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Chapter 1

Introduction

This dissertation consists of three essays1, which all rely on dynamic optimization

in discrete time. Dynamic optimization differs from static optimization, because it

deals with optimal choices involving multiple periods. We can distinguish between

finite and infinite horizon problems, which require different techniques to find the op-

timal solution. The first two essays deal with finite horizons problems, and the third

essay with an infinite horizon problem. Although dynamic optimization is at the

core of modern macroeconomics, and also common in the public finance literature,

the most standard solution methods were not sufficient to solve the models described

in this dissertation. We therefore had to rely on less used solution techniques.

The first essay is called ‘Solving Life Cycle Models’ and deals with the methodology

of solving life-cycle models. This essay is inspired by practical problems that arose

working on optimal unemployment insurance, which is the subject of the second

essay. Life-cycle models have a finite horizon, which allows us to find the opti-

mal solution using backward iteration. Although standard textbooks on numerical

methods for economists cover methods for solving life-cycle models with backward

iteration, the coverage is usually limited. For example Adda et al. (2003), Heer and

Maussner (2009) and Miranda and Fackler (2004) do not discuss the efficiency of

different techniques for solving life-cycle models, even though computation times

1I am the single author of all three essays.
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can be relatively long in models with many periods. As our model on optimal un-

employment insurance in the second essay has many periods we were forced to find

a computationally efficient method to solve that model. The first essay is the result

of that investigation.

Another issue we encountered is that the literature on solving life-cycle models pays

little attention to the preservation of the convexity of the optimization problem, al-

though this is a necessary condition to guarantee a unique solution. The exception

is Heer and Maussner (2009), who explicitly preserve the convexity of the problem.

However, their solution method is not the most efficient, since it does not use deriva-

tives and relies on linear interpolation, resulting in relative long computation times

and low accuracy. The preservation of the convexity is especially important in the

model of the second essay, since it has many periods and errors might accumulate

over time.

The second essay of this dissertation is called ‘Optimal Age-Dependent Unemploy-

ment Insurance’ and uses one of the methods developed in the first essay. The second

essay optimizes unemployment insurance in a life-cycle model in partial equilibrium

with wealth accumulation, and job search. More specifically, we consider the optimal

constant replacement rate as is standard in the unemployment insurance literature.

In addition, we study optimal replacement rates which are allowed to depend lin-

early on age, which has to our knowledge not been investigated before. We find

that the optimal replacement rate is high early in life and drops sharply to reach

a level of zero before the age of 45. The welfare gain of making replacement rates

dependent on age is somewhat limited though at 5 to 15% of the Net Present Value

of all unemployment benefits.

The third essay is called ‘Adaptive Beliefs in a Real Business Cycle Model’ and

investigates how the business cycle properties of a standard macroeconomic model

change when agents extrapolate recent changes in productivity into the future. The

model in which these adaptive beliefs are applied fits in the Dynamic Stochastic

General Equilibrium (DSGE) framework, which is the basis for modern macroe-

conomics. DSGE models involve dynamic optimization, usually in a model with
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an infinite horizon2. Solving DSGE models results in optimal behavioral rules for

different states of the economy, where the behavioral rules usually depend on ex-

pectations about the future. The economy of a DSGE model is simulated with a

stochastic process, for example shocks to productivity.

Regarding the expectations in macroeconomic models the Rational Expectations

(RE) paradigm has dominated the field in the last 4 decades. Rational Expectations

mean that agents have full knowledge of the economy, and as such form expectations

about the future that are consistent with the (average) actual realizations of the

model. Our model deviates from RE and makes use of Bounded Rationality, where

agents extrapolate recent changes in productivity into the future. These kind of

expectations are so-called ‘animal spirits’. The best example of such extrapolative

behavior comes from the late nineties where productivity growth was expected to

continue in the new millennium (Hirshleifer et al., 2015). There was also data

that supported these expectations (Edge et al., 2007), and the overly optimistic

expectations may therefore not be attributed entirely to ‘animal spirits’.

To analyze the role of adaptive beliefs in the macroeconomy we implement these

beliefs in a Real Business Cycle (RBC) model, which is the workhorse model for

the study of real variables, and has a labor and capital market. To solve this RBC

model with adaptive beliefs we had to rely on a non-standard solution method. The

standard solution method for DSGE models is an approximation of the economy

around the equilibrium that would occur in the absence of any shocks. This approx-

imation method is a so-called local solution method. In our model agents expect

productivity to increase substantially over time, so we have to evaluate the economy

far away from the steady state, which warrants the use of a so-called global solution

method. We chose to use the Galerkin projection method, which is faster than the

more widely used Value Function iteration, at least when good starting values are

available.

We calibrate the adaptive beliefs in our RBC model to a measure of consumer

2Agents within the model might have a finite life though, such that we get an overlapping genera-

tions model.
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confidence as both reflect ‘animal spirits’ in the economy. We show that the model

with adaptive beliefs can improve the business cycle statistics significantly compared

to the Rational Expectations version, but only when the variance of the economic

sentiment is high.
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Chapter 2

Solving Life Cycle Models

2.1 Introduction

This essay shows how to solve a simple life-cycle model with savings. The empha-

sis is on the different numerical methods that can be employed. Each method will

be evaluated in terms of accuracy and computational speed. The accuracy in the

approximation of the Value Function is especially important when there are many

periods, because errors can accumulate over time, and eventually make the approx-

imation of the Value Function non-concave.

The numerical methods are evaluated in a partial equilibrium model without risk,

such that an analytical solution can be obtained. This allows us to calculate the

absolute accuracy of the numerical solutions. In addition, the interest rate R is set

at the inverse of the time preference (R = 1
β
), which implies that a constant level of

consumption is optimal. This makes it very easy to calculate the analytical solution.

It should be noted that in overlapping generation models with General Equilibrium

we usually have r 6= 1
β
− 1, so consumption will not be constant over the life-cycle,

even without any risk or borrowing constraints.

The described methods are general, so they can also be used in general equilibrium

models and models with idiosyncratic risk, like income shocks or mortality risk. We

describe four methods, all of which use an interpolation scheme that preserves the

monotonicity and concavity of the Value Function. The first three methods only use
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Lagrangian data, which means no information on the slope of the Value Function

is used for the interpolation. The first method, Golden Section search, is easy to

program, since it does not require any derivatives. The second method is Constrained

Optimization with Lagrangian data, and the third method is Solving First Order

Conditions. Both the second and third method use constraints and derivatives to

find the optimum. Finally, we describe Constrained Optimization with Hermite

data, which means also the slope of the Value Function is approximated and used

for the interpolation. This approximation is obtained by adding an extra constraint

to the optimization problem (Cai and Judd, 2012, 2015).

2.2 Model

The model is a simple life-cycle model where an agent gets income St in period t.

The agent maximizes his life-time utility:

max
T+D∑
t=1

βtu (ct) (2.1)

where T and D are the number of period’s in working life and retirement, respec-

tively, β is the discount factor, ct is period t consumption, which gives utility u (ct).

The utility function is assumed to be monotonically increasing and concave to en-

sure a unique solution. In our Matlab program we allow for both CARA and CRRA

utility functions. With CARA the utility function is u (ct) = − exp(−νct)
ν

and with

CRRA it is u (ct) = (ct+ε)
1−ν

1−ν , where ε is a small number (set to 0.01) to ensure the

marginal utility of consumption does not go to infinity when ct = 0, which could

result in large errors in the interpolation. The parameter ν is the degree of risk

aversion.

The constraints for this optimization problem are:

Rkt + St ≥ ct + kt+1 (2.2)

kt+1 ≥ 0 (2.3)

ct ≥ 0 (2.4)
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which are the budget constraint, borrowing constraint and non-negativity constraint

on consumption, respectively. The interest rate is R, which is paid over wealth at

the beginning of the period (kt). The initial wealth in period 1 is given, with

k1 ≥ 0. During working life (t ≤ T ) the agent’s income is the wage (St = w) and

during retirement (t > T ) the agent gets a pension (St = p). Both the wage and

the pension are known with certainty, and we impose that the wage is at least as

high as the pension, w ≥ p, such that neither the borrowing constraint nor the

non-negativity constraint on consumption ever binds. The lack of uncertainty and

absence of binding constraints allows us to compute the analytical solution, and

evaluate the absolute accuracy of the numerical solutions.

2.3 Analytical solution

To calculate the accuracy of the numerical methods the analytical solution is com-

puted at the same gridpoints as in the numerical solutions. For every period t and

gridpoint i we calculate the constant consumption flow c̄i,t that the agent can afford

given his wealth ki,t, where i is the indicator of the gridpoints with i = 1, ..., I. The

Net Present Value of his wealth and income in the remaining periods of his life is:

Qi,t = ki,t+
T+D∑
s=t

1

RT+D−s+1
St (2.5)

which allows him to buy the constant consumption flow:

ci,t = Qi,t/

T+D∑
s=t

1

RT+D−s+1
(2.6)

His total utility V (ki,t) from period t onwards can be calculated as:

V (ki,t) =
T+D∑
s=t

βT+D−su (ci,t) (2.7)

Given this Value Function we can calculate the slope of the Value Function analyt-
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ically:

∂V

∂kt
=
∂V

∂c

∂c

∂kt
=
T+D∑
s=t

βT+D−su′ (c) /
T+D∑
s=t

1

RT+D−s+1
(2.8)

which is equal to Ru′ (c) if R = 1
β

as is the case in our parameter setting.

2.4 Standard numerical solution

The basic method for solving a life-cycle model with savings is as follows (part of

terminology taken from Cai and Judd, 2015):

• Start in the last period alive, t = T + D, and work backwards to the first

period of the model.

• For every period we define a grid for wealth with I grid points: ki,t ∈

[kmin,t, kmax,t] for i = 1, ..., I.

• Maximization Step: choose the capital stock in the next period (or con-

sumption in this period) that maximizes (expected) utility, given current capi-

tal ki,t. For this we transform the optimization problem to a Bellman equation:

V (ki,t) = max
kt+1

u (Rki,t + St − kt+1) + βV (kt+1) (2.9)

where V (kt) is the Value Function that gives the maximum expected life-time

utility given wealth kt. The Value Function is approximated in the next step.

• Fitting Step: since there is usually no analytical solution for the Value Func-

tion it is approximated by the solution at the gridpoints i, using interpolation

to get the Value Function between those gridpoints. The interpolation is usu-

ally done with a spline or polynomial, where it is crucial that the interpola-

tion method preserves the monotonicity and concavity of the Value Function.

Shape preservation is crucial, since the problem should be convex to ensure a

unique solution. If the shape of the Value Function is not preserved multiple

solutions might exist and large errors might occur.
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Defining a grid When no analytical solution can be obtained we have to make

a guess for the size of the grid. The size of the grid should be such that we never

go outside the boundaries, [kmin,t, kmax,t], during either the Maximization Step or

the simulation of our economy, because we are not able to preserve the shape of

the Value Function when we extrapolate outside the grid. Getting a good guess for

the grid increases the efficiency in terms of accuracy and computation time, since

a narrower grid makes the solution more accurate or we can use less gridpoints for

the same level of accuracy. We describe two methods for obtaining a grid that is

neither too wide nor too narrow.

The first method is to start with a grid that is very wide, solve the model as described

above, run a simulation and then shrink the grid based on the maximum level of the

state variable(s) that occurred during the simulation. When several variants of the

model have to be calculated, for example for the optimization of tax policy, it can

be useful to keep the grid the same for all variants. In that case a sufficient margin

should be added to the boundaries such that all variants stay within the grid during

simulations.

The second method is to guess a maximum of the state variables based on a simpler

version of the model that (1) has an analytical or fast numerical solution, and (2)

has a path of the state variables that is higher than our economy. The path of the

state variables from this solution is then our first guess for the upper bound of the

grid. In our model we could for example calculate the wealth of an agent that has (a)

a slightly higher income during working age, and (b) zero income during retirement.

