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A dense Bose gas with hard-core interaction is considered in an optical lattice. We study the phase diagram
in terms of a special mean-field theory that describes a Bose-Einstein condensate and a Mott insulator with a
single particle per lattice site for zero as well as for nonzero temperatures. We calculate the densities, the
excitation spectrum, and the static structure factor for each of these phases.
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I. INTRODUCTION

Optical lattices have opened an exciting field of physics.
We are expecting new phenomena in comparison with con-
tinuous systems due to the lack of Galilean invariance.
Among the most obvious consequences of the lattice struc-
ture is the formation of lattice-commensurate ground states
like the Mott insulating phase. The latter was observed in
experiments �1,2�.

Light scattering on a Bose gas is strongly affected by the
nature of the quasiparticles �3,4�. This provides a useful ex-
perimental tool to distinguish between different phases of the
Bose gas. We expect, for instance, that light scattering by the
gapless quasiparticle spectrum of the Bose-Einstein conden-
sate �BEC� is quite different from light scattering in the gap-
ful quasiparticle spectrum of the Mott insulator �MI�. A
physical quantity that is directly related to light scattering is
the structure factor �4–9� which was measured in the case of
a BEC �3�. This is also of interest in the Mott insulating
phase �10,11�. In this paper we will study the static structure
factor. Of particular interest is its behavior near the transition
from the BEC to the MI. We will also study the phases and
phase transitions for zero temperature as well as for nonzero
temperature. For this purpose we will consider here a hard-
core Bose gas in an optical lattice. Our model can be under-
stood as a projection of the more general Bose-Hubbard
model in the vicinity of those points of the phase diagram,
where two adjacent Mott lobes meet �Fig. 1�. This is similar
to the picture which was applied to the tips of the Mott lobes
in a recent paper by Huber et al. �8�. It is based on the
following idea. The number of bosons per site is fixed in the
Mott state. For adjacent Mott lobes this means that the cor-
responding Mott states differ exactly by one boson per site.
Now we consider two adjacent lobes with n and n+1 �n
�0 bosons per site�, respectively, and assume that the
chemical potential is fixed such that the ground state is the
Mott state with n particles per site. Low-energy excitations
of this state for a grand-canonical system are states where
one or a few sites �let us say k�1 sites� have n+1 bosons,
all other sites have n bosons. The k excessive bosons are
relatively free to move from site to site on top of the n Mott
state. Therefore the physics of these excitations can be de-
scribed approximately by the tunneling of the k excessive
bosons alone. Due to the repulsion of order U, assumed to be
not too small, it is unlikely that a site with n+2 bosons is
created. Consequently, these excessive bosons form a hard-
core Bose gas.

A hard-core boson can be represented by a pair of locally
coupled spin-1/2 fermions. Here we will use the model in-
troduced to study the dissociation of bosonic molecules into
pairs of spin-1/2 fermionic atoms �12�. A functional integral
with a two-component complex field was derived for this
model that allowed a mean-field approximation. The latter
revealed a zero-temperature phase diagram for a grand-
canonical ensemble of bosons with three phases: an empty
phase, a BEC, and a MI. This result is remarkable since
previous mean-field calculations, using the same type of fer-
mionic model as the starting point �e.g., using an N→� limit
�13�� did not give the entire phase diagram by ignoring the
MI phase. Apparently, the form of the phase diagram de-
pends crucially on the type of Hubbard-Stratonovich trans-
formation that replaces the fermionic �i.e., Grassmann� fields
by bosonic �i.e., complex� fields.

The structure of this paper is as follows. In Sec. II we
discuss briefly the model and some related physical quanti-
ties. A mean-field approximation is used in Sec. III, where
we derive the phase diagram. Gaussian fluctuations around
the mean-field solution and its consequences are considered
in Sec. IV. In this section we calculate the static structure
factor, and in Sec. V we discuss our results. Details of our
calculations are given in Appendixes A and B.

