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A new, weakly damped, transverse electromagnetic mode is predicted in graphene. The mode
frequency ! lies in the window 1:667< @!=� < 2, where � is the chemical potential, and can be tuned
from radio waves to the infrared by changing the density of charge carriers through a gate voltage.
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In the past two years, a great deal of attention has been
attracted by the discovery of graphene, a truly two-
dimensional (2D) electronic system [1,2] (for recent re-
views see Refs. [3,4]). Graphene is a monolayer of carbon
atoms, and the band structure of electrons in graphene
consists of six Dirac cones at the corners of the hexagon-
shaped Brillouin zone [5,6], with the massless, linear
electron-hole dispersion with the effective ‘‘velocity of
light’’ V � 108 cm=s. The special spectrum of the charge
carriers leads to a number of interesting transport proper-
ties, which have been intensively studied in the literature,
see, e.g., Refs. [7–21] and review articles [3,4].

Electrodynamic properties of graphene have been
studied in Refs. [11–14,22–30]. Frequency-dependent
conductivity [11,12,22–24] and collective excitations of
the graphene layer—plasmons [13,14,25,26], thermo-
plasma polaritons [27]—have been theoretically investi-
gated. It has been shown that the specific band structure of
graphene leads to a certain modification of the plasmon and
plasmon-polariton spectra, as compared to conventional
2D electron systems with the parabolic dispersion of
electrons.

In this Letter we show that the Dirac spectrum of elec-
trons leads to a radically new feature of the electrodynamic
response of the electron-hole plasma in graphene, as com-
pared to conventional electron systems. We predict the
existence of a transverse (TE) electromagnetic mode in
graphene, the mode which cannot exist in systems with the
parabolic electron dispersion. The new mode propagates
along the graphene layer with the velocity close to the
velocity of light, has a weak damping, and its frequency
is tunable across a broad frequency range from radio waves
to the infrared. These properties may have a strong poten-
tial for future electronic and optoelectronic applications of
graphene.

To explain the essence of our finding, we briefly discuss
the nature of electromagnetic modes in conventional elec-
tronic systems. Isotropic and uniform three-dimensional
plasmas can support (in zero magnetic field) both longitu-
dinal (plasmons) and transverse electromagnetic modes.
The electric field vector in the longitudinal (transverse)
wave is parallel (perpendicular) to the wave vector. In the
2D electron gas, however, only the longitudinal (more

exactly, transverse magnetic, TM) modes—2D plasmons
and plasmon-polaritons—may exist under standard ex-
perimental conditions [31]. The spectrum of electromag-
netic modes, propagating along and localized near the 2D
electron gas layer, has the form
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for the TE waves [33]; here ��!� is the local dynamic
conductivity of the 2D gas and c is the velocity of light. As
seen from (1) and (2), the TM (TE) modes may exist if
and only if the imaginary part of ��!� is positive (nega-
tive). In conventional 2D electron systems, realized, for
instance, in GaAs=AlGaAs quantum-well structures, the
conductivity can be described by the Drude model ��!� �
inse2=m�!� i��, where ns, e, m, and � are the density,
the electric charge, the effective mass, and the scattering
rate of 2D electrons, respectively. As �00�!�> 0, only the
TM waves (plasmons, plasmon-polaritons) can propagate
in such structures.

In graphene with the massless Dirac form of the elec-
tron/hole dispersion the situations is different. To demon-
strate this, we begin with the Hamiltonian Ĥ � V��p̂�,
which determines the energy spectrum of charge carriers in
the electron (l � 2) and hole (l � 1) bands,

 Ekl � ��1�l@Vk; l � 1; 2; (3)

and the corresponding wave functions jkli. Here � �
�x; y�, �� are Pauli matrixes, p̂� is the momentum opera-

tor, and k � �kx; ky�, k �
����������������
k2
x � k2

y

q
is the wave vector.

Using the self-consistent-field approach [34] (alternatively,
the Kubo formalism [8], or the random-phase approxima-
tion [35]) we calculate the high-frequency conductivity of
the system����!� � ��!����. Scattering is ignored (i.e.,
� � 0) here. The conductivity consists of the intraband and
the interband contributions [12,22],
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where f�Ekl� is the Fermi distribution function, v̂� � V��
is the velocity operator, and S is the sample area. In the gate
controlled graphene systems, where the density of charge
carriers can be tuned by the gate voltage, we obtain that the
intraband conductivity (4) at T=�! 0 assumes the Drude-
like form,

 �intra�!� �
inse

2V2

�!� i0��
�
e2gsgv

16@

4i
��

; (6)

while the interband contribution (5) gives
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see Fig. 1. Here � � @!=�, � is the chemical potential,
ns � gsgv�

2=4�@2V2 is the density of electrons at T � 0,
and gs � 2 and gv � 2 are the spin and valley degener-
acies in graphene (six Dirac cones give the valley degen-
eracy gv � 2 because only one third of each cone belongs
to the first Brillouin zone [6]).