The wealth path of that agent will certainly be above the wealth path of an agent

in our economy and should thus be a robust guess for the upper bound of the grid.

For both methods of obtaining a grid we recommend to use a small growth factor

to the upper bound, such that we stay strictly within the boundaries of the grid,

and avoid extrapolating outside the grid. For example, if the upper bound from

either of the two methods is defined as kmax,t we could adjust this boundary to

kadjmax,t = (1 +m)t kmax,t with m larger than zero, but small.

10



Methods Maximization Step We will review the following solution methods for

the maximization step:

• Golden Section Search, which uses Lagrangian data

• Constrained Optimization with Lagrangian data

• Solve First Order Conditions, which uses Lagrangian data

• Constrained Optimization with Hermite data

Methods Fitting Step We describe two methods for the Fitting Step:

• Lagrangian data: use only the level of the Value Function at the gridpoints

for the interpolation

• Hermite data: use both the level and the slope of the Value Function at the

gridpoints for the interpolation

2.5 Numerical solution: Lagrange Value Function Iteration

(L-VFI)

We have borrowed heavily from the description of Lagrangian Value Function Iter-

ation from Cai and Judd (2015). Value Function iteration consists of three steps.

In the Initialization Step we choose a grid and a functional form to approximate

the Value Function. In the Maximization Step we solve the optimization problem.

Finally in the Fitting Step we approximate the Value Function using the chosen in-

terpolation method. With Lagrangian Value Function Iteration we only use data on

the level of the Value Function at each gridpoint to approximate the Value Function.

This contrasts with Hermite Value Function Iteration where we also use informa-

tion on the slope of the Value Function at the gridpoints to approximate the Value

Function (see Section 2.6).
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2.5.1 Initialization Step

In the initialization step we choose approximation nodes Kt = {ki,t : 1 ≤ i ≤ I} ⊂ R

for every t ≤ T + D, and we choose a functional form for V̂ (kt; bt) where b is a

vector of parameters (of a spline or polynomial for example).

2.5.2 Standard Lagrange Maximization Step

We solve for the Bellman equation (2.9) at each gridpoint for every period, starting

in the last period and working backwards in time. For each gridpoint ki,t we have

reformulated the problem slightly by inserting the budget constraint directly into

both the utility function and the non-negativity constraint on consumption:

vi = max
kt+1

u (Rki,t + St − kt+1) + βV̂ (kt+1; bt+1) (2.10)

subject to:

kt+1 ≥ 0 (2.11)

Rki,t + St − kt+1 ≥ 0 (2.12)

with Lagrangian multipliers µt and χt, respectively. The latter constraint is the non-

negativity constraint on consumption. These constraints define a lower and upper

bound for kt+1. The First Order Condition (FOC) with respect to kt+1 is then:

u′ (Rki,t + St − kt+1) = β
∂V̂ (kt+1; bt+1)

∂kt+1

+ µt − χt (2.13)

where χt = 0 since the upper bound (equation 2.12) should not bind as ct = 0 is

never optimal, and µt = 0 as the non-negativity constraint (equation 2.11) will not

bind either, unless we are at lower bound (ki,t = 0) and income is at it’s lowest level

(when we are in retirement in our model). In the latter case it is optimal to consume

total income: ct = St.
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Golden Section Search

Golden Section Search maximizes a univariate objective function by shrinking the

interval in which the optimum solution is known to lie, until the interval is consid-

ered small enough. The algorithm for Golden Section Search (as described by Heer

and Maussner, 2009) is very easy to program, since we do not need to calculate

derivatives. The algorithm is relatively fast given it’s simplicity. Especially if the

optimization toolbox of Matlab is not available this algorithm is good alternative.

For good computation times it is crucial to exploit that the optimal solution for kt+1

is monotonically increasing in current capital, kt.

Golden Section Search requires a lower and upper bound as inputs, which makes

the method less suitable when these bounds can not be determined analytically. For

example, if the labor supply is endogenous then the maximum consumption level

depends on the labor supply. We would thus first have to solve for the maximum pos-

sible level of consumption before we can apply the Golden Section Search. This de-

creases the computational efficiency. For such optimization problems a Constrained

Optimization algorithm that can handle non-linear constraints is more suitable.

The idea of Golden Section Search is to find the minimum (or maximum) of a

function f (x) on some interval [A,D] and make the interval smaller and smaller

until the difference between A and D is considered small enough. To shrink the

interval we choose two additional points B and C that divide the interval such that

we maximize the shrinkage of the interval in each iteration. Given points A and D

we calculate B = pA + (1− p)D and C = (1− p)A + pD, where p is the Golden

Section ratio: p =
√
5
2
− 1

2
≈ 0.618 (see Heer and Maussner, 2009, for the derivation).

We have slightly adjusted the algorithm from Heer and Maussner (2009) such that

it returns the boundary solution if the boundary is the maximum. This adjustment

allows us to check whether the interval was set wide enough, since we should get an

interior solution in our model, except at the lower bound during retirement. The

Golden Section algorithm is described in Section 2.A.

We loop over gridpoints ki,t and find the optimal capital stock in the next period,

using (2.10) as the objective. We implement the constraints as lower and upper
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boundaries for kt+1 given gridpoint ki,t, which are denoted as ki,t+1 and ki,t+1, re-

spectively. Since we know that the optimal solution k∗t+1 is increasing with kt we

adjust the lower bound upward as we loop over ki,t. We set the lower bounds as

follows:

ki,t+1 =

kmin,t+1 if i = 1

k∗i−1,t+1 if i > 1

(2.14)

The upper bound is the capital stock in the next period if consumption is null, so

ki,t+1 = Rki,t + St.

Constrained Optimization

The second method to maximize the objective is Constrained Optimization for which

we use Matlab’s ‘fmincon’. In our case the constraints are a simple lower and up-

per bound for kt+1. Since our constrained optimizer uses (approximations) of the

derivatives we need to approximate the Value Function with a continuously differ-

entiable function (C1) (see Subsection 2.5.3 for more details). The derivatives can

be calculated analytically or with finite differences 1. We use analytical derivatives

as they are much faster, and they are easy to calculate in our model. For more com-

plex models the use of finite difference approximations is usually more convenient.

The analytical derivatives with respect to kt+1 are given in equation (2.13). Since

we approximate the Value Function with a continuously differentiable function the

term ∂V̂ (kt+1;bt+1)
∂kt+1

can be calculated either with finite differences or by taking the

derivative of the approximation of the Value Function. We use a quadratic spline to

approximate the Value Function, so we can easily calculate the slope of the Value

Function by differentiating this spline2.

1Note that central difference approximation is much more accurate than the default forward dif-

ference approximation used by Matlab, but central differences are more expensive to calculate.

2Matlab has the ‘fnder ’ procedure in the ‘Curve Fitting Toolbox ’ to get the slope of piecewise

polynomials, which are created using ‘mkpp and can be evaluated with ‘ppval ’.

14



Constrained Optimization is not the most efficient method given the simplicity of

our model, but Constrained Optimization will be the most efficient option when

the constraints are non-linear. For example, with endogenous labor supply the

maximum consumption level will depend on the labor supply. Such a constraint

is easily be implemented in and efficiently handled by constrained optimizers, like

Matlab’s ‘fmincon’.

Solving First Order Conditions

Since the constraints are a simple lower and upper bound an alternative would be to

solve directly for the First Order Condition (FOC) of the objective function, using

a constrained solver that can handle boundaries3, like Matlab’s ‘lsqnonlin’4. In this

case we solve directly for:

u′ (Rki,t + St − kt+1) = β
∂V̂ (kt+1; bt+1)

∂kt+1

(2.15)

where the solver handles the upper and lower bound given by equations (2.11) and

(2.12). The left hand side can be calculated analytically, and the right hand side is

calculated as the derivative of the quadratic spline that we use to approximate the

Value Function (see the previous paragraph on ‘Constrained-Optimization’).

2.5.3 Fitting Step

For all algorithms we need an interpolation method to obtain the Value Function

V (kt) between gridpoints. For this we fit a (piece-wise) spline or polynomial given

the solutions at the gridpoints V (ki,t). The interpolation method should preserve the

monotonicity and concavity of the value function. For the Constrained Optimization

3As mentioned before the lower bound for kt+1 will only bind when we are on the lower bound of

kt and in retirement. The upper bound will never bind.

4With Matlab’s ‘lsqnonlin’ we can use “vectorization”, which means we solve for all gridpoints in

period t simultaneously and greatly improves speed. For this we use the ‘JacobPattern’ option to

set the Jacobian matrix to a sparse matrix with ones on the diagonal, and zeros everywhere else.
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and Solving the First Order Conditions we need the function approximation of V (kt)

to be a continuously differentiable function (C1) as well.

A well-known univariate interpolation algorithm is the Schumaker (1983) shape pre-

serving quadratic spline, which uses knot insertion. However, this algorithm with

Lagrangian data (i.e. no information on slope) does not always preserve mono-

tonicity. For this reason we use the improved version by Lam (1990), which always

preserves both monotonicity and concavity, and is continuously differentiable as

well5.

2.6 Numerical solution: Hermite Value Function Iteration

(H-VFI)

With Lagrangian methods described above we only use information on the level

of the Value Function at the gridpoints to approximate the Value Function. With

Hermite interpolation we also calculate the slope of the Value Function to get a

more accurate approximation of the Value Function. To obtain the slope we use

the method described in Cai and Judd (2015). This method requires a constrained

optimization algorithm which reports the Lagrangian multiplier on the constraints,

for which we used Matlab’s ‘fmincon’ .

2.6.1 Hermite Maximization Step

As with the Lagrangian Maximization Step we solve the Bellman equation (2.9) at

each gridpoint, starting in the last period and working backwards in time. This time

we change the optimization problem such that the state variable ki,t is replaced with

yi in the objective function, and we impose the equality constraint yi = ki,t such

5The shape preserving spline of Lam (1990) has the same shape as the interpolation algorithm

described McAllister and Roulier (1981), but the algorithm used by Lam seems simpler to imple-

ment. This interpolation scheme is added in the the toolbox as ‘lam mcp spl ’.
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that the solution is not affected. Our optimization problem is thus:

vi = max
y,kt+1

u (Ry + St − kt+1) + βV̂ (kt+1; bt+1) (2.16)

subject to:

kt+1 ≥ 0

Ry + St − kt+1 ≥ 0

ki,t − y = 0 (2.17)

with Lagrangian multipliers µt, χt and ψt, respectively. The Lagrangian multiplier

on the equality constraint, ψt, will be equal to the slope of the Value Function at

each gridpoint,
∂V (ki,t)

∂ki,t
. This Lagrangian multiplier is reported by most algorithms

that solve constrained optimization problems, such as Matlab’s ‘fmincon’. Knowing

the value of
∂V (ki,t)

∂ki,t
allows us to use Hermite data in the Fitting Step, which should

increase the accuracy of the approximation of the Value Function.

The extra costs in computational time will be limited if adding the extra constraint

(equation (2.17)) does not affect computational efficiency much. For our model we

have to change the algorithm from the fast ‘trust-region-reflective’ to the slower ‘sqp’

algorithm when we implement the Hermite method, since the ‘trust-region-reflective’

algorithm can not handle linear constraints and boundaries at the same time. As

the ‘sqp’ algorithm is much slower the Hermite method results in considerably longer

computation times than the Lagrangian method, so the use of Hermite data would

have to improve the accuracy significantly to make up for the longer computation

time. However, in a model with a non-linear constraint, for example due to endoge-

nous labor supply, we already have to rely on a slower algorithm that can handle

non-linear constraints and boundaries. In that case adding the extra constraint

(2.17) will hardly affect computation times, and makes the use of Hermite Value

Function iteration more appealing.
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2.6.2 Fitting Step

To approximate V̂ (kt; bt) we use both the levels, vi, and the slopes, si =
∂V (ki,t)

∂ki,t
,

at each gridpoint and fit a spline or polynomial. The spline or polynomial should

use a continuously differentiable function (C1) that preserves the monotonicity and

concavity of the Value Function. Once the slopes at the gridpoints are known the

method by Schumaker (1983) is a shape preserving quadratic spline. We use the

algorithm of Lam (1990), which is the same as Schumaker’s algorithm once the

slopes are determined. Another possibility would be the use of a rational spline for

which Cai and Judd (2012) describe an algorithm6.