II. THE MODEL

A hard-core Bose gas is considered on a d-dimensional
hypercubic lattice with N sites. Bosons can tunnel between
these sites from a lattice site r to any of the nearest-neighbor

0.0 0.1 0.2

0

1

2

3

µ/U

J/U

empty

n = 1

n = 2

n = 3

BEC

0

0

µ

J

MI

MI

BEC

FIG. 1. A projection of the phase diagram of the Bose-Hubbard
model in the vicinity of the point, where the two Mott lobes meet. �
and J are in arbitrary energy units after the projection.
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sites r�. Each boson consists of two fermions. Single fermi-
ons in this model cannot exist �i.e., in contrast to the model
studied in Ref. �12� we do not allow dissociation of the
bosonic molecules.� The Hamiltonian of the d-dimensional
system is

Ĥ = −
J

2d
�

�r,r��

cr↑
† cr�↑cr↓

† cr�↓ − ��
r

�
�=↑↓

cr�
† cr�, �1�

where the sum in the first term on the right-hand side is
restricted to nearest neighbors, and cr�

† and cr� are the cre-
ation and annihilation operators of the fermion with spin � at
site r, respectively. The first term describes tunneling of local
fermion pairs in the optical lattice between nearest-neighbor
sites with rate J. The chemical potential � controls the num-
ber of particles in a grand-canonical ensemble. The latter is
given by the partition function

Z = Tr e−�Ĥ. �2�

The partition function can also be written in terms of a
Grassmann integral �14� as

Z =� e−A��,�̄�D��,�̄� �3�

with imaginary time-dependent conjugated Grassmann fields

�, �̄ and the action

A = �
0

�

dt	�
r

��r
1�t�̄r

1 + �r
2�t�̄r

2� − ��
r

��r
1�̄r

1 + �r
2�̄r

2�

−
J

2d
�

�r,r��

�r
1�̄r�

1 �r
2�̄r�

2 
 . �4�

Applying the concept of linear response to the quasiparti-
cles, we obtain the dynamic structure factor with the defini-
tion �5�

S�q,�� = �
n,m

e−���m��n�	̂q
† − �	̂q

†��m��2
��� − ��n,m� , �5�

where 	q
† is the Fourier transform of the atomic density op-

erator at wave vector q and �n,m is the frequency difference
between energy level m and n. We treat an excited state n as
one of the quasiparticles energy levels with ��n,0=�n within
our approximation. Then the static structure factor is defined
as �5�

S�q� =
�

N
� S�q,��d� =

1

N
��	q	−q� − ��	q��2� . �6�

For small but nonzero T, when quasiparticles can be treated
as noninteracting within the accuracy of the Bogoliubov ap-
proach for the weakly interacting Bose gas modified for an
optical lattice we get �5�

S�q� =
Jgq

�q
coth

��q

2
, �7�

where

gq = 1 −
1

d
�
i=1

d

cos qi. �8�

For T=0

S�q� =
Jgq

�q
, �9�

where �q is the quasiparticle spectrum.
This result was obtained within the mean-field approxi-

mation to the weakly interacting Bose gas. It is interesting to
compare this result with the result obtained by a direct cal-
culation for our model within our mean-field approach. Us-
ing Eq. �6� the static structure factor can be calculated as �15�

S�q� =
1

N
�
r,r�

Cr,r�e
iq�r−r��, �10�

where the truncated density-density correlation function is

Crr� = �nrnr�� − �nr��nr�� . �11�

Introducing spatial coordinates p= �r , t the static structure
factor reads

S�q� �
1

�N
�
r,r�
�

0

�

dt�
0

�

dt�Crt,r�t�e
iq�r−r��. �12�

This expression will be studied within mean-field theory and
Gaussian fluctuations.

III. MEAN-FIELD APPROXIMATION: PHASE DIAGRAM

The mean-field approximation cannot be directly applied
to the Grassmann fields. Therefore, we perform a Hubbard-
Stratonovich transformation in order to replace the Grass-
mann fields by complex fields. This leads to an effective
action depending on complex fields. As we already men-
tioned in the Introduction, the form of the Hubbard-
Stratonovich transformation is not unique. Here we use the
version given in Ref. �12� because it provides the proper
phase diagram. First of all we decouple the fourth order term
in the action using the identity

exp� J

2d
�

�r,r��

�r
1�̄r�

1 �r
2�̄r�

2 �
=� �d���d�exp�− �

r,r�

�̄rv̂r,r�
−1 �r� −

1

2J
�

r

̄rr

− �
r

�i�r + r��r,1�r,2 − �
r

�i�̄r + ̄r��̄r,1�̄r,2� .

