariant under the continu-
ous transformation H→ei��3Hei��3. This symmetry can be
broken spontaneously. To measure SSB, we consider the
one-particle Green’s function

G�z� = �H + z�−1

and calculate the difference of this expression before and
after the symmetry transformation. For the special case with
parameter value �= i� /2 this reads

G�z� − i�3G�z�i�3 = �H + z�−1 − �H − z�−1.

Since z breaks the symmetry, we send it to zero. If we choose
z= i�, the results for the diagonal elements of G are propor-
tional to the local density of states at the Dirac point:

�r�0� = �rr�H� � lim
�→0

��H + i��rr
−1 − �H − i��rr

−1� .

Thus, a nonzero �r�0� indicates SSB. This is similar to spon-
taneous symmetry breaking in classical systems, e.g., in the
case of the magnetic phase transition of a classical Heisen-
berg model.28 However, there is a remarkable difference: In
the Heisenberg model there is SSB only for systems with
dimensionality d higher than 2, whereas this restriction does
not hold in a disordered system. Even for d=0, where H
=v�1, we have SSB, since the DOS reads

���0�� = lim
�→0
	 �

�2 + v2 P�v�dv = lim
�→0
	 1

1 + x2 P��x�dx 	 0

for a continuous distribution function P�v�, e.g., a Gaussian.
Another interesting point is that the second moment of the
density of states diverges like �−1:

���0�2� =	 �2

��2 + v2�2 P�v�dv = �−1	 1

�1 + x2�2 P��x�dx .

�2�

This simply reflects the fact that the distribution of the den-
sity of states has a Lorenzian form.

Physical quantities

A characteristic property of the Hamiltonian H in Eq. �1�
is that its spectrum is symmetric with respect to the energy
E=0 �the Dirac point�, consisting of states 
�E in the upper
and the lower band �particle and hole parts of the Dirac
cones�. These states are connected by the transformation

−E=�3
E because the eigenvalue equation

H
E = E
E

gives

�3H�3�3
E = E�3
E,

which becomes with �3H�3=−H

H�3
E = − E�3
E.

Scattering between 
E and 
−E leads to interesting physical
phenomena, such as the zitterbewegung5,6 or a constant con-
tribution to the microwave conductivity.11,29,13 The latter can
be seen by considering a typical contribution to the
frequency-dependent conductivity at frequency � �cf. Ap-
pendix A� as

�II��� = −
e2

4h
�	

−�/2

�/2

�
r

rk
2Tr2�Gr0��/2 − E − i��G0r�− �/2

− E + i�� + Gr0�− �/2 + E − i��G0r��/2 + E + i���dE ,

�3�
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where Tr2 is the trace with respect to Pauli matrices. This can
also be expressed in terms of the matrix elements of rk

2 be-
tween the states ���/2−E �cf. Appendix B� as

�II��� = −
e2

4h
�	

−�/2

�/2

���−�/2+E
rk
2
��/2+E�

+ ���/2−E
rk
2
�−�/2−E��dE . �4�

For a system at the Dirac point E=0, we expect that the main
contribution to the conductivity comes from the scattering
between �−�/2 and ��/2, where the scattering does not
change momentum �cf. Fig. 1�. Therefore, we consider in the
following only:

�0��� = −
e2

4h
�2��−�/2
rk

2
��/2� + ����/2
rk
2
�−�/2��

= −
e2

2h
�2��−�/2
rk

2
��/2� , �5�

where the last equation is a consequence of the symmetry of
the matrix element. Then a constant conductivity, found
theoretically11,12 and experimentally,13 requires a matrix ele-
ment that diverges for ��0 as

��−�/2
rk
2
��/2� � �−2.

There are two other correlation functions that are of inter-
est for the characterization of the disordered system of qua-
siparticles in graphene. One is

Crr� = �Tr2��rr��H − E��r�r�H − E��� , �6�

which is related to the dc conductivity �

 at T=�=0
through the expression25

�

 = 2�
e2

�
lim
�→0

�2�
r�

�r
 − r
�2Crr�. �7�

The other correlation function is

Drr� = �Tr2��rr�H − E��Tr2��r�r��H − E��� , �8�

which is the correlation of the local density of states at sites
r and r�. For r�=r, Drr is related to the participation ratio and
the inverse participation ratio �cf. Appendix C�. These are
quantities that measure the statistical properties of the wave
functions and their localization behavior.30 The participation
ratio

p�2� =
��r�2

��r
2�

vanishes for localized states because the local density of
states �r has a broad distribution with divergent second mo-
ments in this case, similar to the single-site density of states
of Eq. �2�. Using Drr the participation ratio reads

p�2� = lim
�→0

��r�2

Drr
. �9�

Moreover, the inverse participation ratio is also related to the
second moment of the local density of states �cf. Appendix
C�:

P�2� = lim
�→0

�Drr. �10�

It vanishes as one approaches the regime of extended states,
coming from the localized regime.