2.7 Performance Results

In this section we report the accuracy and computation times of the following meth-

ods:

• Lagrangian data using the three types of solution methods: Golden Section

Search (GSS), Solving FOCs (FOC), and Constrained Optimization (CON);

• Hermite data using Constrained Optimization (HER).

We use the parameters as listed in Table 2.1. We have used two types of grids, one

with equidistant gridpoints, and one with more gridpoints close to the lower bound,

called “Transformed”. The latter is especially recommended when there is a binding

constraint at the lower bound. This will for example occur when there is income

risk in combination with a borrowing constraint. The Value Function will then be

steep close to the lower bound as the marginal utility of consumption is high, so

increasing the number of gridpoints there should increase the accuracy.

In Tables 2.2 and 2.3 we report the computation time and the accuracy. The accu-

racy measure is the maximum absolute deviation of consumption from the analytical

6Note that calculating the derivative of a rational spline is a bit more involved than calculating

the derivative of a quadratic spline as we did.
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Table 2.1: Parameters

Value
Risk aversion (ν) 2.0
ε in utility function 0.01
Years working (T ) 480
Years retirement (D) 180
Wage (w) 1.00
Pension (p) 0.10
Initial wealth (k0) 0.00

solution for consumption, at the gridpoints in any period. To lower computation

times for the derivative based methods (all methods except Golden Section Search)

we have used analytical gradients and “vectorization”. Using analytical gradients is

more complicated to implement, but is more accurate and can decrease computation

times significantly.

With “vectorization” in Matlab we mean that we solve the maximization problem

for all gridpoints in any period simultaneously, which can also reduce computation

times significantly. With vectorization the objective function is the sum of the

Value Function at all gridpoints (in period t). Since we used an analytical gradient

and vectorization we can not decrease computation times using parallel computing

in our derivative based methods. When we estimate the gradient using numerical

approximation (finite differences) parallel computing could improve computation

times.

The use of parallel computing prevents us from exploiting the convexity of our prob-

lem, so it is not a priori clear if we can improve computation times with parallel

computing, even when our maximization problem is not vectorized. Exploiting the

convexity of the problem means that we know that the optimal solution of kt+1 is

increasing with kt, so when we loop over ki,t we can revise the lower bound or ini-

tial guess for kt+1 up as described in Subsection 2.5.2 under Golden Section Search.

When we solve for each gridpoints consecutively the upward revision of the initial

guess or lower bound will reduce computation times. This is not possible with paral-

lel computing as we start the optimization for all gridpoints simultaneously. For our

model and setup with 2 computational cores it turns out that Golden Section Search
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with a loop over the grid and exploiting the convexity results in lower computation

times than the use of parallel computing.

2.7.1 Computation times

The first thing to note is that Solving First Order Conditions (FOC) will be very

fast when we only have a lower and upper bound as constraints, and we can use an

analytical gradient. Constrained Optimization (CON) will already be significantly

slower, and will only be the better choice when there are more constraints than a

simple lower and upper bound. With non-linear constraints Constrained Optimiza-

tion (CON) is our preferred method, since it will handle those constraints efficiently.

Golden Section Search is relatively fast, and is easy to program, so this is a good

alternative in case the lower and upper bound can be determined. It should be

noted that computation times with Golden Section search will depend more on the

error tolerance (ε in Section 2.A) than the derivative based algorithms, because the

number of iterations with Golden Section Search will increase directly when we lower

the tolerance. With the derivative based methods the number of iterations does not

necessarily increase when we lower the tolerance.

The Hermite Value Function iteration (HER) is considerably slower than the other

alternatives, but the difference with Constrained Optimization is mostly due to the

choice of the algorithm. With the Hermite method Matlab’s ‘sqp’ algorithm will

be the fastest, since we can not use the ‘trust-region-reflective’ algorithm, and the

‘interior-point ’ will be slow. The ‘interior-point ’ algorithm will be slow in combina-

tion with the Hermite method, because the extra constraint on kt, equation (2.17),

will always bind and the ‘interior-point ’ algorithm will converge relatively slow to a

solution with a binding constraint. If we can not use ‘trust-region-reflective’ for the

Constrained Optimization then the Hermite method will only be marginally slower.

For example, with Lagrangian Constrained Optimization and the ‘interior-point ’ al-

gorithm (the second fastest method) the computation time is already roughly equal

to the computation time with Hermite Constrained Optimization.
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Table 2.2: Accuracy and computation time, yearly model, 100 nods

Equidistant nodes Transformed
Max. error Ct (·10−3) Time (s.) Max. error Ct (·10−3) Time (s.)

GSS 0.0488 3.28 0.3208 3.05
FOC 0.0490 0.46 0.3212 0.47
CON 0.3896 3.59 0.3212 3.71
HER 0.0716 13.98 0.1633 20.52

Table 2.3: Accuracy and computation time, monthly model, 25 nods

Equidistant nodes Transformed
Max. error Ct (·10−3) Time (s.) Max. error Ct (·10−3) Time (s.)

GSS 2.2033 13.11 3.8588 12.31
FOC 2.2031 3.98 3.8577 3.99
CON 2.2043 9.09 3.8577 8.72
HER 0.4331 13.94 1.1716 16.70

2.7.2 Accuracy of results

The Tables 2.2 and 2.3 show that all Lagrangian methods have similar errors. This

implies that the size of the errors depends mostly on the interpolation scheme,

and not the algorithm. This indicates that the accuracy of the algorithms was set

sufficiently high. The only exception is the Constrained Optimization in the yearly

model with equidistant nodes. The relatively large errors are caused by Matlab’s

‘trust-region-reflective’ algorithm, since tests with other algorithms for Constrained

Optimization result in errors of similar magnitude as the GSS and FOC methods.

The Hermite method will in general be more accurate, and would allow the use of

less gridpoints to get accuracy levels similar to that of the other methods. In Table

2.2 we see that the Hermite solution results in a lower accuracy compared to the

GSS and FOC methods in the yearly model with equidistant nodes, although the

error is still relatively small.

To analyze the cause of this relatively large error we have looked at the solution in

the one but last period of life, t = T +D− 1. When we use the analytical derivative

for ∂V (kt+1)
∂kt+1

instead of the slope of the approximated Value Function ∂V̂ (kt+1;bt+1)
∂kt+1

the errors are very close to zero. This indicates that the errors originate from
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the interpolation method, and not the optimization. We may thus conclude that

Lagrangian interpolation accidentally does better than Hermite interpolation with

the equidistant grid in the yearly model.

It should be noted that the Hermite Value Function iteration could gain in accuracy

compared to the Lagrangian methods when the solution is less regular than in our

simple model. For example, when there is income uncertainty and the borrowing

constraint binds the slope of the Value Function will be steep close to the lower

bound. Since the Lagrangian method will estimate the slope using a ‘harmonic

mean’, an irregular shape of the Value Function might result in a relatively lower

accuracy for the Lagrangian methods (compared to the accuracy differences between

Lagrangian and Hermite methods reported for our model).

2.8 Concluding Remarks

We have tested the accuracy and speed of four methods to solve a one-dimensional

life-cycle model, for which we are also able to calculate the analytical solution. For a

simple problem like ours, where the only constraints are boundaries, solving for the

First Order Conditions under these constraints is by far the fastest method, without

compromising on accuracy. If computation times are not important Golden Section

Search is a simple, but robust alternative, since we do not need to approximate

derivatives. In fact, we can use Golden Section Search in combination with linear

interpolation and still preserve the shape in terms of concavity and monotonicity (see

Heer and Maussner, 2009, for example). For problems with non-linear constraints

Constrained Optimization will be the most efficient method. In these cases the use

of Hermite interpolation will not add much to the computation time, while it should

improve the accuracy.

Binding constraints Since the borrowing constraint did not bind (except in re-

tirement) the Value Function has a regular shape, which makes it easier to approx-

imate the Value Function using interpolation. When constraints bind, for example

at the lower bound in case of uncertainty, the slope of the Value Function will be

22



much steeper close to the boundary. For this reason it will be recommended to use

a transformation of the grid, such that we have more gridpoints closer to the lower

bound (see also Cai and Judd, 2015).

In addition, having a binding constraint might also increase the accuracy of the

Hermite interpolation, since it will directly calculate the slope of the Value Function

at the lower bound. With the other solution methods the slope of the Value Function

will be determined by the gridpoints next to the bound, which may result in large

inaccuracies if the irregular shape of the Value Function is poorly approximated

without information on the slope.

Higher dimensional problems Our model had only one state variable, for which

we used I gridpoints. When solving higher dimensional problems the number of grid-

points increases rapidly with the number of dimensions. If we use I gridpoints in

k dimensions then the total number of gridpoints is Ik, which we call the “curse of

dimensionality”. This curse makes the Hermite interpolation method more attrac-

tive, since we should be able to get a more accurate approximation of the Value

Function with less gridpoints in each dimension. Cai and Judd (2015) describe Her-

mite interpolation in a higher dimensional problem using Chebyshev polynomials to

approximate the Value Function.

Some caution is recommended though with the use of their method. First of all,

their method does not preserve the shape of the Value Function perfectly, so the

problem might become locally non-convex, especially when the errors accumulate in

a model with many periods. Second, the polynomial will not go through all data

points, which also leads to inaccuracies that might accumulate over time, especially

close to the boundaries of the grid. Unfortunately, to our knowledge there is no

interpolation method for higher dimensional problems that preserves the shape and

goes through all gridpoints. For that reason the Chebyshev regression that Cai

and Judd (2015) employ with high order polynomials (say order 40) seems the only

feasible method for multi-dimensional problems.
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2.A Golden Section Search algorithm

The algorithm as described by Heer and Maussner (2009) is slightly adjusted. We

add two variables which track if the initial lower and upper bound of ‘Step 1’ have

been adjusted. If the lower bound is adjusted at least once we set Φlb = 1 and if the

upper bound is adjusted at least once we set Φub = 1. If the lower (upper) bound was

never adjusted we add the original lower (upper) bound to the points from which

we select the minimum, such that the algorithm returns the lower (upper) bound if

that is the optimum.

The adjusted algorithm to find the minimum of f (x) in interval x ∈ [x, x] is:

Step 1: Initialization

A = x , D = x

B = pA+ (1− p)D

C = (1− p)A+ pD

and set fB = f (B) and fC = f (C).

Set Φlb = 0, Φub = 0.
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Step 2: Adjust interval if |D − A| ≥ ε

If fB < fC:

C = B

fC = fB

D = C

fD = fC

B = pC + (1− p)A

fB = f (B)

Φub = 1

Else:

A = B

fA = fB

B = C

fB = fC

C = pB + (1− p)D

fC = f (C)

Φlb = 1

Step 3: Choose minimum if |D − A| < ε

• If Φlb = 0: set fA = f (A)

• If Φub = 0: set fD = f (D)

Choose the minimum from fA, fB, fC and fD, and return A, B, C or D as the

optimum.
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Chapter 3

Optimal Age-Dependent

Unemployment Insurance

3.1 Introduction

This research sets out to determine the optimal level of Unemployment Insurance

(UI) benefits, where the level of benefits are allowed to vary with age. Providing

Unemployment Insurance has the traditional public policy trade-off between equity

and efficiency. On the one hand higher unemployment benefits increase equity as it

provides agents with insurance against a (temporary) fall in income. On the other

hand, it reduces efficiency because it weakens the incentives to take up a job when

unemployed.