�13�

Summation over t in the last formula is implicitly assumed.
In this formula the expression

v̂r,r� = J� 1

2d

�r−r��,1 + 2
r,r�� �14�

was introduced. Moreover, the introduction of the auxiliary
field  makes the matrix v̂ positive definite.
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A subsequent integration over Grassmann fields leads to

Aeff = �
0

�

dt��
r,r�

�̄rv̂r,r�
−1 �r� +

1

2J
�

r

̄rr − ln det Ĝ−1�
�15�

with

Ĝ−1 = �− i� −  �� + �

�� − � i�̄ + ̄
�, v̂ = J��̂ + 21̂� ,

�̂r,r� = �1/2d , r,r� − nearest neighbors

0, otherwise.

The partition function now reads

Z =� e−Aeff��,�D��,� . �16�

In the following, we make the replacement �→� /2, such
that � plays the role of the chemical potential of the mol-
ecules. We can perform a saddle-point integration to calcu-
late physical quantities. From a physical point of view we
have to minimize our action to get the classical trajectory
�i.e., the macroscopic wave function� of our system. Fluctua-
tions around this trajectory are caused by thermal and quan-
tum effects. The mean-field solution characterizes the con-
densed phase, in which ��� has a nonzero value. Fluctuations
describe quasiparticle excitations above the condensate. In
order to proceed within a mean-field approximation we as-
sume that quantum fluctuations are small.

Minimization of the action gives us two coupled linear
equations between the complex fields � and :


Aeff = 0 ⇒ �� = 3JG�� − i� ,

 = − i2JG�� − i� ,
�17�

where

G =
1

�
�
�n

1

���2/9 + �2/4 + �n
2 .

A solution of these equations is

G =
1

J
,  = −

2i�

3
. �18�

In these equations �n= �2n+1�� /� are the Matsubara fre-
quencies of the fermions. This leads to �we perform the res-
caling 4 ���2 /9→ ���2�

J = ��2 + ���2� e���2+���2/2 + 1

e���2+���2/2 − 1
� �19�

and within the saddle-point integration we obtain the expres-
sion for the local density

n =
1

�N
� ln Z

��
=

1

2
+

1

2

�

��2 + ���2
� e���2+���2/2 − 1

e���2+���2/2 + 1
� .

�20�

It should be noticed that this expression for J=0 and T=0
gives a correct result, which can alone be obtained by direct
calculations. The corresponding phase diagram is depicted in
Figs. 2 and 3 with the phase boundary given by �=0.

With the result given in Eq. �20� we can evaluate the local
compressibility:

kr = � �nr

��
�

T

. �21�

For T=0 and small ���2 it reads

kr �
���2

2�3 . �22�

The local compressibility is not divergent within our mean-
field approximation, which is typical in the case of optical
lattices �16–18�.

We see that this model gives three phases. It can describe
both the dilute regime and the dense regime, as a conse-
quence we have the empty phase along with the MI phase.

A few words about the type of phase transitions. Near the
phase transition the order parameter is small, so that we may
apply a perturbative expansion:
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FIG. 2. Phase diagram for kBT=0. � and J are in arbitrary
energy units.
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�23�

The first term can be negative, such that the order parameter
may differ from zero. The order parameter vanishes continu-
ously indicating that we have a second order phase transi-
tion.

IV. GAUSSIAN FLUCTUATIONS AROUND
MEAN-FIELD SOLUTION

The complex fields �x and x are expected to fluctuate
about the SP solution due to thermal and quantum effects.

Denote �= i�+ and �̄= i�̄+ ̄, then

Ĝ−1 = Ĝ0
−1 + �− 
� 0

0 
�̄
� , �24�

where

Ĝ0
−1 = � − �0 �� + �

�� − � �̄0
� .

Applying the Taylor expansion ln�1+x�=x−x2 /2+¯ we get

ln det Ĝ−1 = tr ln Ĝ−1

= tr ln	Ĝ0
−1 + �− 
� 0

0 
�̄
�


� tr ln Ĝ0
−1 −

1

2
tr	Ĝ0�− 
� 0

0 
�̄
�
2

.