The density operator ��H� can be expressed by the one-
particle Green’s function

G� = �H � i��−1

as

�rr��H� =
1

2i�
�Grr�

− − Grr�
+ � .

With the relation �3G��3=−G� the delta function also reads

�rr��H� =
i

2�
�Grr�

+ + �3Grr�
+

�3� =
i

�
�Grr�,11

+
0

0 Grr�,22
+ 
 .

This relation implies for the correlation functions at the
Dirac point E=0

Crr� = −
1

�2 �
j=1,2

�Grr�,j j
+ Gr�r,j j

+ � , �11�

Drr� = −
1

�2 �Tr2�Grr
+ �Tr2�Gr�r�

+ �� . �12�

Moreover, away from the Dirac point at energies E= �� /2
it gives

Arr���� = − �Tr2��3Grr���/2 + i���3Gr�r��/2 + i���� ,

�13�

which can be used to write for the conductivity of Eq. �5�

�0��� = −
e2

2h
�2�

r

rk
2Ar0��� = −

e2

2h
�2���/2
rk

2
�−�/2� .

�14�

III. FUNCTIONAL INTEGRAL

All three correlation functions in Eqs. �11�–�13� are writ-
ten as products of two Green’s functions. We can express
these products, before averaging, as a Gaussian functional

�����

���

����������

FIG. 1. Scattering on the Dirac cone: schematic scattering pro-
cess between energy states �E−�/2 and �E+�/2, as well as between
�−�/2 and ��/2. This type of scattering is relevant for the micro-
wave conductivity �II��� in Eq. �5�.
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integral with two independent Gaussian fields—a boson
�complex� field �rk and a fermion �Grassmann� field 
rk �k
=1,2� and their conjugate counterparts �̄rk and 
̄rk:

Grr�,j j��i��Gr�r,k�k�i�� =	 �r�j��̄rj
rk
̄r�k�

�exp�− S0�E��D
D� , �15�

where S0�E� is a quadratic form of the four-component field
�r= ��r1 ,�r1 ,
r2 ,
r2�

S0�E� = − i�
r,r�

�r · �H + i� + E�r,r��̄r��� 	 0� . �16�

The use of the mixed field �r has the advantage that an extra
normalization factor for the integral is avoided. The extended
Hamiltonian H=dia g�H ,H� of S0 acts in the boson and in
the fermion sector separately. Using Eq. �15�, the correlation
functions now read

Crr� = −
1

�2�
j
	 �r�j�̄rj
rj
̄r�j�exp�− S0�0���D
D� ,

Arr���� = − �
j,j�

�− 1� j+j�	 �r�j��̄rj
rj
̄r�j��exp�

− S0��/2���D
D� ,

and

Drr� = −
1

�2�
j,j�
	 �rj�̄rj
r�j�
̄r�j�

��exp�− S0�0���D
D� .

In the case of Crr� and Arr���� we arrange the products of
the fields such that pairs at the same site are neighboring
factors:

Crr� =
1

�2�
j
	 �r�j
̄r�j
rj�̄rj�exp�− S0�0���D
D� ,

Arr���� = �
j,j�

�− 1� j+j�	 �r�j�
̄r�j�
rj�̄rj

��exp�− S0��/2���D
D� .

IV. SUPERSYMMETRY

The Hamiltonian H in S0 is invariant under the transfor-
mation

U = U0�q,p�USU0�q�,p��

= �ei�q+q���3�1 + ��̄/2� ei�q+p���3��3

ei�q�+p��3�̄�3 ei�p+p���3�1 − ��̄/2�

 , �17�

with

US = exp� 0 ��3

�̄�3 0

, U0�q,p� = �eiq�3 0

0 eip�3

 .

For � j =dia g�� j ,� j� there is the symmetry transformation

U� jU� = UU−1� j = � j ,

with

U� = U0�q�,p��USU0�q,p�

= �ei�q+q���3�1 + ��̄/2� ei�q�+p��3��3

ei�q+p���3�̄�3 ei�p+p���3�1 − ��̄/2�

 .

�18�

This implies the invariance

H → UHU� = H . �19�

To simplify the notation one can introduce the phases �ij
with

�11 = q + q�, �12 = q + p�, �21 = q� + p, �22 = p + p�

and write

UU� = � e2i�11�3�1 + ��̄� + e2i�12�3��̄ �ei��12+�22��3 + ei��11+�21��3���3

�ei��11+�21��3 + ei��12+�22��3��̄�3 e2i�22�3�1 − ��̄� − e2i�21�3��̄

 . �20�

V. AVERAGED CORRELATION FUNCTIONS

Averaging Eq. �15� over the Gaussian distribution of vr
means replacing exp�−S0� by �exp�−S0�� on the right-
hand side of the equation. The latter can be written again
as an exponential function �exp�−S0��=exp�−S1�, where
the new function S1 contains also quartic terms of the field
�:

S1 = − i�
r,r�

�r · �H0 + i� + E�r,r��̄r� + g�
r

��r · �1�̄r�2.