There are empirical results that indicate that an increase in unemployment benefits

increases unemployment duration (see Krueger and Meyer, 2002). As Chetty (2008)

notes this has traditionally been interpreted as an increase in moral hazard as higher

unemployment benefits reduce the relative benefits of having a job, distorting search

effort and resulting in higher unemployment rates. Chetty (2008) then continues

that the increase in unemployment duration as a result of higher UI benefits may

not be entirely attributed to moral hazard. When agents have little liquid assets

their search effort may be too high from a social point of view. Providing the

unemployed with liquidity to smooth consumption can increase social welfare, even
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though unemployment duration increases. This is very relevant for the design of

optimal Unemployment Insurance in the U.S. as almost half of the unemployed

report zero liquid wealth (Chetty, 2008).

This trade-off between insurance and giving the right incentives is likely to change

over the life-cycle for various reasons. In the first place, young individuals have

less assets and are less able to self-insure against income shocks. Empirical research

has indeed found that unemployment duration increases with wealth (see Lentz,

2009; Lentz and Tranaes, 2005; Bloemen and Stancanelli, 2001; Algan et al., 2003).

Second, wages are known to be age-dependent (see for example Hanse, 1993; Rupert

and Zanella, 2015) which will influence the benefits of finding a job, and thus search

effort of the unemployed. That wages influence search behavior has been shown by

Lentz (2009) for Denmark. Furthermore, the closer the unemployed get to their

retirement age, the less long they will benefit from re-employment. This will reduce

search effort. Finally, older individuals might have more difficulties finding a job,

because employers might prefer younger employees.

Such age dependent factors imply that age-dependent unemployment benefits might

be welfare improving. To test this we develop a life-cycle model with wealth accu-

mulation and job search. All three factors are important to include in the model.

The life-cycle perspective is crucial to capture age-specific effects. Another difference

between a life-cycle model and a model with infinitely living agents is that liquidity

insurance through loans is more easy to implement with infinitely lived agents as

they have infinite time to repay their debts. In fact, models with infinitely-lived

agents and an interest rate equal to or higher than one divided by the discount

factor have the odd feature that agents will accumulate infinite assets as a means of

self-insurance (Chamberlain and Wilson, 2000). In addition, the life-cycle approach

is important because discounted life-time utility is likely to vary more than in a

model with infinitely lived agents. As (discounted) income varies more between

agents in a life-cycle model redistribution is more important.

The second aspect, search effort, is important as Lentz (2009) argues. Empirical

evidence from Devine and Kiefer (1991) shows that rejection or acceptance of job
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offers plays a small role in the observed unemployment hazard rate variation and

indicates that search intensity is the most important driver for unemployment haz-

ard. In our model search effort will depend on the difference in (discounted) utility

between being employed and being unemployed. This difference in utility is likely

to depend strongly on the phase of the life-cycle.

The third feature of the model, the accumulation of assets, is important to allow

agents to self-insure against income shocks through pre-cautionary savings as in-

surance against unemployment is imperfect. In our model agents will save for two

reasons. The first is retirement, since agents are not provided with sufficient pension

benefits. The second motive for savings is precaution as the agent can use his assets

to smooth consumption over his life.

Regarding savings the level of the interest rate is very important as Lentz (2009)

found that the ratio between the interest rate and the discount factor of agents has

strong effects on the optimal level of unemployment benefits. To be able to set the

interest rate freely we choose the partial equilibrium approach, where both wages and

interest rates are given and independent of labor supply and wealth accumulation,

respectively.

Despite the importance of a life-cycle approach, asset accumulation and search effort,

the combination of these three aspects in one model is rare, and has to our knowledge

only been used in Costain (1997) and Heer (2003). Our model extends their approach

with a more extensive calibration, and in addition considers optimal age-dependent

UI benefit levels. The extensive calibration includes three measures that are non-

standard. These are the elasticity of unemployment duration with respect to the level

of unemployment benefits, the average consumption drop when an agent becomes

unemployed and the average duration of unemployment, with a linear trend in age.

The combination of these factors should give the model a good fit with respect to the

trade-off between insurance and the negative impact of insurance on search effort.

The extra parameters that are calibrated for are the disutility of working, adjust-

ment costs to private wealth when the change in private wealth is negative, and the

matching probability given search effort, where the parameter that determines the
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matching probability is a linear function of age.

The unemployment insurance instrument that we evaluate is the net replacement

rate, meaning the ratio of UI benefits to net wages as is standard in the literature

(see for example Wang and Williamson, 2002; Davidson and Woodbury, 1997). We

use two variants for this. One variant where the replacement rate is fixed over

the life-cycle and one where the replacement rate is allowed to linearly depend on

age. In both cases the maximum duration is fixed at 6 months. It turns out that

making replacement rates dependent on age can improve welfare, with welfare gains

of between 5 to 15% of the Net Present Value of UI contributions.

3.2 Model

The model is a life-cycle model with search effort and wealth accumulation, in partial

equilibrium. The wage is allowed to be age specific, and the labor supply when

employed is fixed at 1 unit. The UI policies that will be analyzed in this paper

consist of unemployment benefits with a maximum duration of 6 months, after

which the agent gets (close to) nothing as is standard in the literature.

Agents maximize utility:

E0

{
T+D∑
t=1

βt−1 [u (ct)− dt − at]

}
(3.1)

where E0 is the expected value before the start of the first period, u (ct) is the period

t utility from consumption ct, T is the number of periods in working age, and D

is the number of periods in retirement, β is the discount factor, d is the (fixed)

discomfort of working and a is the job search intensity with the latter two being

zero during retirement.

We abstract from uncertainty about the time of death and we also abstract from

a bequest motive. In addition we will set the gross interest rate equal to one over

the discount factor: R = 1/β. The combination of certainty about the time of

death, lack of bequest motives and R = 1/β ensures that agents prefer a constant
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consumption level. In models with stochastic survival probabilities the interest rate

is usually set higher than one over the discount factor (R > 1/β), which results in

higher savings compared to our model with R = 1/β.

3.2.1 Retired individuals

The retired individuals optimize (3.1) for t = [T + 1, ..., T +D] subject to the fol-

lowing two constraints:

Rkt + n = ct + kt+1 (3.2)

kt ≥ Bt,lim (3.3)

The first constraint is the budget constraint with private wealth denoted by k,

and the gross interest rate by R. The public pension is denoted by n. We set

n = 0, since we want the consumption level during retirement to depend on income

during working life as in the current U.S. pension system. Endowing all agents with

the same pension would result in a counterfactual redistribution of income through

pensions, given that agents are ex ante the same (there is no heterogeneity in ability

or disutility of working) but differ in earned income. The second constraint is the

borrowing constraint. We have set Bt,lim = 0 as the borrowing limit, since agents

do not get a public pension, and hence have a natural borrowing limit of 0.

Writing the optimization problem as a Lagrangian yields:

L = E

{
T+D∑
t=T+1

βt−1 [u (ct) + δt (Rkt + n− ct − kt+1) + γt (kt −Bt,lim)]

}
(3.4)

Combining the First Order Conditions (FOC) with respect to ct and kt+1 results in

the Euler equation:

u′ (ct) = βRE {u′ (ct+1) + γt+1} (3.5)

which implies consumption is constant if R = 1/β (as in this paper) and wealth
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is positive at the beginning of retirement (when the non-negativity constraint on

private capital k does not bind). Both these conditions hold in this paper.

3.2.2 Working age: employed individuals

Employed individuals can only choose their consumption level. The Bellman equa-

tion that workers optimize in periods t = [1, ..., T ] is:

V (kt, zt) = max
ct,kt+1

u (ct)− d+

βE {(1− λ)V (kt+1, zt+1 = 0) + λV (kt+1, zt+1 = 1)}
(3.6)

where V (kt, zt) is the value function, and kt is private savings. Symbol z is the status,

where z = 0 means employed and z = 1 means the first period of unemployment.

The disutility of working is d and the exogenous probability of loosing a job is λ.

The constraints of the optimization are:

Rkt + (1− τ − µ)wt ≥ ct +Q (Rkt − kt+1) + kt+1 (3.7)

kt+1 ≥ Bt,lim (3.8)

where τ is the tax rate and µ is the UI contribution rate, both as a percentage of

the gross wage. The UI contributions µwt will be added to a public UI fund. Taxes

are used to fund a budget surplus. The adjustment costs to wealth, if the change in

capital is negative, are denoted by Q, and defined as:

Q =

% (Rkt − kt+1)
2 if Rkt − kt+1 < 0

0 otherwise

(3.9)

These adjustment costs allow us to match the consumption drop when becoming

unemployed of the model with empirical data, while using only one type of wealth1.

1An alternative would be to introduce two types of wealth, illiquid and liquid wealth, where illiquid
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The costs are quadratic, which makes it more costly to withdraw larger amounts.

This reflects that the costs of obtaining liquid funds is likely to be increasing with

the amount required. For example, the costs of transforming illiquid assets to liquid

funds is likely to be increasing in the amount involved.

The First Order Condition with respect to consumption is:

u′ (ct) = δt (3.10)

where δt is the multiplier of the budget constraint (3.7). The FOC with respect to

kt+1 is:

βE

{
[1− λ]

∂V (kt+1, zt+1 = 0)

∂kt+1

+ λ
∂V (kt+1, zt+1 = 1)

∂kt+1

}
+ γt

= δt

(
1− dQ

dkt+1

)
(3.11)

where δt is multiplier on the budget constraint (3.7) and γt is multiplier on the

non-negativity constraint of private capital (3.8).

3.2.3 Working age: unemployed individuals

Unemployed individuals also have to decide on their consumption and savings, but

they have one extra control variable, which is search effort. Search effort determines

the chance of finding a job, but results in disutility.

The Bellman equation for the unemployed is:

V (kt, zt > 0) = max
ct,at,kt+1

u (ct)− at+

β {p (at)V (kt+1, zt+1 = 0) + [1− p (at)]V (kt+1, zt+1 > 0)} (3.12)

wealth would earn a higher return. An extra state variable would increase computation times

significantly though, and make optimization of the policies too time-consuming.
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where zt+1 > 0 means zt+1 = min (zt + 1, zmax). This optimization is subject to

constraints:

Rkt + bz,t ≥ ct +Q (Rkt − kt+1) + kt+1 (3.13)

kt+1 ≥ Bt,lim (3.14)

at ≥ 0 (3.15)

where at is search effort, p (at) is the chance of finding a job given effort at (see

equation 3.18 for the functional form), bz,t are the benefits for the unemployed (z >

0) with status z. With a maximum duration of UI benefits we have zmax = uimax+1,

meaning the maximum duration of unemployment benefits plus one period. This

is the period when the agent no longer receives unemployment benefits but gets

Social Assistance, which is set equal to (almost) zero throughout this paper. The

adjustment costs of private wealth Q are the same as for the employed and described

in equation (3.9).

The FOCs for ct and kt+1 can be combined to yield:

u′ (ct)

(
1− dQ

dkt+1

)
=

β

{
p (at)

∂V (kt+1, zt+1 = 0)

∂kt+1

+ [1− p (at)]
∂V (kt+1, zt+1 > 0)

∂kt+1

}
+ γt (3.16)

where γt is the multiplier of the non-negativity constraint on private wealth (3.14).

The FOC for search effort at is:

1 = βp′ (at) {V (kt+1, zt+1 = 0)− V (kt+1, zt+1 > 0)}+ ϕt (3.17)

where ϕt is the multiplier on the non-negativity constraint on search effort (3.15).

The model is numerically solved backwards so at time t the values for V (kt+1, zt+1)

are known. Search effort therefore only depends on kt+1 and the optimization prob-

lem can be reduced to a single variable (kt+1) problem.
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Figure 3.1: Wage over the life-cycle

3.3 Calibration

The model is calibrated using U.S. data, where one period is a month. The unem-

ployment benefits in the calibration are fixed at 50% of the net wage as in Wang and

Williamson (2002) with a maximum duration of 6 months. If someone is unemployed

for longer he gets (almost) zero income2. The net average wage over the life-cycle is

set at 1.0 and the average gross wage at 1.2. We use productivity profiles of Hanse

(1993) as the age-dependent wage, which is plotted in Figure 3.1.