�25�

Calculating the trace in the p= �q ,� representation we get

Z �� D�
��exp�− 
Aeff� , �26�

where 
Aeff is given in Appendix A. This has the form of an

inverse Green’s function Ĝ−1 with imaginary time for quasi-
particles, which is described by fields 
�. By applying the
spectral representation of the Green’s function we can iden-

tify the poles of function Ĝ, namely i� with the excitation
spectrum of the quasiparticles. The exact solution in the con-
densed phase is

�q = �gq�J2 − �2� + gq
2�2. �27�

In the dilute regime, where �+J is small, and for small q we
get the Bogolubov spectrum with an effective mass of the
bosons �1/J and sound velocity ��2J�̃ �we used �̃=J
+��. This has the same form as the quasiparticle spectrum
obtained in �13�.

In the empty phase and in the MI phase we have excita-
tions with a gap:

�q = ��� − J + Jgq. �28�

The symmetric form of the results for the MI phase and for
the empty phase is due to the particle-hole symmetry of our
model.

In the dilute regime �small �̃=J+�� and for low tempera-
tures, including fluctuations, we obtain

n0 = n − �
q�0

nq � �̃� dq

Jgq
− �kBT�3/2� d3q

�2��3

1

egq − 1
.

�29�

This result is in good agreement with a weakly interacting
Bose gas with an effective chemical potential �̃ �19�.

A. Quantum fluctuations versus thermal fluctuations

By defining the condensed density in the following way,

no = lim
�r−r��→�

�cr↑
† cr�↑cr↓

† cr�↓� = lim
�r−r��→�

��r
1�̄r�

1 �r
2�̄r�

2 � ,

we arrive at the expression for the condensed density, which
can be calculated as

lim
�r−r��→�

�
0

�

dt�
0

�

dt�

�� − �rt�̄r�t�

�− �t
2 + �2/4 − �rt�̄rt��− �t�

2 + �2/4 − �r�t��̄r�t��
� .

Then fluctuating fields �=�0+
�, expanding the above ex-
pression up to the second order of 
�, and using the Green’s
function given in Appendix A, we arrive at

no =
�J2 − �2�

4J2 + 
no, �30�

where the correction due to the quantum fluctuations to the
mean-field result is


no = −
�J2 − �2��2

J3 � ddk

�2��d

Bk
2gk

�k
+

�J2 − �2�
4J3 � ddk

�2��dBk�k

−
�J2 − �2�2

4J3 � ddk

�2��d

Bk
2

�k

+
3�J2 − �2�2�2

4J5 � ddk

�2��d

Bk
2gk

�k
.

The main correction due to the thermal fluctuations are al-
ready included in our mean-field theory, where the con-
densed density is given by

no =
���2/4

J2 , �31�

and ���2 can be determined from Eq. �19�.
The effect of quantum fluctuations and thermal fluctua-

tions is depicted in Fig. 4. We see that both of them lead to a
depletion of the condensate, but the quantum depletion alone
does not change the transition points.
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B. Static structure factor

The static structure factor is a Fourier transform of the
truncated density-density correlation function. The latter
contains the nonlocal term

��r
1�r

2�̄r
1�̄r

2�r�
1 �r�

2 �̄r�
1 �̄r�

2 �

= �
0

�

dt�
0

�

dt�

�� 1

�− �rt�̄rt − �t
2 + �2/4��− �r�t��̄r�t� − �t�

2 + �2/4�� .

�32�

In mean-field approximation the truncated density-density
correlation function should vanish �12�. Taking into account

fluctuations, we write again �=�0+
�, �̄= �̄0+
�̄ and sub-
stitute it into Eq. �32�. Then expanding up to the second
order and Fourier transforming the obtained expression, after
a direct but lengthy calculation we get for small wave vec-
tors q and for low temperatures T in the BEC phase

S�q� �
�J2 − �2�

J2n

Jgq

�q
coth

��q

2
, �33�

where n is the total density of particles.
In the dilute regime, i.e., close to the empty phase, when

n��J+�� /J and J−��2J we obtain

S�q� �
Jgq

�q
coth

��q

2
,

which is in agreement with the well-known result for the
weakly interacting Bose gas �5�. In the dense regime, i.e.,
close to the Mott phase when n�1, the static structure factor
vanishes. The dependence of the static structure factor on q
in the dilute regime is depicted in Fig. 5.