�21�

Then it is convenient to transform the integration variables
�Hubbard-Stratonovich transformation� as
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� �r�̄r �r
̄r


r�̄r 
r
̄r


→ Qr = �Qr �r

�̄r − iPr

 , �22�

where Qr, Pr are symmetric 2�2 matrices and �r, �̄r are
2�2 matrices whose elements are independent Grassmann
variables. Now the correlation functions can be rewritten as
correlation functions in the new field Qr:

Crr� =
1

g2�2�
j
	 ��1��r�,j j��1�̄�r,j jexp�− S2�D�Q� ,

�23�

Arr���� =
1

g2	 Tr2��3�1�r��Tr2��3�1�̄r�exp�− S2�D�Q� ,

�24�

and

Drr� = −
1

g2�2	 Tr2�− i�1Pr��Tr2��1Qr�exp�− S2�D�Q� ,

�25�

with

S2 = �
r,r�

1

g
Tr g�Qr

2� + ln�det g�H0 + i� + E − 2�1Q�� .

�26�

Tr g is the graded trace, Tr2 the trace with respect to Pauli
matrices, and det g the graded determinant.24

Saddle-point manifold

The integration in Eqs. �23�–�25� can be performed in
saddle-point approximation. The saddle point �SP� is ob-

tained as the solution of �S2=0. Assuming a solution of the
form

Q0 = − i
�

2
�1,

we obtain the parameter � from the SP equation

� = ig Tr2Grr�E + i� + i�� . �27�

For �=E=0 the SP equation is invariant under the global
symmetry transformation �1Q0→U�1Q0U� of Eq. �19�. This
transformation leads to the SP manifold

Qr� = − i
�

2
�1UrUr� = − i

�

2
Ur�

−1�1Ur�, �28�

where Ur and Ur� are obtained from Eqs. �17� and �18� by
replacing the transformation parameters �, . . . by space-
dependent variables �r, . . .. The form of Qr�, which is dic-
tated by the symmetry of Sec. IV, implies for the action on
the SP manifold that �i� the quadratic term in S2 vanishes and
�ii� the remaining term becomes

S� = ln det g�H0 + i� + E + i�UU�� = ln det g�U−1�H0 + i�

+ E�U�−1 + i�� . �29�

This action contains the symmetry breaking field i�+E. Ex-
pansion in powers of �−1 yields, after renaming U−1→U,

S� =
� − iE

�
Tr g�UU�� +

1

�2Tr g�U�UH0U�UH0� + O��−3� .

Rescaling �→�−1� and �→�−1� does not change the inte-
gration measure and allows us to perform an expansion of
UU� in powers of �−1 up to o��−3�:

UU� = ��0 + 2i�11�3/� − 2�11
2 �0/�2 + 2��̄�0/�2 2��3/� + 2i��11 + �22���0/�2

2�̄�3/� + 2i��11 + �22��̄�0/�2 �0 + 2i�22�3/� − 2�22
2 �0/�2 − 2��̄�0/�2


 , �30�

where we have used �12+�21=q+ p�+q�+ p=�11+�22. This
provides an expansion of the action, where the leading order
is a quadratic form in terms of the fields � and �:

S� = �
r,r�

Krr��� − iE��− �11,r�11,r� + �22,r�22,r� + 2�r�̄r��

+
2

�2�
r,r�

Krr��0���11,r + �22,r���11,r� + �22,r���r�̄r�

+ O��−7� , �31�

with

Krr��� − iE� = 4�−4�� �
j=1,2

�
r̄

h j,rr̄h j,r̄r + 2�� − iE����rr�

− �
j=1,2

h j,rr�h j,r�r� . �32�

There is only one term that couples the Grassmann field �
with the field �. It turns out �cf. Appendix D� that this term
drops out after the integration over �. Moreover, the Jaco-
bian J of the transformation should be J=2−N+o��−2� �N is
the number of lattice sites� in order to satisfy the condition

LONG-RANGE CORRELATIONS IN DISORDERED GRAPHENE PHYSICAL REVIEW B 78, 125401 �2008�

125401-5



	 e−S�JD��,�� = 1. �33�

The symmetry-breaking term �− iE appears as a prefactor of
a diagonal term. This action can now be used to calculate the
correlation functions in Eqs. �23�–�25�. An expansion of the
components of the matrix field yields

�1Q = −
i

2
���0 + 2i�11�3 +

2

�
�− �11

2 + ��̄��0� − i�1P

= −
i

2
���0 + 2i�22�3 −

2

�
��22

2 + ��̄��0� ,

�1� = − i��3 +
i

�
��11 + �22��0
� ,

�1�̄ = − i��3 +
i

�
��11 + �22��0
�̄ .