The utility of consumption is of the CRRA-type, (Ac+ε)1−α

1−α , with α = 2 in the

benchmark calibration, A = 0.25 and ε = 0.01 where the latter two values ensure

that the marginal utility at ct = 0 is limited3. The interest rate is set at R = 1/β.

Pensions are set at (almost) zero, because agents can save for their pension without

much distortion, and we do not want to redistribute income through pensions (see

2In practice we set the Pension and Social Assistance to 0.0001 to make it slightly easier to solve

the optimization problem numerically, since this allows some difference between the upper and

the lower bound in the optimization so we can always use a constraint optimization routine.

3A high marginal utility of consumption increases the error in the approximation of the Value

Function, especially when the borrowing constraint is binding.
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subsection 3.2.1 on Retired individuals).

The model is calibrated to match the following estimates of Kroft and Notowidigdo

(2016):

• Unemployment rate with an average of 6.2% in the U.S. over 1968-2007;

• Duration of unemployment with an average of 4.25 months in the U.S. between

ages 20 to 62, and a linear increase of 0.032 months per year of age;

• Elasticity of average unemployment duration with respect to the level of UI

benefits of 0.63. This estimate of Kroft and Notowidigdo (2016) is close to the

middle of the range of estimates reported by Krueger and Meyer (2002)

• Consumption drop (in logs) when people become unemployed of 0.069 based

on the PSID data from 1968 to 1997, which only measures food consumption.

Kroft and Notowidigdo (2016) used the Survey of Income and Program Participation

(SIPP) data over the period 1985-2000 (except for the estimation of the consumption

drop). The sample is restricted to 1) prime age males, 2) job-search reporters, 3)

not laid off temporarily, 4) at least three months of work history, and 5) claimed UI

benefits. The data is right-censored at 50 weeks of unemployment.

The parameters to be calibrated are the job loss probability λ, the search efficiency in

the matching function with a linear age-dependent trend rt, the disutility of working

d, and the parameter for the adjustment costs in private wealth %. The results of

the calibration are listed in Table 3.1.

The job loss probability λ is not taken from the data as unemployment spells shorter

than one month are not possible in the model and hence should be omitted. The

results from the calibration are a job loss probability of 1.56% per month. This

is significantly lower than the 5.32% reported by Shimer (2005), but that number

includes many very short term unemployment spells, which are ignored in this model

except for their influence on the average duration.

One of the key assumptions of the model is the age-dependent job-finding probability,

which is assumed to be lower for older ages compared to younger ages, because of

36



Table 3.1: Parameters

Value
UI contr. (µ in %) 2.37
Tax (τ in %) 14.30
Net repl. rate (% of net wage) 50.00
Net soc. ass. 0.0001
Net public pension 0.0001
Max. UI dur. (months) 6
Years in working age (T ) 45
Years in retirement (D) 15
Population 1000000
Discount factor (β) 0.9966
Risk aversion (α) 2.00
Job loss prob. (λ in %) 1.56
Avg. matching efficiency (r0) 0.22
Age trend in match. eff. (r1) 0.0057
Adjustment Costs (%) 0.035
Disutility working (d) 2.991
C.V. disutility a 0.620

a C.V. is calculated here as d
u′(ĉ) for simplicity,

where ĉ is average consumption

differences in job-matching efficiency. That older unemployed have more difficulties

finding a job is consistent with earlier findings of Chan and Stevens (2001). Hence,

the duration of unemployment is, on average, higher among older unemployed than

younger unemployed. Since this is an important feature of the model we allow for an

age-specific matching probability (for given search effort), and calibrate it as follows.

The matching function is:

p (at) =
1

1− p0
(rtat + εp)

ν / [1 + (rtat + εp)
ν ]− p0

1− p0
(3.18)

p0 =
ενp

1 + ενp
(3.19)

which results in p (0) = 0, p′ (0)� 0 and p (∞) = 1. The value ν is chosen arbitrary

(ν = 0.7), and εp = 0.05 is added to ensure that p′ (0) 6= ∞, which would make it

difficult to approximate the matching function for at close to zero. The parameter
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Figure 3.2: Unemployment duration over life-cycle (model results)

rt is made linearly dependent on age:

rt = max [0, r0 + r1 (aget − age)] (3.20)

where age is the average age, and r0 and r1 are calibrated to match the empirical

values of 1) the average unemployment duration, and 2) the linear trend in the

average unemployment duration as a function of age.

For this purpose we calculate how the average duration is linearly dependent on

age using the same SIPP sample as Kroft and Notowidigdo (2016). Using a simple

regression we obtain an average duration of 4.25 months, and an increase of 0.032

months per year of age. We match the average duration and linear trend in duration

with age by adjusting r0 and r1 in equation (3.20). The average duration per age in

the simulation of the model is plotted in Figure 3.2 and is labeled ‘Raw’. The line

‘Fitted’ is the linear trend fitted to these points and corresponds to the calibration

targets of the average duration and the linear trend of duration with age.

As reported in Table 3.1 the disutility of working is set at d ≈ 3. The Compensating

Variation of the disutility of working is about 60% of average consumption, which

intuitively seems realistic. The parameter of the adjustment costs % in equation (3.9)
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Table 3.2: Main results for 6 months of benefits

Benchmark Opt. Constant UI Opt. UI-age
Net repl. rate (t=1) 0.500 0.374 1.000
UI contributions (%) 2.37 1.62 1.91
Unemployment rate (%) 6.20 5.50 5.09
Compensating Variation 1.114 0.947 0.000
as % of NPV UI in Benchm.a 18.13 15.41 0.00

a The Net Present Value of UI contributions in Benchmark is 6.15.

is set to match the consumption drop (in logs) when agents become unemployed.

3.4 Main Results

The main results consist of the welfare effects of 3 variants: the ‘Benchmark’, which

is the current UI system in the U.S., ‘Optimal Constant UI’ which is the optimized

constant replacement rate, and ‘Optimal UI-age’ which is the optimal system when

UI benefits are allowed to depend linearly on age, with an upper bound of the

replacement rate at 100%. The welfare effects are measured by the Compensating

Variation relative to the variant with the highest welfare (the age-dependent UI

system). For all systems the maximum UI duration is fixed at 6 months.

The results are reported in Table 3.2, which shows that the welfare gain of an

Optimal Constant UI replacement rate is relatively small compared to the current

system (‘Benchmark’), with a difference in the Compensating Variation of just under

3% of the Net Present Value (NPV) of all UI contributions in the Benchmark. The

results indicate that the replacement rate in the current UI system is too high, since

the optimal constant replacement rate is about 12% lower.

The optimal constant level of UI benefits is somewhat lower than typically reported

in the literature. For example Davidson and Woodbury (1997) and Wang and

Williamson (2002) report optimal replacement rates of 1.3 and 0.56 for a UI du-

ration of 6 months. One reason that the optimal replacement rates are higher in

these papers is that agents have no or very little savings, meaning they have no

buffers to smooth their consumption, which increases the value of higher benefit

levels.
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Figure 3.3: Replacement rate over the life-cycle

The papers of Davidson and Woodbury (1997) and Wang and Williamson (2002)

are also not calibrated as extensive as ours. For example, these authors do not

calibrate the elasticity of the duration to the level of UI benefits, or the consumption

drop when becoming unemployed. Furthermore, the agents in their models live

infinitely, which most likely results in higher replacement rates compared to a life-

cycle model. The reason is that the benefits of job search decline as the retirement

age is approached, since the time that job seekers will benefit from employment

becomes shorter.

The lower constant replacement rate compared to the ‘Benchmark’ results in a larger

consumption drop when becoming unemployed as shown in Figure 3.4. This is di-

rectly the result of lower income insurance. The slightly higher welfare in the ‘Opti-

mal Constant UI’ variant compared to the ‘Benchmark’ can therefore be attributed

completely to a reduction in moral hazard.

This contrasts with the result of the Optimal age-dependent UI benefits (‘Opt. UI-

age’), where the increase in welfare stems from a better targeted insurance. The

resulting welfare difference is relatively large, with an increase in welfare of over

18% of the Net Present Value of all UI contributions in the Benchmark case as

reported in Table 3.2. The optimal age-dependent replacement rate is very high

40



Figure 3.4: Consumption change (logs) when becoming unemployed

at age 20, reaching the upper bound of 100%. The optimal replacement rate then

drops sharply to reach 0 at an age of just over 40 as shown in Figure 3.3.

How these targeted benefits increase welfare is most clear from Figure 3.4, which

shows the average consumption drop (in logs) over the life-cycle, where we have also

included the average of -0.069 as reported by Kroft and Notowidigdo (2016). The

figure shows that the consumption drop in all variants is largest early in the life-

cycle. Targeting Unemployment Insurance at this period reduces the consumption

drop strongly (the ‘Opt. UI-age’ variant) at young ages. After the age of around 35

the replacement rate in the age-dependent system is lower than in the other variants,

which results in the largest consumption drop after that age. The lower insurance

should on the one hand reduce welfare due to higher income risk, but on the other

hand reduce moral hazard due to stronger incentives to search for a job. In fact,

in the age dependent variant those over 40 get no UI benefits, which completely

eliminates moral hazard effects later in life.

3.5 Sensitivity analysis: lower risk aversion

To evaluate to what extend our results in the previous section depend on the choice

of the parameters we conduct a sensitivity analysis. Since the risk aversion might
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Table 3.3: Parameters, α = 1

Value
UI contr. (µ in %) 2.35
Tax (τ in %) 14.31
Risk aversion (α) 1.00
Job loss prob. (λ in %) 1.56
Avg. matching efficiency (r0) 1.13
Age trend in match. eff. (r1) -0.0279
Adjustment Costs (%) 0.014
Disutility working (d) 0.655
C.V. disutility a 0.596

a C.V. is calculated here as d
u′(ĉ) for simplic-

ity, where ĉ is average consumption

Table 3.4: Main results for 6 months of benefits, α = 1

Benchmark Opt. Constant UI Opt. UI-age
Net repl. rate (t=1) 0.500 0.188 0.551
UI contributions (%) 2.35 0.70 0.54
Unemployment rate (%) 6.20 4.81 4.60
Compensating Variation 1.055 0.296 0.000
as % of NPV UI in Benchm.a 17.29 4.85 0.00

a The Net Present Value of UI contributions in Benchmark is 6.10.

play an important role in the welfare gain of our optimized policies we carry out

the same analysis as in the previous section, but with risk aversion α = 1. The

calibration targets the same objectives and results in the parameters listed in Table

3.3, where we have omitted the unaffected parameters.

The main results with the lower risk aversion are listed in Table 3.4. The welfare

difference between Optimal Constant UI and Optimal age-dependent UI is reduced

from over 15% with a high risk aversion (α = 2) to just under 5% with a low

risk aversion (α = 1). The welfare difference between the Benchmark and the age-

dependent system stays roughly the same at 17-18% of the Net Present Value of UI

contributions in the Benchmark case.

The main difference between Table 3.2 and Table 3.4 is the much lower level of

insurance in the two optimized variants in Table 3.4, which is also reflected in the

differences between Figure 3.3 and Figure 3.5. This despite the calibration of the
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Figure 3.5: Replacement rate over the life-cycle, α = 1

model on both the consumption drop when becoming unemployed and the elasticity

of unemployment duration with respect to the level of UI benefits. Apparently,

fitting the adjustment costs of wealth % and the disutility of working d to these two

objectives does not make the model insensitive to the choice of the risk aversion

parameter.

Interesting is that the ‘Optimal Constant UI’ variant results in a welfare loss of

just under 5% compared to the age-dependent variant. This despite a constant re-

placement rate of less than 20% resulting in large consumption drop when becoming

unemployed as shown in Figure 3.6. Despite a much larger consumption drop early

in life in the ‘Optimal Constant UI’ system the welfare is still higher than in the

‘Benchmark’. This indicates that moral hazard in the Benchmark system is quite

strong as lower insurance and less moral hazard (‘Optimal Constant UI’) results in

higher welfare than high insurance with high moral hazard (‘Benchmark’).