The static structure factor measures the density-density
correlations in q space. Assuming that the thermal energy is
much larger than the gap �i.e., kBT���, the maximum of the
structure factor appears at q values for which the following
condition holds:

Jgq � � , �34�

where �=�−J is an energy gap in the excitation spectrum.
Thus fluctuations begin to feel each other at the distance
equal to their effective size r�1/q�1/��−J.

Spatial correlations can be calculated by Fourier trans-
forming the static structure factor. Near the phase transition
for T=0 we have in the condensed phase for large r �see
Appendix B�

Cr,0 = �
q

S�q�eiqr �
1

rd+1 . �35�

A similar behavior was found for a one-dimensional lattice in
�7�.

V. DISCUSSION

A paired-fermion model for bosons with a hard-core in-
teraction was studied. The effective Hamiltonian is given by
Eq. �1�. Both phases, the BEC and the MI phase, were found
within the same mean-field approach to our model.

In the BEC phase there is a long-range order in the phase
fluctuations �i.e., phase coherence� and quasiparticles have a
linear excitation spectrum for small momenta q. This reflects
the existence of a Goldstone mode due to the breaking of a
global U�1� gauge symmetry. Approaching the MI phase the
system loses its phase coherence at the transition point and
the excitation spectrum is characterized by the gap opening.

In previous calculations, performed on the Bose-Hubbard
model, each phase requires its own specific mean-field ap-
proach �20,21� or a single one close to the phase boundary
�8�. In the MI phase our expression for the excitation spec-
trum agrees with the branch of the excitation spectrum,
which corresponds to creation of holes in the first Mott lobe
of the Bose-Hubbard model, taking the limit of a large inter-
action. However, the second branch, which corresponds to
formation of doubly occupied sites, does not exist in our
model since we can create only holes in the singly occupied
lattice to excite our system and not additional particles due to
the hard-core condition. This is possible in the grand-
canonical ensemble, where only the average number is fixed
but the number of particles fluctuates.
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FIG. 4. Condensed density. The solid, dotted, and dashed lines
show the mean-field result at kBT=0, the influence of the quantum
fluctuations at kBT=0 to the mean-field result and the mean-field
result at kBT=0.2J, respectively. � and J are in arbitrary energy
units.
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Within a Bogoliubov approximation to the Bose-Hubbard
model the quasiparticle spectrum in the BEC phase was
found as �20,21�

�q = �J2gq
2 + 2Un0Jgq,

where U is the interaction parameter and n0 is the condensate
density. In contrast to this expression, we found for the spec-
trum the expression in Eq. �27�. These expressions do not
agree in the limit U→�. Thus our hard-core Bose gas cannot
be described within the Bogoliubov approximation to the
Bose-Hubbard model by simply sending U to infinity. On the
other hand, our results are in good agreement with a varia-
tional Schwinger-boson mean-field approach to the Bose-
Hubbard model, which describe the phases near the phase
transition, by sending U to infinity �8�.

By changing the particle density from low to high values
we pass from the weakly to strongly interacting regime.
Within our approximation we were able to calculate an effect
of quantum and thermal fluctuations on the condensate. The
thermal fluctuations have a strong effect: They destroy the
phase boundaries in a direction of its vanishing. For fixed
tunneling rate J and chemical potential � one can determine
a critical temperature at which the condensate vanishes. The
quantum fluctuations do not change phase boundaries.

A. Critical exponents

Our expansion of the action Aeff near the phase transition
between the BEC and the Mott insulator Eq. �23� is similar
to the Ginzburg-Landau theory of �thermal� phase transitions
if we use the relation

T − Tc

Tc
→

� − J

J
�36�

and �c=J, i.e., the chemical potential � plays the role of the
temperature T in our zero-temperature phase diagram. Within
our approximation we find the mean-field expressions for
three critical exponents: The critical exponent of the correla-
tion length � of density fluctuations is �=1/2, of the com-
pressibility  it is �=1, and of the order parameter � it is
�=1/2. These critical exponents characterize the divergence
of the corresponding quantities at the phase transition:

� � �� − J�−�,  � �� − J�−�, � � �� − J��.