Integration over the fields � and � with respect to the qua-
dratic action S� in

�. . .� =	¯e−S�D��,�� �34�

leads to �up to o��−1��

��1Q� = i�0�/2,− i��1P� = i�0�/2, �35�

since the integration rules imply

�− �11
2 � + ���̄� = ��22

2 � + ���̄� = 0.

It is also a consequence of Eq. �33�. Moreover, we need for
the evaluation of the correlation functions in Eqs. �23�–�25�
the following expressions:

���1�r�� j j��1�̄r� j j� = − ��r��̄r� + o��−1� ,

��Tr2��3�1�r��Tr2��3�1�̄r��� = − 4��r��̄r� + o��−1� ,

and

�Tr2�− i�1Pr��Tr2��1Qr�� = − �2 − 4��r�̄r����r��̄r� .

This leads to

Crr� = −
2

g2�2 ��r��̄r� =
1

g2�2Krr�
−1 �36�

and

Arr���� = −
4

g2 ��r��̄r� =
2

g2Krr�
−1 . �37�

Finally, the correlation function of the local density of states
reads

Drr� =
1

g2�2 ��2 + 4��r�̄r����r��̄r�� =
�2

g2�2 +
1

g2�2Krr�
−1 Kr�r

−1 .

�38�

In summary, all the correlations are expressed in terms of the
inverse of the matrix K of Eq. �32�. Interesting is that only
correlations of the Grassmann field � appear, whereas the
real fields � j j� do not contribute, at least in the approximation
up to o��−1�.

VI. DISCUSSION

All three quantities in Eqs. �36�–�38� are related to the

same correlation function, namely to Krr�
−1 =−2��r�̄r�� of Eq.

�32�. The latter, or its Fourier components 1 /K�q� with

K�q� =
8

�3 ��� + c�q��, �� = � − iE , �39�

can be considered as the propagator of the average two-
particle Green’s function �Grr�Gr�r�. It describes the motion
of two particles, created at the same time at site r� �cf. Ap-
pendix B�. Although the two particles are independent �i.e.,
we ignore their Coulomb interaction here�, the averaging
over the random vector potential creates an effective interac-
tion between them. This interaction is presented by the quar-
tic term in S1 of Eq. �21�, whose strength is g, the variance of
the Gaussian distributed vector potential. A consequence of
the interaction is that the two-particle propagator describes
diffusion, when we consider ��= i� /2 and study q�0:

1

K�q�
�

�3/4
i� + Dq2 ,

with the diffusion coefficient

D = �1

2

�2c�q�
�ql

2 �
q=0

=
1

2�
	
k

�
j
� �h j

�kl

�h j

�kl
−

�2h j

�kl
2 h j
 .

�40�

Here it has been assumed that D is isotropic.
Assuming weak disorder, the action S� in Eq. �29� can be

expanded in powers of �. �This weak-disorder approach is
valid even for �=�=0, in contrast to the factorization ap-
proach of Sect VIE� A diffusion propagator was also found
for this case, with a the different diffusion coefficient
though:25

Dw =
g

4��

for Dirac fermions and E=0. Thus, the physics of the aver-
age two-particle Green’s function is diffusive, both for weak
�i.e., for ��1� and for strong disorder �i.e., for ��1�. The
diffusion coefficient depends on the one-particle scattering
rate � and the Hamiltonian H0, given by its components h j in
Eq. �1�. It is remarkable that both diffusion coefficients, the
one of the strong-disorder expansion in Eq. �40�, as well as
Dw of the weak-disorder expansion, are proportional to the
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one-particle scattering time �=�−1. The latter can be calcu-
lated from the self-consistent Born approximation.31 How-
ever, D always decreases with increasing disorder, whereas
Dw is not monotonous with g but has a minimum due to the
extra factor g. For realistic values of g, where the variance of
the Gaussian distribution is 0�g�1, the diffusion coeffi-
cient Dw decreases with g. In any case, the increasing behav-
ior of Dw is beyond the validity of the weak-disorder ap-
proach.

The integration with respect to the SP manifold of Sec. V
allows us to identify the relevant transformation parameters
for the long-range correlation functions. From the results in
Eqs. �36�–�38� it is obvious that only �, i.e., the transforma-
tion that mixes fermions and bosons, is relevant. On the
other hand, the transformation inside the bosonic and inside
the fermionic sector, provided by the parameters � j j�, is not
relevant for the long-range correlations. This is in agreement
with previous calculations for the conductivity, where the
integration with respect to � j j� has not been taken into
account.32 If we project the symmetry transformation by

choosing �= �̄=0 in Eqs. �17� and �18�, there would also be
a Goldstone mode, which becomes massless as we send the
symmetry-breaking term to zero �i.e., �→0�. This case has
two interesting consequences: �i� the average density of
states �DOS� would be divergent at E=0 due to

��1Qr� = − i��0���11,r
2 � − 1/2� ,

and �ii� the long-range behavior of Crr�, Arr�, and Drr� would
disappear.