In the Optimal age-dependent UI system the level of UI benefits drops fast, reaching

a level of zero just over 35 years. With the low risk aversion the level of insurance

at the beginning of the life-cycle is much lower (replacement rate at t = 1 of 55%)

compared to α = 2 (replacement rate at t = 1 of 100%). The welfare benefits of age-

dependent benefits comes most of all from reducing moral hazard, since insurance
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Figure 3.6: Consumption change (logs) when becoming unemployed, α = 1

levels are higher than in the ‘Benchmark’ only in the first few years of the life-cycle.

3.6 Conclusion

We have analyzed the optimal unemployment insurance benefits over the life-cycle

in an extensively calibrated model. Our results indicate that the welfare benefits of

targeting unemployment insurance at young people can be relatively large, with wel-

fare gains roughly between 5 and 15% of the Net Present Value of UI contributions

in the current system. These results are mainly driven by the lack of self-insurance

for the young as they have accumulated few assets. The young have less assets,

because their income is low compared to the average earnings over the life-cycle.

This makes them credit constrained as they could increase their welfare by borrow-

ing against future, higher income, and so raise their consumption when young. In

addition, they have had less time to accumulate assets for precautionary motives.

Regarding the insurance of older people our model results indicate that moral hazard

effects are strong later in life, which reduces optimal replacement rates for the old.

In fact, when using replacement rates linear in age, the optimal replacement rate

of the old is zero. This implies that the welfare gains of a higher replacement rate
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early in the life-cycle are bigger than the welfare gains of raising the replacement

rate above zero for the old.
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Algan, Y., A. Chéron, J.-O. Hairault, and F. Langot (2003). Wealth effect on labor

market transitions. Review of Economic Dynamics 6 (1), 156–178.

Bloemen, H. G. and E. G. Stancanelli (2001). Individual wealth, reservation wages,

and transitions into employment. Journal of Labor Economics 19 (2), 400–439.

Chamberlain, G. and C. A. Wilson (2000). Optimal intertemporal consumption

under uncertainty. Review of Economic dynamics 3 (3), 365–395.

Chan, S. and A. H. Stevens (2001). Job loss and employment patterns of older

workers. Journal of Labor Economics 19 (2), 484–521.

Chetty, R. (2008). Moral hazard versus liquidity and optimal unemployment insur-

ance. Journal of political Economy 116 (2), 173–234.

Costain, J. S. (1997). Unemployment insurance with endogenous search intensity

and precautionary saving.

Davidson, C. and S. A. Woodbury (1997). Optimal unemployment insurance. Jour-

nal of Public Economics 64 (3), 359–387.

Devine, T. J. and N. M. Kiefer (1991). Empirical labor economics: the search

approach. Oxford University Press on Demand.

Hanse, G. D. (1993). The cyclical and secular behaviour of the labour input: Com-

paring efficiency units and hours worked. Journal of Applied Econometrics 8 (1),

71–80.

Heer, B. (2003). Employment and welfare effects of a two-tier unemployment com-

pensation system. International Tax and Public Finance 10 (2), 147–168.

Kroft, K. and M. J. Notowidigdo (2016). Should unemployment insurance vary

with the unemployment rate? theory and evidence. The Review of Economic

Studies 83 (3), 1092–1124.

Krueger, A. B. and B. D. Meyer (2002). Labor supply effects of social insurance.

Handbook of public economics 4, 2327–2392.

Lentz, R. (2009). Optimal unemployment insurance in an estimated job search

model with savings. Review of Economic Dynamics 12 (1), 37–57.

46



Lentz, R. and T. Tranaes (2005). Job search and savings: Wealth effects and duration

dependence. Journal of Labor Economics 23 (3), 467–489.

Rupert, P. and G. Zanella (2015). Revisiting wage, earnings, and hours profiles.

Journal of Monetary Economics 72, 114–130.

Shimer, R. (2005). The cyclical behavior of equilibrium unemployment and vacan-

cies. American economic review 95 (1), 25–49.

Wang, C. and S. D. Williamson (2002). Moral hazard, optimal unemployment insur-

ance, and experience rating. Journal of monetary Economics 49 (7), 1337–1371.

47



Chapter 4

Adaptive Beliefs in a RBC Model

4.1 Introduction

The macroeconomics paradigm of Rational Expectations has dictated the field over

the last four decades, but more recently attention is shifting towards models where

agents are boundedly rational in some way (Hommes, 2011). Especially after the

financial crisis there are increasing calls to replace the rigidity of Rational Expecta-

tions (Blanchard, 2018). A wide range of different types of expectations that devi-

ate from Rational Expectations have been developed. Our main interest is the role

that ‘animal spirits’ can play in business cycle fluctuations, where ‘animal spirits’

are defined as waves of optimism and pessimism about future economic prosperity

(De Grauwe, 2011).

Other papers that have looked into ‘animal spirits’ as a source of business cycle fluc-

tuations are De Grauwe (2011), Massaro (2013) and Hirshleifer et al. (2015). The

first two implemented extrapolative biases in a New Keynesian framework without

capital accumulation. In their framework extrapolative biases can result in instabil-

ity. The paper by Hirshleifer et al. (2015) features an economy that is more close to

our economy although their labor supply is fixed, and their main interest lies with

the effect of ‘animal spirits’ on asset prices.

There are several other approaches in the literature to investigate expectations as

a source of business cycle fluctuations. Two examples are exogenous shocks to
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expectations (see for example Milani, 2011) or adaptive learning (see Evans and

Honkapohja, 2001, for an extensive overview). Within the latter literature there are

several variants such as signal extraction problems (Edge et al., 2007), misspecified

models (Lorenzoni, 2009; Branch and McGough, 2011), and incomplete information

models (Eusepi and Preston, 2011).

In our model ‘animal spirits’ are confined to exogenous productivity without any

feedback loop that endogenously reinforces positive or negative shocks. Agents per-

fectly observe all variables including the productivity level, but use heuristics to

predict future levels of productivity. To be more precise, agents extrapolate recent

changes in the productivity level. The agents expect future productivity levels to be

a weighted average of two extreme forecasting rules, an optimistic and a pessimistic

forecasting rule. The weights of each rule depend on the recent performance of each

rule as in an Adaptive Beliefs System (Brock and Hommes, 1997, 1998). When there

have recently been more positive (negative) shocks, then the agents expect a positive

bias (negative) in future productivity shocks. As in Massaro (2013) and De Grauwe

(2011) we aggregate the expectations of heterogeneous agents into a representative

agent framework1.

The intuition behind such an extrapolative bias is best explained with the uncer-

tainty about productivity that we have seen for example during the dotcom bubble.

At the height of the dotcom bubble there was the belief that new technologies were

able to support a higher growth rate of productivity than before (Hirshleifer et al.,

2015). Apparently there was also data that supported this claim as even profes-

sionals and policy makers seemed to expect higher growth rates of productivity. In

effect they extrapolated the higher growth rate of the late nineties into the new

millennium (Edge et al., 2007).

The extrapolative bias in our model does something similar: recent changes in pro-

ductivity levels are projected into the future. There is empirical evidence that in real

life people rely on heuristics to form expectations about the future (see Hommes,

1Although Massaro (2013) and De Grauwe (2011) start from a heterogeneous agent framework,

they both take the average expectation at some point.
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2011, for references). These heuristics include trend extrapolation and mean rever-

sion as forecasting strategies. There is also evidence that the fraction of agents using

a particular forecasting strategy changes over time (Hommes, 2011). This evidence

justifies the use of adaptive beliefs as a micro-foundation for macroeconomic models.

One critique of models that deviate from Rational Expectations is that it allows the

modeler too many degrees of freedom, or the ‘wilderness’ of bounded rationality as

Sims (1980) called it. A common approach to address this issue is the calibration

of the forecasting error of the model to the forecasting errors of professionals. This

is for example the approach of Eusepi and Preston (2011). However, in general this

modeling assumption results in correlations between output and consumption, and

output and hours worked that are too high, as in Real Business Cycle (RBC) models

with Rational Expectations. In contrast we calibrate the changes in beliefs in our

model to a measure of consumer confidence. In particular, the standard deviation

and autocorrelation of the weight of the optimistic forecasting rule is set such that

it matches the standard deviation and autocorrelation of consumer confidence.

Another issue that arises in models that deviate from Rational Expectations is the

length of the forecasting horizon of agents in the model. Several models use agents

that only make one-period-ahead forecasts, which makes their decisions suboptimal

given their maintained beliefs (Eusepi and Preston, 2011). In this paper agents

assume they will not update their expectations in the future. This means agents

make infinite horizon forecasts under the assumption of maintained beliefs as in

Eusepi and Preston (2011), which implies that agents in our model expect the steady

state to change.

The model that we use is a RBC model, which is calibrated on the second mo-

ments of the US economy. We use the preferences of Jaimovich and Rebelo (2009),

which allow us to adjust the strength of the wealth effect in response to expected

income shocks. This feature is crucial in our model, because in a standard RBC

model higher expected productivity generates a wealth effect that results in higher

consumption and more leisure, thus reducing labor supply therewith resulting in a

recession (Beaudry and Portier, 2007; Jaimovich and Rebelo, 2009; Den Haan and
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Kaltenbrunner, 2009). With adaptive expectations a productivity shocks can result

in a much higher expected productivity, which will have a large wealth effect and re-

duce labor supply strongly. With the preferences from Jaimovich and Rebelo (2009)

we can manage the strength of this wealth effect.

The paper is organized as follows. The next section describes the model, including

the adaptive beliefs and the solution method. Section 3 describes the Calibration.

Section 4 gives the Results, and Section 5 is a sensitivity analysis with respect to the

standard deviation of the ‘animal spirits’. Finally the paper is concluded in Section

6.

4.2 Model

The model is a standard RBC model with the same preferences as in Jaimovich

and Rebelo (2009). These preferences allow us to control the wealth effect. The

preferences include the form used by Greenwood et al. (1988) (when φ = 0) and the

form chosen by King et al. (1988) (when φ = 1) as special cases. The parameter φ

thus controls the strength of the short run wealth-effect on labor supply.

The main difference with standard RBC models is that we introduce adaptive be-

liefs with respect to the exogenous productivity process. The agent can observe all

variables including the productivity level, but will forecast future productivity levels

with a bias. The bias results from putting more weight on recent realizations of the

productivity level when forming expectations about the future level of productivity.

The optimal decisions are made under the assumption that the agent will maintain

his belief as in Eusepi and Preston (2011). Our framework has homogeneous be-

liefs, and does not have externalities, which allows us to use a representative agent

framework.
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4.2.1 Economy

The representative agent maximizes expected life-time utility:

U = Ẽ0

∞∑
t=0

βt
(
Ct − ψN θ

tXt

)1−ν − 1

1− ν
(4.1)

where C is consumption, N is hours worked, and X is a habit variable. The risk

aversion is ν, the discount factor is β, and θ governs the labor supply elasticity. The

expectation operator Ẽt indicates a (possibly) bounded rational expectation.

The habit variable Xt is given by:

Xt = Cφ
t X

1−φ
t−1 (4.2)

where φ governs the strength of the short run wealth-effect on labor supply. The

habit formation makes preferences non-time-separable in consumption and hours.

Production is given by the Cobb-Douglas production function Yt = ZtK
1−α
t Nα

t .