B. Static structure factor

One possibility to detect the phase transition between the
BEC and the MI in an optical lattice is to probe the excita-
tion spectrum �1,22�. In the superfluid phase a broad con-
tinuum of excitations is observed but in the MI phase a more
structured spectrum is measured, indicating the existence of
the gap. The static structure factor vanishes in the Mott
phase, as can be detected in experiments when studying
phase transitions in an optical lattice.

We also notice that the particle density cannot serve as an
order parameter for the BEC-MI transition and the scaling
law is not applicable for density-density correlations, which
can be determined as a Fourier transform of the static struc-

ture factor and is given in Appendix B. However, we can
assume the validity of the scaling law for correlations of the
order parameter, namely

�
�r
*
�r�� . �37�

Knowing the Green’s function �see Appendix A� we obtain
the following expression:

�
�p
�−p�� = 
p,p�Gp � 
p,p�
1

�q
. �38�

Then for large distances r and for J=� �i.e., at the phase
transition� we find the power law

C0,r �� ddr�
�p
�−p�eiqr �� ddq
const

q2 eiqr �
1

rd−2 ,

�39�

which gives the anomalous exponent �=0 as in a mean-field
Landau-Ginzburg theory.

VI. CONCLUSIONS

We have used a paired-fermion model to describe strongly
interacting bosons in an optical lattice with hard-core inter-
action. On the level of a mean-field theory we calculate the
phase diagram, which includes the BEC and the MI. Includ-
ing Gaussian fluctuations, we have found that the dispersion
of quasiparticles is gapless in the BEC phase but has a gap in
the MI phase:

�q
BEC = �gq�J2 − �2� + gq

2�2,

�q
MI = � − J + Jgq.

gq is the dispersion of the bosons on the lattice, defined in
Eq. �8�.

We have calculated the total density, the condensate den-
sity, and the static structure factor. We have shown that the
quantum fluctuations as well as thermal fluctuations lead to a
depletion of the condensate, but the former do not change the
critical points. The static structure factor contains informa-
tion about the quasiparticle excitations and in the BEC phase
for small q it is

S�q� �
�J2 − �2�

J2

Jgq

�q
coth

��q

2
.

It vanishes in the MI phase. For the critical behavior of the
compressibility, the density correlations, and the order pa-
rameter at the phase transition between the BEC and the MI
phase we found typical mean-field results.

APPENDIX A: GREEN’S FUNCTION

In this appendix we write out the expression for the
Green’s function in both cases �� � =0 and �� � �0. We denote
p= �q ,�.

1. Case: �� � =0

Deviation of the effective action due to fluctuations is
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�A1�
where

D�p� =
1

��� − i�
, vp

−1 =
1

J�3 − gq�
.

The determinant of the Green’s function reads

det G−1 =
vp

−1

2J
− D�p�� 1

2J
− vp

−1� . �A2�

2. Case: �� � Å0

Deviation of the effective action due to fluctuations is


Aeff = �
p�0

�
�p,
p,
�̄−p,
̄−p�G−1� 
�̄p


̄p


�−p


−p

� �A3�

with the Green’s function

G−1 =�
vp

−1 − D�p� iD�p� − a ia

iD�p�
1

2J
+ D�p� ia a

− a ia vp
−1 − D�− p� iD�− p�

ia a iD�− p�
1

2J
+ D�− p�

� , �A4�

where

D�p� =
1

2

�2 + J2 + 2i��

J�J2 + �2�
,

D�− p� =
1

2

�2 + J2 − 2i��

J�J2 + �2�
,

a = −
1

2

���2/9

J�J2 + �2�
.

The determinant of the Green’s function is

det G−1 =
1

�2J2�3 − gq��2�J2 + �2�
��2 + �J2 − �2�gq + �2gq

2� .

�A5�

APPENDIX B: CORRELATIONS

The decay of the density-density correlation function can
be investigated as the inverse Fourier transform of the static
structure factor

Cr,0 �
�J2 − �2�

J2 � dq�
Jgq

�q
eiq� ·r�.

For large values of r the main contribution to the integral is
for small values of q, namely

lim
r→�

Cr,0 �� dq d� qdeiq� ·r� �
1

rd+1 � dq qd−1 sin�q� �
1

rd+1 .
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