For the calculation of the physical quantities of Sec. V we
need the following expressions. The diagonal elements of
K−1 diverge logarithmically with ��0 as

Krr
−1 = 	

q

1

K�q�
� K0 ln��� ,

which implies a divergence of the second moment of the
local density of states Drr. Summation over the lattice sites
gives

�
r

Kr0
−1 =

1

K�q = 0�
=

�3

4��
. �41�

Finally, for the matrix element of rk
2 and the conductivity we

need

�
r

rk
2Kr0

−1 = − � �2

�qk
2

1

K�q��q=0

=
�3

2��2D . �42�

A. One-particle scattering rate �

In the following the one-particle scattering rate � will be
discussed for the specific case of Dirac fermions. Then the
SP Eq. �27� reads

� =
g

2�
�� + iE�ln�1 +

�2

�� + iE�2� , �43�

where � is the momentum cutoff of the Dirac fermions. For
weak disorder �i.e., g�1�, the scattering rate is also weak.

To study the Dirac point, we rewrite Eq. �43� as

� = − iE +
�

�exp�2��/g�iE + ��� − 1
, �44�

and take the limit E=0

�0 =
�

�e2�/g − 1
. �45�

This is shown in Fig. 2. For 
E
��0 we can solve the SP Eq.
�44� by an expansion in E: �=�0+o�E�. On the other hand,
for 
E
� 
�
 we can iterate Eq. �43� with the initial value

�̄ =
g

2�
iE ln�1 − �2/E2�

=
gE

2
�sign�E� +

i

�
ln��2/E2 − 1�
�E2 � �2� . �46�

�̄ is a reasonable approximation of � if

g�1 +
i

�
ln��2/E2 − 1�� � 1.

B. Density of states

The density of states is proportional to the average one-
particle Green’s function

��E� = Tr2�Grr�E − i���

and describes two important features of our model—the
spontaneous symmetry breaking and the one-particle scatter-
ing rate � in the SP approximation �cf. Eq. �27��. In terms of
the SP integration of the functional integral, Eq. �35� pro-
vides a finite average density of states at the Dirac point

��E = 0� = − i
1

g
Tr2��1Q� = −

1

g
Tr2��1P� = �0/g ,

which is practically zero for a larger regime of g �cf. Fig. 2�.
Moreover, for 
E
� 
�
 we get a linear behavior from Eq.
�46�
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FIG. 2. Scattering rate �full curve� and density of states at the
Dirac point �dashed curve� for Dirac fermions. Both quantities prac-
tically vanish over a wide range of disorder g.
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��E� �
1

g
Re��̄� =


E

2

,

which reflects the density of states of pure Dirac fermions.
Both results are in good agreement with a self-consistent
calculation of the average density of states.27,33

Correlations of the local density of states Drr� have a
long-range behavior. The corresponding Fourier transform

D�q� = 	
k

1

K�k − q/2�K�k + q/2�
�47�

is a function of q2 and diverges like q−2 at q=0. It has a kink
�or a shoulder� at the edge of the one-particle spectrum � �cf.
Fig. 3�.

C. Microwave conductivity

According to Eqs. �14�, �37�, and �42�, the matrix element
of rk

2 reads

���/2
rk
2
�−�/2� = �

r

rk
2Ar0��� = −

1

g2

�3

�2D .

Using the expression of the diffusion coefficient in Eq. �40�
and taking �→0, the matrix element becomes

���/2
rk
2
�−�/2� = − 4

�2

g2�2	
k
�

j
� �h j

�kl

�h j

�kl
−

�2h j

�kl
2 h j
 .

�48�

Lower frequencies � �i.e., lower energies� are more impor-
tant for scattering than states of higher energies due to their
larger matrix elements. Moreover, if we interpret the matrix
element as a measure of localization, the states with �	0
are localized on a scale 1 /�. The matrix element, together
with Eq. �14�, gives for the microwave conductivity

�0��� = −
e2

4��
�2���/2
rk

2
�−�/2�

�
e2

��

�0
2

g2	
k
�

j
� �h j

�kl

�h j

�kl
−

�2h j

�kl
2 h j
�� � �0� .

�49�

This result indicates a constant microwave conductivity, at
least for ���0, since the prefactor �2 is compensated by the
�−2 behavior of the matrix element of rk

2. It should also be
noticed that lim�→0�0��� gives the dc conductivity of Eq.
�7�. This follows immediately from the definitions of the two
conductivities in Eqs. �7� and �14� and from Eqs. �36� and
�37�.

The �−2 behavior of the rk
2 matrix element in Eq. �48�

obviously does not depend on the special form of h j, as long
as the spinor structure of H0 exists. This implies that also for
a parabolic k j dependence �e.g., in the case of a graphene
bilayer34–36�, the cancellation of the �2 terms in the conduc-
tivity takes place.