As seen from Eqs. (6) and (7), as well as from Fig. 1, the
imaginary part of �intra�!� is positive, like in the standard
2D electron systems, so that the intraband contribution

alone could not provide the conditions of the TE-mode
existence. The imaginary part of the interband contribu-
tion, however, is negative and diverges logarithmically at
�! 2. This divergency is associated with the steplike
behavior of the real part �0inter�!�, which describes the
interband absorption of radiation at @!> 2�. Using (6)
and (7), the TE-mode dispersion (2) can now be written as
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where Q � @cq=�. Notice that apart from the dimension-
less wave vector Q and the frequency �, Eq. (8) depends
only on the fine structure constant � � e2=@c. The TE
mode (8) does not decay at T � 0 and exists in the window
1:667<�< 2, where the term in large parentheses in (8)
is positive. To give a numerical example, at ns ’
6� 1012 cm�2 the TE mode should exist in the window
115 THz & f & 140 THz, at ns ’ 1011 cm�2 —in the
window 15 THz & f & 18 THz, and so on. Choosing an
appropriate value of the gate voltage, one can tune the TE
mode to a desired frequency range. This may be useful in
designing devices for infrared, terahertz, and microwave
electronics. The TM mode (2D plasmon-polariton) does
not exist at 1:667<�< 2; its dispersion relation (1) has
real solutions only at �< 1:667.

Figure 2 illustrates the dependence of
�������������������
Q2 ��2

p
on the

frequency �, Eq. (8). Because of the small factor � �
e2=@c in the right-hand side of (8), the deviation of the
wave vector Q from the frequency � in the wave is small
as compared to the values of Q and � themselves. This
means that the TE mode propagates along the 2D graphene
layer (x direction) with the velocity close to the velocity of
light, ! & cq, and that the localization length of the wave
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FIG. 1 (color online). The dynamic conductivity of the gra-
phene layer, in units e2gsgv=16@, as a function of the frequency
� � @!=� in the collisionless limit at zero temperature T=� �
0. Imaginary and real parts of the intraband and interband
contributions, as well as their sum (the total conductivity) are
shown.
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as a function of the dimen-

sionless frequency � for the TE mode.
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in the perpendicular (z) direction is much larger than its
wavelength in the x direction.

The frequency dependence of the conductivity at finite
temperature is shown in Fig. 3. At T > 0, the real part
�0�!� becomes finite at �< 2, and the TE mode acquires
a finite damping, Q � Q0 � iQ00. This damping, however,
is very small. Using that �� 1 we get from Eq. (8)
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where ~� is the normalized conductivity of the layer, � �
�e2gsgv=16@�~�. Figure 4 exhibits the factor ~�0�!��
	� ~�00�!�
 as a function of � at different temperatures.
One sees that ~�0�!�	�~�00�!�
 is smaller than 1 and hence
that q00=q0 does not exceed 10�4 even at T ’ 0:1�. At the

density ns ’ 6� 1012 cm�2 the Fermi energy � corre-
sponds to T ’ 3000 K in graphene, so the TE mode should
be easily observable at room temperature.

To conclude, we have predicted a new transverse electric
mode in graphene. The existence of the mode is directly
related to the linear ‘‘relativistic’’ spectrum of charge
carriers in graphene; in a conventional system of 2D elec-
trons with the parabolic dispersion such a mode cannot ex-
ist. The mode frequency is widely tunable across the range
from radio waves to infrared frequencies, depending on the
density of electrons or holes in the system. The damp-
ing of the mode is very weak even at room temperatures.
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FIG. 4 (color online). The factor ~�0�!�	�~�00�!�
 from Eq. (9)
as a function of � � @!=� at finite temperatures.
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FIG. 3 (color online). The real and imaginary parts of the
dynamic conductivity of graphene, in units e2gsgv=16@, as a
function of frequency � � @!=� at finite temperatures.
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