In this equation Yt is output, Kt is the capital stock at the beginning of the pe-

riod, and Zt is the exogenous Total Factor Productivity (TFP). Output is used

for consumption or investment: Yt = Ct + It and capital evolves according to

Kt+1 = (1− δ)Kt + It where δ is the depreciation rate. Combining these three

equations yields the budget constraint:

Kt+1 + Ct = ZtK
1−α
t Nα

t + (1− δ)Kt (4.3)
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The First Order Conditions with respect to Ct, Xt, Nt, and Kt+1 are:

λt =
(
Ct − ψN θ

tXt

)−ν − µtφCφ−1
t X1−φ

t−1 (4.4)

βẼt

[
µt+1 (1− φ)Cφ

t+1X
−φ
t

]
= −

(
Ct − ψN θ

tXt

)−ν
ψN θ

t + µ (4.5)

λtαZtK
1−α
t Nα−1

t =
(
Ct − ψN θ

tXt

)−ν
θψN θ−1

t Xt (4.6)

λt = βẼtλt+1

{
(1− α)Zt+1K

−α
t+1N

α
t+1 + [1− δ]

}
(4.7)

where µt and λt are the Lagrangian multipliers on the constraints (4.2) and (4.3)

respectively. The description of the agent’s beliefs follows in the next subsection.

The Actual Law of Motion for productivity Zt is the following exogenous process:

zt = ρzzt−1 + εt (4.8)

where zt = log (Zt). The autocorrelation coefficient is ρz, and shock ε has standard

deviation σz and a zero mean.

4.2.2 Adaptive Beliefs

In our model the representative agent observes current period’s variables, including

the capital stock in the next period, Kt+1, which is determined in period t. The agent

has Bounded Rational beliefs with respect to the law of motion of the exogenous

productivity process described by equation (4.8), but is rational otherwise. The

agent’s Perceived Law of Motion for the productivity level is biased:

zt+1 = ρzzt + b̂t + εt+1 (4.9)

where the bias b̂t depends on the current and past realizations of the productiv-

ity shocks, following the Adaptive Beliefs System (Brock and Hommes, 1997) as

described hereunder.
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The expected productivity level of the representative agent is a weighted average of

an optimistic and a pessimistic forecasting rule. The expected productivity level for

the pessimistic and optimistic rule are:

Ẽpes
t zt+1 = ρzzt − g (4.10)

Ẽopt
t zt+1 = ρzzt + g (4.11)

where zt = log (Zt). We set g = σz meaning the bias in each forecasting rule is

one standard deviation, and therefore also limits the maximum bias to one stan-

dard deviation. Note that the bias in each forecasting rule lasts indefinitely, so the

pessimistic expectation for the steady state productivity level is: Ẽpesz̄ = −g
1−ρz .

The weights of each forecasting rule are determined in the same way as Brock and

Hommes (1998). The current period fitness measures are:

τ pest =
(
Ẽpes
t−1zt − zt

)2
= (−g − εt)2 (4.12)

τ optt =
(
Ẽopt
t−1zt − zt

)2
= (g − εt)2 (4.13)

where εt is the productivity shock in period t. The total fitness measure for each

rule i = [pes, opt] is:

M i
t = τi,t + χM i

t−1 (4.14)

where χ is a measure of the memory strength. The weight of each forecasting rule

is:

ωit =
e−γM

i
t

e−γM
pes
t + e−γM

opt
t

(4.15)

where γ is a measure of the ‘intensity of choice’ (De Grauwe, 2011) as it determines

how responsive the weights are to changes in the fitness measure. If γ = 0 each rule

has a weight of 0.5, and if γ =∞ the weight of each rule switches between 0 and 1.

The bias in the Perceived Law of Motion for Total factor Productivity can be written
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Figure 4.1: Bias as function of shock εt

as:

b̂t = g
(
ωoptt − ω

pes
t

)
(4.16)

This bias in the Perceived Law of Motion as described by equation (4.9) is a function

of the shock in this period, εt, and the fitness measures of each forecasting rule in

the previous period, Mpes
t−1 and M opt

t−1, so we can write: b̂t = B
(
εt,M

pes
t−1,M

opt
t−1
)
.

A graph of the bias as a function of the shock is shown in Figure 4.1, where we have

used the benchmark calibration (see Section 4.3) with χ = 0.9567 and γ = 2015. In

the figure it is clear that the marginal effect on expectations depends strongly on the

size of the shock. When the sentiment is neutral (ωopt = 0.5) a marginal increase in

the size of the shock around the zero mean affects the bias strongly. This contrasts

with a small change in the bias as result of a marginal change in the shock if the

level of the shock is already large in absolute value.
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4.2.3 Optimal decision & numerical solution

The agent solves the First Order Conditions of equations (4.4) to (4.7), under the

constraints (4.2) and (4.3), given his beliefs about the exogenous productivity pro-

cess. These beliefs are described in equation (4.9), where the agent assumes that

he will maintain his beliefs about the bias b̂t, similar to the maintained beliefs in

Eusepi and Preston (2011). This means that the Bounded Rational agent’s optimal

decision rule coincides with the optimal decision rule that a Rational Expectations

agent would have if the Actual Law of Motion for productivity was described by

(4.9). Note that this implies that the agent expects the steady state of productivity,

and therewith the steady state of the other variables, to change.

The decision rules of the agent are conditional on the bias, b̂t = B
(
εt,M

pes
t−1,M

opt
t−1
)
.

Given an agent’s bias his decision rules are a function of the remaining state vari-

ables, Dt = [Kt, Zt, Xt−1]. The agent only has to form expectations about the future

values of these three state variables. The decision rules for consumption and hours2

conditional on the bias can then be written as:

Ĉt = C
(
Kt, Zt, Xt−1|b̂t

)
(4.17)

N̂t = N
(
Kt, Zt, Xt−1|b̂t

)
(4.18)

Since we use projection methods it would take a considerable amount of time to

calculate the policy function in each period, as the bias (b̂t) changes3. Instead we

calculate the policy function for a limited number of gridpoints over the range of

possible biases. We use gridpoints j = 1, ..., J , with −g ≤ bj ≤ g. Interpolation

between these gridpoints gives us the policy function for any possible level of the

bias.

2We use projection methods, and have to solve for at least two choice variables, since there are

two Euler equations, equation (4.5) and equation (4.7). We choose to solve for consumption and

hours worked such that we can analytically solve for the other variables.

3De Grauwe (2011) for example recalculates the policy function in every period, but this is only

feasible when the computation time of the decision rule is small.
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We use the Galerkin projection method with a second order Chebyshev polynomial

to obtain the policy functions4. During simulations we draw the shocks εt, and

calculate the bias using equations (4.12) to (4.16). Given the bias and the value

of the other state variables we can calculate consumption and hours work from our

policy functions, which are conditional on the bias as described in equations (4.17)

and (4.18). Together with (4.3) and (4.2) we can calculate all endogenous state

variables in the next period.

4.3 Calibration

We calibrate a Rational Expectations (RE) and Bounded Rational (BR) version of

the model. The calibration consists of choosing the intertemporal rate of substitution

ν, the strength of the wealth effect φ, and the labor supply elasticity θ. The output

elasticity of labor α and the discount factor β are set to the same values as in

Jaimovich and Rebelo (2009, henceforth, JR). The steady state depreciation rate is

set to the standard value of 0.025 per quarter (compared to 0.0125 in JR).

Ideally the persistence parameter ρz of productivity Zt should be set to a value such

that we could match the empirical value of the autocorrelation in output. However,

the autocorrelation of output in our model is too low even for values of ρz close

to 1. For this reason we fix the parameter ρz at a relatively standard value for

quarterly models, namely ρz = 0.95. Since the RE and BR model will differ in

the amplification of productivity shocks we adjust the parameter σz such that the

standard deviation of output is 1.7%, which is the empirical value in a quarterly

model after detrending.

The remaining three parameters (ν, φ, θ) are then set at values that minimize the

sum of the normalized squared errors of three second moments. We restricted the

long run labor supply elasticity to be below 10, meaning the parameter restriction

θ ≥ 1.1. The three targeted second moments are the standard deviation of con-

4We have only used point estimates for productivity in the next period, Ẽtzt+1 = ρzt + b̂t, instead

of Gauss-Hermite nodes that would take full account of the distribution of shocks εt+1.
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Table 4.1: Parameters

RE BR
Labor supply elasticity (θ) 1.1002a 1.1692
Risk aversion (ν) 0.6932 0.7352
Strength of wealth effect (φ) 0.0119 0.0097
Standard deviation shocks (σz) 0.0048 0.0096
Autocorrelation shocks (ρz) 0.9500
Labor share in output (α) 0.6400
Discount factor (β) 0.9850
Depreciation rate (δ) 0.0250
Scalar labour supply (ψ) 1.0000

a This is the lower bound.

sumption relative to the standard deviation of output σc/σy, the relative standard

deviation of labor supply σn/σy, and the relative standard deviation of investment

σi/σy. We also report four contemporaneous correlations, namely the correlation be-

tween output and labor supply, output and consumption, output and Total Factor

Productivity, and consumption and labor supply. The resulting parameter values of

the calibration are given in Table 4.1.

Calibration of Bounded Rationality The parameters γ and χ of the adaptive

beliefs system are set such that the volatility in the weights of each forecasting rule ωi

as in equation (4.15) roughly matches the standard deviation and autocorrelation

coefficient in Consumer Confidence5, which are 15% and 70%, respectively. The

parameters γ and χ will only depend the parameters ρz and σz of the stochastic

productivity process. The result of the calibration of the adaptive beliefs are χ =

0.9567 and γ = 2015. This fixes the two additional parameters of the Bounded

Rational model, so we have no extra degree of freedom in the Bounded Rational

variant of the model.

5Mnemonic USCNFCONQ in Datastream, data from 1970-2006.
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Table 4.2: Business Cycle statistics

Data RE BR
St.d. Y (σy) 0.0170 0.0170 0.0170
Rel. st.d. C (σc/σy) 0.7500 0.6207 0.7423
Rel. st.d. N (σn/σy) 1.1200 0.9893 1.1268
Rel. st.d. I (σi/σy) 2.8500 2.3845 2.8695
Correlation Y and N 0.8600 0.9707 0.7359
Correlation Y and C 0.6600 0.9686 0.9353
Correlation Y and Z 0.7800 0.7977 0.7626
Correlation C and N 0.7300 0.8939 0.7572

Only the first four rows are targeted in the calibra-

tion.

4.4 Results

The results are obtained using Galerkin projection with second order Chebyshev

polynomials as an approximation of the decision rules for consumption and labor

supply, as in equation (4.17) and equation (4.18) respectively. All series are obtained

after detrending with the Hodrick-Prescott filter with the smoothing parameter set

to λ = 1600 as is standard for a quarterly model. We use 100 simulations with 1500

quarters each of which we omit the first 500 observations.

The results in terms of Business Cycle statistics are given in Table 4.2. This clearly

shows that the Bounded Rational model almost perfectly matches the targeted mo-

ments, although the model has the same degrees of freedom as the Rational Expec-

tations model. In addition, the Bounded Rational model matches the correlation

between consumption and hours worked much better. Also interesting is that the

Bounded Rational model results in a much lower correlation between output and

hours worked, which is close to one in most RBC models with (close to) Rational

Expectations (see for example Eusepi and Preston, 2011, Table 2 and Table 3).

To explain the very good fit of the Bounded Rational model to the data we first

consider the Impulse Response Functions (IRFs) to a shock in Total Factor Produc-

tivity of one standard deviation. These IRFs are are shown in Figure 4.2. The figure

shows that we get a negative response of hours worked, output and consumption to

a TFP shock starting at the steady state. The IRFs seem to imply a negative cor-
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Figure 4.2: IRFs to productivity shock, starting at steady state

relation between Total Factor Productivity and output, which is at odds with the

positive correlation as reported in Table 4.2. The explanation for both the positive

correlation between TFP and output and the better fit of the data is combination

of three factors.