D. Participation ratios

The inverse participation ratio P�2� of Eq. �10� vanishes
like

P�2� � ��ln ��2, �50�

which indicates the existence of delocalized states at the
Dirac point. The participation ratio

p�2� � �ln ��−2, �51�

on the other hand, vanishes logarithmically. These two re-
sults are consistent with a critical point at E=0, where there
is a transition from localized to extended states.

E. Perturbation theory for weak disorder and factorization

The fact that diffusion is controlled by the one-particle
scattering rate � raises the question about the quality of the
one-particle approximation. The latter has been used fre-
quently by factorizing the two-particle Green’s
function.37,38,31,15 This approximation should be valid for
weak disorder. It is based on the assumption that the Green’s
functions are uncorrelated and the averaged product is ap-
proximately the same as the product of the averaged one-
particle Green’s functions:

�Grr�,j j
+ Gr�r,kk

+ � � �Grr�,j j
+ ��Gr�r,kk

+ � .

This allows us to treat the average one-particle Green’s func-
tions within the self-consistent Born approximation:

�G�� � �H0 � i��−1 � �H0 � i��−1,

where � the imaginary part of the self-energy �or inverse
scattering time� determined for Dirac fermions in Eq. �43�.
Consequently, the one-particle Green’s function decays ex-
ponentially on the scale �−1. The correlation function Drr� is
constant and proportional to �2, and there is no divergence
for r�=r. This means that we have lost in the factorization
the correlation term
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FIG. 3. Fourier transform of the local density of states correla-
tion function, which diverges like q−2.
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1

g2�2Krr�
−1 Kr�r

−1

of Eq. �38�. These are the substantial differences between the
strong-disorder expansion and weak-disorder perturbation
theory at the Dirac point. If we go away from the Dirac
point, we can study the matrix element rk

2, approximated by
the factorization as

���/2
rk
2
�−�/2� = − �

r

rk
2Tr2��3Gr0��/2 + i���3G0r��/2

+ i��� � � − �0
−2 for �0 � �

− 4�−2 for �0 � �
,

where we have assumed that ���. In contrast to the result
of Eq. �48�, the matrix element does not diverge now if we
approach the Dirac point �=0, since there is the finite limit
�0

−2. This reflects the finite decay length �0
−1 of the average

one-particle Green’s function. Away from the Dirac point the
factorization works better. This can be seen if we insert the
matrix element of rk

2 into the conductivity of Eq. �14�

�0��� = −
e2

4��
�2���/2
rk

2
�−�/2� �
e2

��
= 2

e2

h
��0 � ��

�52�

in the perturbative regime. Thus again, the conductivity does
not depend on the frequency. Actually, the validity of the
perturbative regime for the matrix element of rk

2 and the con-
ductivity is big in terms of g due to �0�e−�/g.

VII. CONCLUSIONS

Spinor states, described by a two-dimensional Dirac-type
lattice Hamiltonian, were studied in an uncorrelated random
vector potential. Our calculation, based on a strong-disorder
expansion, has revealed that the quantum states develop
long-range correlated fluctuations. In other words, the quan-
tum system transforms the uncorrelated fluctuations of the
random vector potential into long-range correlated fluctua-
tions, for instance, of the density of states. The origin of this
behavior is spontaneous symmetry breaking �SSB�, which
develops a massless �long-range� mode. The spontaneous
symmetry breaking is measured by the one-particle scatter-
ing rate � or the density of states � /g. An important scale for
this effect is

�0 � e−�/g,

which depends on the variance of the Gaussian fluctuations
of the random vector potential g. �Although our approach is
not valid for very small g �cf. Sec. VI E�, this scale is short
for all reasonable values g�1.� �0 separates regimes that are
controlled by disorder ����� from that which is controlled
by energy �or frequency� �����. For instance, a central
quantity is the one-particle scattering rate has a crossover
with respect to � as

� � �e−�/g for �0 � �

�g for �0 � �
� .

Perturbation theory with respect to disorder can be applied to
the regime with �0��, at least for quantities such as the
conductivity. The correlation length is not affected qualita-
tively by this cross over, as one can see from the matrix
elements of rk

2

���/2
rk
2
�−�/2� = − 4�−2���0

2/g2�	
k
�

j
� �h j

�kl

�h j

�kl
−

�2h j

�kl
2 h j
 for �0 � �

1 for �0 � �

,

which provides an effective correlation length �−1 for
��E,rj�

�−E ,rj�. As we go away from the Dirac point, the
correlation length decreases. On the other hand, the correla-
tion function of the local density of states Drr� clearly distin-
guishes both regimes, since the corresponding Fourier trans-
form is

D�q� � � D0q−2 for q � 0 and �0 � �

D1��q� for �0 � �
.

An interesting consequence of the “universal” �−2 behavior
of the matrix element of rk

2 is a constant microwave conduc-
tivity in both regimes:

�0���

� 2
e2

h ���0
2/g2�	

k
�

j
� �h j

�kl

�h j

�kl
−

�2h j

�kl
2 h j
 for �0 � �

1 for �0 � �

.

This behavior must be seen in contrast to the conventional
Drude behavior, where the real part of conductivity decays
like �−2. It is a consequence of the correlated scattering be-
tween the upper and the lower part of the Dirac cones �i.e., it
is a manifestation of the Zitterbewegung�. This effect should
be experimentally observable, since it survives also in the
presence of disorder.

Our results can be summarized by the statement that prop-
erties of graphene at the Dirac point are ruled by long-range
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correlations. At the distance � from the Dirac point they
decay on the scale �−1. This has physical consequences, like
a constant microwave conductivity, which also has been ob-
served experimentally.13 Disorder of variance g creates a
characteristic scale �0=e−�/g, which separates the behavior
in a vicinity ���0 of the Dirac point from another one away
from the Dirac point with ���0. Standard perturbation
theories and simple approximations can be applied to the
latter because then the behavior is ruled by one-particle prop-
erties.
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APPENDIX A: CONDUCTIVITY

The conductivity per site on a lattice with N sites can be
evaluated within the Kubo formalism and gives �cf. Eq. �3�
of Ref. 25�

Re��kk� =
e2

N�
�	 Tr��H,rk���H − E + ��

��H,rk���H − E��
f��E + �� − f��E�

�
dE

=
e2

N�
��2	 Tr�rk��H − E + �/2�rk��H − E

− �/2��
f��E + �/2� − f��E − �/2�

�
dE

with the Fermi function at inverse temperature �: f��E�
=1 / �1+exp��E��. Now we consider

Tr�rk��H − E + �/2�rk��H − E − �/2��

= �
r,r�

rkr�kTr2��rr��H − E + �/2��r�r�H − E − �/2�� .

We can write

2rkr�k = − �rk − r�k�2 + rk
2 + rk�

2.

Moreover, ��H−E+� /2���H−E−� /2�=0 for ��0. Thus
we obtain

�
r,r�

rkr�kTr2��rr��H − E + �/2��r�r�H − E − �/2��

= −
1

2�
r,r�

�rk − r�k�2Tr2��rr��H − E + �/2��r�r�H − E

− �/2�� .

This gives

−
e2

2N�
��2	 �

r,r�

�rk − r�k�2Tr2��rr��H − E + �/2�

��r�r�H − E − �/2��
f��E + �/2� − f��E − �/2�

�
dE .

Since for low temperatures

f��E� � ��− E� ,

we get

�
e2

2�
���

r

�rk − r�k�2	
−�/2

�/2

Tr2��rr��H − E + �/2�

��r�r�H − E − �/2��dE .

The Dirac delta functions can be expressed by one-particle
Green’s functions

��H + �/2� =
1

2�i
�G��/2 − i�� − G��/2 + i���

such that

Re��kk� � �I��� + �II��� ,

with

�I��� =
e2

4h
�	

−�/2

�/2

�
r

�rk − r�k�2Tr2�Grr���/2 − E − i��

�Gr�r�− �/2 − E − i�� + Grr���/2 − E + i��

�Gr�r�− �/2 − E + i��dE

and

�II��� = −
e2

4h
�	

−�/2

�/2

�
r

�rk − r�k�2Tr2�Grr���/2 − E − i��Gr�r�

− �/2 − E + i��� + Grr���/2 − E + i��Gr�r�− �/2 − E

− i��dE

and because of G�z�=−�3G�−z��3 is

�II��� = −
e2

4h
�	

−�/2

�/2

�
r

�rk − r�k�2Tr2�Grr���/2 − E − i��

�Gr�r�− �/2 − E + i��� + Grr��− �/2 + E

− i��Gr�r��/2 + E + i��dE .

APPENDIX B: MATRIX ELEMENTS
OF THE ENERGY STATES

Starting from a �localized� state 
�0�, we can allow the
state to evolve in time:


�t� = e−iHt
�0� .

The question is how the states 
�E can be reached by this
evolution, and how this is influenced by scattering due to
disorder. The contribution of the state with energy �E to the
time evolution is obtained by the Fourier transformation t
→ �E of 
�t� for positive time t�0 �since the wave func-
tion did not exist for t�0�:
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��E � 	
0

�

e��iE−��t
�t�dt

= 	
0

�

e��iE−��te−iHtdt
�0�

= − i�H � E − i��−1
�0�

= − iG��E − i��
�0� .