The first factor that explains the good fit of the model is the strength of the wealth

effect of expected future productivity levels. Figure 4.4 shows that the decision rule

for hours worked is not monotonic in the TFP shock εt. For any of the Bounded

Rational decision rules there is a section where an increase in the TFP shock reduces

hours worked, because the wealth effect of higher expected productivity dominates

the substitution effect. In other words at those points the effect of higher expected

productivity, which reduces labor supply as agents expect to get richer in the future,

is stronger than the increase in hours worked due to the immediate increase in the

wage. For a neutral sentiment (weight of the optimistic rule ωopt = 0.5) the wealth

effect dominates for shocks around the zero mean.
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Figure 4.3: Histogram of weight of optimistic forecasting rule, ωopt

This brings us to the second factor that contributes to the near perfect fit, which

is the high standard deviation in the sentiment, corresponding to the high standard

deviation in consumer confidence. The high standard deviation in sentiment means

that the agent is either very pessimistic or very optimistic most of the time as shown

in Figure 4.3. As a consequence the marginal effect of a TFP shock on expected

productivity is relatively weak for average shock sizes as shown in Figure 4.1. That

figure shows that with a very pessimistic sentiment (ωopt = 0.025) the change in the

bias is relatively small for any TFP shock smaller than roughly plus two standard

deviations, meaning about 97.5% of all shocks. The same is true for a very optimistic

sentiment: in that case the marginal effect of a TFP shock on expectations is small

for any shock larger than minus two standard deviations. The marginal effect of TFP

shocks on expectations will thus be small most of the time in our Bounded Rational

economy. As a result agents are in the upward sloping part of the decision rules for

shocks of average size as demonstrated in Figure 4.4. This means the substitution

effect will dominate on average, which adds to the positive correlation between TFP

and output as reported in Table 4.2.
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Figure 4.4: Decision rule for hours worked as function of TFP shock

A third factor that contributes to the positive correlation is the substitution effect

of Total Factor Productivity and capital. In pessimistic (optimistic) states the TFP

and capital levels are below (above) the average, which shifts the policy function

for hours worked down (up) as is shown in the upper (lower) panel of Figure 4.4.

In the upper panel all policy functions are shifted down as a lower capital stock

and lower productivity level6 reduce the wage and therewith the labor supply7.

This substitution effect shifts the labor supply function in the same direction as

Total Factor Productivity and the capital stock, and adds to the positive average

correlation between Total Factor Productivity and output. Together these factors

result in a positive correlation between TFP and output and the good fit of the

6The starting values of the state variables in ‘Bust’ and ‘Boom’ are the averages (of the state

variables) at the points that are closest to ωopt = 0.025 for the ‘Bust’ and ωopt = 0.975 for the

‘Boom’. The state variables K, Z and X will all be below (above) their steady state levels in a

‘Bust’ (‘Boom’).

7 The effect of the level of TFP and capital dominate the effect of habit variable X that works in

the opposite direction.
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Figure 4.5: Simulation Rational Expectations

second moments.

To conclude this section we look at a simulation of the Rational Expectations model

and the Bounded Rational model which are shown in Figure 4.5 and Figure 4.6,

respectively. The first difference between the two models is that the amplification of

TFP shocks is much stronger in the Rational Expectations model, which could also

be concluded from the calibration, since the standard deviation of the productivity

shocks of the RE model is only half the size of the shocks in the BR model. This

difference in amplification is clearly visible in the second panel of Figure 4.5 and 4.6,

where output tracks TFP quite closely in the Bounded Rational model, but output

is much more volatile in the Rational Expectations model.

Interestingly the correlation between TFP and output is almost the same in the

RE model (0.7977) and the Bounded Rational model (0.7626), although the behav-

ior underlying these correlations is quite different. In the RE model the positive

correlation seems to hold in every period as shown in Figure 4.5. However, in the
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Figure 4.6: Simulation Bounded Rational expectations

BR model the positive correlation does not hold in every period, although we see

positive co-movement between output and TFP in most periods in Figure 4.6. The

exceptions are the periods where sentiment is close to neutral. For example, we

see output and TFP moving in different directions in the first periods, just after

period 20, and around period 70. In all these periods the fraction of the optimistic

rule was close to a half as shown in the last panel. This is in accordance with our

above analysis of Figure 4.4: when we are in a boom or bust a positive correlation

between TFP and hours worked is more likely, but around the steady state with

neutral sentiment a negative correlation is more likely.

4.5 Sensitivity Analysis

The benchmark calibration above almost perfectly matched the targeted second

moments, but also resulted in negative co-movement between TFP and output for
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Table 4.3: Parameters with σcc = 0.075

RE BR
Labor supply elasticity (θ) 1.1002a 1.1128
Risk aversion (ν) 0.6932 0.7207
Strength of wealth effect (φ) 0.01191 0.00015
Standard deviation shocks (σa) 0.0048 0.0057
Autocorrelation shocks (ρz) 0.9500
Labor share in output (α) 0.6400
Discount factor (β) 0.9850
Depreciation rate (δ) 0.0250
Scalar labour supply (ψ) 1.0000

a This is the lower bound.

Table 4.4: Business Cycle statistics with σcc = 0.075

Data RE BR
St.d. Y (σy) 0.0170 0.0170 0.0170
Rel. st.d. C (σc/σy) 0.7500 0.6207 0.6252
Rel. st.d. N (σn/σy) 1.1200 0.9893 0.8866
Rel. st.d. I (σi/σy) 2.8500 2.3845 2.3563
Correlation Y and N 0.8600 0.9707 0.9997
Correlation Y and C 0.6600 0.9686 0.9899
Correlation Y and Z 0.7800 0.7977 0.6903
Correlation C and N 0.7300 0.8939 0.9893

Only the first four rows are targeted in the calibra-

tion.

certain states of the economy, even though the average correlation between TFP and

output is very close to it’s empirical value. Crucial for the good fit of the second

moments and the correlation coefficients is that the economy spends most of it’s

time in either a pessimistic or optimistic state, which matches the strong swings in

consumer confidence observed in the data. This section tests how well the Bounded

Rational model can match the second moments when we fit the model to a lower

standard deviation of consumer confidence.

We chose to set the standard deviation of Consumer Confidence to σcc = 7.5%

instead of 15% in the benchmark calibration. This results in the same intensity of

choice γ = 2015 as in the benchmark calibration, but a weaker memory strength

with χ = 0.9155 compared to χ = 0.9567 in the benchmark calibration. A weaker

memory strength means that expectations adjust faster to current shocks. The
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Figure 4.7: IRFs to productivity shock with σcc = 0.075

other parameters and results of the calibration are given in Table 4.3 and 4.4, which

also repeats the parameters and statistics of the Rational Expectations variant for

comparison.

The Business Cycle statistics with Bounded Rationality in this calibration do not

improve much compared to the RE version. This alternative calibration results in

φ close to 0, so preferences are close to GHH, meaning there is almost no wealth

effect of changes in expected productivity. This is also reflected in the IRFs at the

steady state in Figure 4.7, which show a positive correlation between productivity

and output, hours and consumption. This positive correlation also holds for both

more pessimistic and optimistic sentiments, since the wealth effect is muted. In

addition, the lower standard deviation of Consumer Confidence ensures that the

economy is more often in states with a relatively neutral bias as shown in Figure

4.8.
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Figure 4.8: Histogram of weight of optimistic forecasting rule with σcc = 0.075

4.6 Conclusion

We have shown how an extrapolative bias with respect to the productivity shocks

can improve business cycle statistics compared to a Rational Expectations model.

We were able to match the relative standard deviation of hours, consumption and

investment almost perfectly. At the same time we brought down the contemporane-

ous correlation between output and hours worked, which is close to one in standard

RBC models with (close to) Rational Expectations, even when the model allows

for variations in the strength of the wealth effect. To a lesser extent the Bounded

Rational model also results in a contemporaneous correlation between consumption

and output, and between consumption and hours that are closer to their empirical

values.

Two factors are crucial for this near perfect fit of the second moments of the Bounded

Rational model. The first factor is the non-monotonicity of the decision rules as a

result of the strong wealth effect of changes in expected productivity. The second

factor is that sentiment is either very pessimistic or very optimistic in most states of
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the economy, which means average sized productivity shocks do not shift expecta-

tions too much. Apparently the calibration was able to control the wealth effect to

such an extend that it resulted in an almost perfectly match of the second moments.

When the standard deviation of the sentiment is halved the Bounded Rational model

performs about as good as the Rational Expectations version of the model.
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Chapter 5

Summary

The three essays of this thesis all make use of dynamic optimization techniques.

The first two essays deal with life-cycle models, and are thus finite horizon problems

which can be solved using backward iteration. The third essay concerns an infinite

horizon model for which we have used projection methods as the solution method.

The first essay called ‘Solving Life Cycle Models’ analyzes four different numerical

solution methods for solving life-cycle models with backward iteration. We use

interpolation methods that explicitly preserve the monotonicity and concavity of

the Value Function, such that the optimization problem has a unique solution. To

be able to calculate the absolute errors of each numerical method we use a simple

life-cycle model in partial equilibrium for which we can also calculate the analytical

solution.

Three of the numerical methods that we evaluate use Lagrangian data for the in-

terpolation of the Value Function. This means the interpolation method only uses

information on the level of the Value Function at the gridpoints. The three methods

that rely on Lagrangian data are Golden Section Search, Constrained Optimization,

and Solving First Order Conditions.

Finally we also analyze a numerical method that relies on Hermite data, which

means the interpolation method uses information on both the level and the slope

of the Value Function. The information on the slope is obtained by adding an
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extra constraint to the optimization problem. The Lagrangian multiplier on this

constraint will equal the slope of the Value Function.

The conclusion of the evaluation is that Solving First Order Conditions will be the

most efficient method. A simple, but robust alternative is the Golden Section Search.

However, both methods will only be efficient when the boundaries of the choice

variable can be determined ex ante. When non-linear constraints apply Constrained

Optimization will be more efficient. In that case the use of Hermite data can possibly

add to the accuracy without increasing computation times much.

The second essay ‘Optimal Age-Dependent Unemployment Insurance’ evaluates what

the optimal level of unemployment benefits is, when these benefits are allowed to

depend linearly on age. The optimal unemployment benefits depend on the a trade

off between insurance and moral hazard as higher unemployment benefits will on

the one hand lower income risk, but on the other hand induce longer unemployment

durations as people have less incentives to look for a job. To study how this trade off

is affected by age we use a life-cycle model with job search and wealth accumulation.

The model is calibrated extensively on the following measures of the U.S. econ-

omy: the average unemployment rate, the average unemployment duration plus the

increase in the average unemployment duration per year of age, the elasticity of un-

employment duration with respect to the level of unemployment benefits, and finally

the consumption drop when someone becomes unemployed. To match these targets

we calibrate for the job loss probability, the matching efficiency of search effort (with

a linear trend in age), the disutility of working, and finally the adjustment costs of

wealth, which apply when an agent dissaves.

We evaluate three different unemployment systems, which are the current system

with a replacement rate of 50%, an optimal constant replacement rate, and an

optimal age-dependent system, where benefits depend linearly on age. The model

results indicate that it is optimal to target unemployment benefits at young people.

Compared to the system with an optimal constant replacement rate the increase in

welfare with age-dependent benefits is about 5-15% of the Net Present Value of all

unemployment insurance benefits.
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In the third essay ‘Adaptive Beliefs in a Real Business Cycle Model’ we investigate

how ‘animal spirits’ affect the business cycle statistics of a relatively standard real

macroeconomic model. The ‘animal spirits’ are implemented as an extrapolative

bias with respect to future productivity levels. This extrapolative bias means that

recent positive changes in productivity will result in higher expected productivity

in the future.

We calibrate the standard deviation and autocorrelation of these adaptive beliefs to

the standard deviation and autocorrelation of a measure of consumer confidence. As

a result the model with adaptive beliefs has the same degrees of freedom as the model

with Rational Expectations. When we calibrate both model versions the standard

Rational Expectations variant can not match the business cycle statistics well, but

the version with adaptive beliefs can almost perfectly match the targeted business

cycle statistics. This result, however, depends crucially on the high variance of the

‘animal spirits’. When we lower the standard deviation of the adaptive beliefs the

business cycle statistics are similar to those of the Rational Expectations version.
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