Since H is Hermitian �i.e., H†=H�, the complex conjugate of
the wave function is

��E
� = iG��E − i���
��0� = iG��E + i��T
��0� ,

where GT is the transposed of G. The matrix element of rk
2

between ��E is

��E
rk
2
�−E� = �

r

rk
2�E,rj�−E,rj

�

= �
r,j�

rk
2Gr0,j j��− E − i��G0r,j�j�E + i��

 j��0�
2

�B1�

if we assume that 
�0� is localized at the origin of the lattice
r=0. In the presence of disorder, this expression should be
averaged with respect to the latter:

��E
rk
2
�−E� = �

r,j
rk

2��E,rj�−E,rj
� �

= �
r,j,j�

rk
2�Gr0,j j��− E − i��G0r,j�j�E + i���

�

 j��0�
2. �B2�

It describes a correlation between the states in the upper and
in the lower band, if they evolve from the same initial state

�0�. These results can be summarized to the relation

�
r

rk
2�Tr2�Gr0�− E − i��G0r�− E� + i���� = ��E
rk

2
�E��

if 

 j��0�
2=1 for j�=1,2.

APPENDIX C: INVERSE PARTICIPATION RATIOS

The inverse participation ratio is related to the fourth mo-
ment of the normalized eigenfunction 
k with eigenvalue Ek
as

P�2� = ��
k



k,r
4��E − Ek�� . �C1�

This expression vanishes in the delocalized regime. The lat-
ter is plausible when we estimate the delocalized wave func-
tion by 

k,r
2�1 /N on a lattice with N sites, taking into
account normalization

�
r



k,r
2 = 1.

This implies

�
r

�
k



k,r
2��E − Ek� � �
k

��E − Ek� � N� ,

where � is the spatially averaged density of states. Moreover,
for P�2� we get from Eq. �C1� a vanishing expression for N
��:

�
k



k,r
4��E − Ek� �
1

N2�
k

��E − Ek� �
�

N
.

P�2� can also be related to Drr by using the relation30

lim
�→0

��
k



k,r
2���E − Ek��
k�



k�,r
2���E − Ek��

= �
k



k,r
4��E − Ek� ,

which implies

P�2� = lim
�→0

�Drr.

APPENDIX D: RANDOM-WALK EXPANSION

The presence of the Grassmann field in the action S�
of Eq. �29� enables us to write the functional integral
�exp�−S��D�� ,�� in terms of a dense system of self-
avoiding random walks �or polymers�, whose density is con-
trolled by the symmetry-breaking term. Starting from S� we
either use UU� of Eq. �20� or its approximation given in Eq.
�30�. In both cases the structure of the action with symmetry-
breaking parameter � is

S� = S0 + ��
r

�r�̄r + �
r,r�

arr��r�̄r� + �
r,r�

brr��r�̄r�r��̄r�.

S0 is a term without Grassmann field. The quartic term
�which does not appear in the approximated field of Eq. �30��
can be expressed by a quadratic term that couples to a ran-
dom field. Thus the general structure in terms of the Grass-
mann field reads

S� = S0 + ��
r

�r�̄r + �
r,r�

Brr��r�̄r�,

where the coefficients Brr� are random and connect only
nearest-neighbor sites �this is a consequence of the symme-
try�. The integration with respect to � can be performed first
and gives just a determinant

	 exp�− S��D��� = e−S0det�� + B� .

Then the determinant can be expanded with respect to B,
which creates random walks, whereas � creates an environ-
ment of identical points. In other words, a lattice site r is
either occupied by an � or it is visited by a random walk with
jump rate Brr� between r and a nearest-neighbor site r�. The
random walks do not intersect themselves or each other and
must be closed. This is a consequence of the integral over the
Grassmann field or equivalently it is determined by the struc-
ture of the determinant. The contributions of the random
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walks depend on the weight of its elements Brr�, relative to
the value of �. For ��0 �i.e., near the Dirac point� the lattice
is completely covered by closed self-avoiding random walks,
which can also be considered as the regime of dense poly-
mers. Next, we need to integrate with respect to �. In gen-
eral, this will affect the weight of the random walks. In the
special case of S� in Eq. �31� we obtain

	 exp�− S��D��,�� =	 e−S0det�K�� − iE� + zK�0�z�D��� ,

�D1�

where z is a diagonal matrix with matrix elements zrr
= ��11,r+�22,r� /� and

S0 = �
r,r�

Krr��� − iE��− �11,r�11,r� + �22,r�22,r�� .

The expansion of the determinant produces terms with prod-
ucts �rzrr

lr =�r���11,r+�22,r� /��lr �lr=0,1 ,2�, where lr	0 is
created by the second term in its argument zrrKrr��0�zr�r�.
Integration with the weight factor e−S0, where at least one site
r appears with lr	0, gives a vanishing Gaussian integral

	 e−S0�
r

��11,r + �22,r�lr = 0,

since the two quadratic terms in S0 appear with opposite
signs �i.e., �11 must be integrated along the imaginary axis�.
Therefore, the second term in the determinant of Eq. �D1�
does not contribute to the functional integral.
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