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We study in detail the transport properties of a model of conducting electrons
in the presence of double exchange between localized spins arranged on a 2D
Kagome lattice, as introduced by Ohgushi, Murakami and Nagaosa. The
relationship between the canting angle of the spin texture � and the Berry
phase field flux per triangular plaquette � is derived explicitly and we
emphasize the similarities between this model and Haldane’s honeycomb lattice
version of the quantum Hall effect. The quantization of the transverse (Hall)
conductivity �xy is derived explicitly from the Kubo formula and a direct
calculation of the longitudinal conductivity �xx shows the existence of a metal–
insulator transition as a function of the canting angle � (or flux density �).
This transition might be linked to that observable in the manganite compounds
or in the pyrochlore ones, as the spin ordering changes from ferromagnetic
to canted.

1. Introduction

A fascinating and relatively common problem in solid-state physics is the motion
of electrons in a lattice structure where localized spins are present, possibly in an
organized form. The scattering of the electrons by the spins represents a complex
physics problem for the theoretical investigator, especially when (as seems to happen
for the high-Tc cuprate superconductors) the spin and charge degrees of freedom are
attached to the same particles – a situation which we do not consider. In a simplified
picture we assume first of all that the spins are localized and interacting, but that the
mobile electrons do not interact with each other (or interact weakly and give rise to
independent quasiparticles) and are separate entities from the electrons that produce
the magnetic ions. In this case the individual electrons (or quasiparticles) experience
the localized spins as an effective local magnetic flux [1]. This flux produces a Berry
(or Peierls) phase in the hopping terms of the electrons’ Hamiltonian. In this paper
we shall study a situation with a locally staggered flux, created by plaquettes
of ordered spins, where the global flux is zero. This case is realized, for instance,



in a Kagome lattice [2, 3], a two-dimensional (2D) lattice consisting of triangles and
hexagons of the same interatomic distance and that can be viewed as a triangular
Bravais lattice with a three-point atomic basis forming an equilateral triangle of size,
half that of the triangular lattice parameter’s. In figure 1 we remind the reader of the
Kagome lattice structure.

This type of lattice may have experimental relevance in the planes of pyrochlore
compounds [2–5] and the transport properties we describe may be appropriate for
such materials. Ferromagnetic pyrochlore crystals of the type R2Mo2O7 (R¼Nd,
Sm or Gd) [6] have revealed interesting transport properties like an anomalous Hall
effect increasing as the temperature T is lowered, [7] a feature that seems to be
connected with the geometrical frustration of pyrochlore lattices that is partly embo-
died by the Kagome lattice itself, viewed now as the (1,1,1) cross-section of the 3D
pyrochlore’s lattice. Motivated by the transport properties of pyrochlore com-
pounds, as well as by those of the manganite ones, we study in this paper some
quantum transport properties of the Kagome lattice with a canted localized spin
texture in which independent electrons can move.

The behaviour of the Berry phase as a function of the spin canting for the
model at hand, and its consequences in terms of the macroscopic transport pro-
perties of the model, are studied in this paper. We discuss in detail the energy
spectrum as it depends strongly on the canting of the localized spins. In particular,
the nodes in the spectrum and the opening of energy gaps are investigated,
including their consequences for the transport properties. Moreover, we evaluate
explicitly the longitudinal conductivity �xx and the Hall conductivity �xy as a func-
tion of the canting angle � or flux �. Our results for the transport properties are
then compared with those of another famous model of this class, where a staggered
magnetic field is applied to electrons within a honeycomb lattice [8]. The latter
has very similar spectral properties to the model, first proposed by Ohgushi,
Murakami and Nagaosa [2, 3], defined on the Kagome lattice and studied here
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Figure 1. Kagome lattice.
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in greater detail. The model on the honeycomb lattice was proposed by Haldane

as the condensed-matter (solid-state) equivalent of the quantum Hall effect, in that

a quantization of the Hall �xy conductivity can be achieved by varying the local

flux per plaquette �, but without the need to introduce an external, homogeneous

magnetic field. In the case of the Kagome lattice model at hand, the same result

will be shown to be attained through the introduction of a localized spin texture.

Our results confirm and complete the work by Ohgushi, Murakami and Nagaosa

for the Hall �xy conductivity, with explicit calculations in terms of expansions

around the gap’s nodes shown in detail, and moreover the quantized values of

the longitudinal �xx conductivity are obtained indicating the existence of some

sort of metal–insulator transition as the canting angle moves away from some

special values.
The paper is organized as follows. In section 2 the tight-binding model of

Ohgushi, Murakami and Nagaosa for localized spins is described. The relationship

between the localized spin’s wave function and the Berry phase of the hopping

electron is discussed in section 2.1, and the application to the Kagome lattice

(section 2.2) is presented. In section 2.3 the tight-binding model for the honeycomb

lattice with a staggered magnetic field is also presented and compared to the

model on the Kagome lattice. Transport properties are then studied in section 3

by making explicit use of Kubo’s formula and an expansion of the energy spectrum

near the nodes next to the Fermi energy, and the results obtained are discussed

in section 4.

2. A model of hopping electrons in a spin texture

2.1. The model

We consider the electronic hopping between nearest neighbours on a Kagome

lattice as described by the tight-binding Hamiltonian. The electronic degrees of

freedom are coupled to a set of localized spin-S degrees of freedom on the

same lattice via a local Hund coupling JH. In this work S ¼ 1
2, but generalization

to the physically and theoretically interesting case of larger S is possible. When

JH is strong enough the spin of the hopping electron is forced to align parallel

to the localized spin Si at each site and through the double-exchange mechanism

[9–11] the tight-binding hopping parameter tij between two neighbouring sites

hi, j i becomes proportional to the projection of the localized-spin wave function

at site j onto that at site i. The effective Hamiltonian representing the hopping

is then

H ¼
X
hi, j i

teffij c
y

i cj þ h:c: ð1Þ

where teffij ¼ thnijnji, t being the bare hopping parameter and jni the spin wave

function for a spin-12 quantized along the direction defined by the unit vector

n ¼ ðsin � cos�, sin � sin�, cos �Þ. This spin or wave function clearly satisfies
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(with ~� ¼ ð�x, �y, �zÞ the vector of Pauli matrices) n � ~�jni ¼ þjni and is given by

jni ¼ eib
cos

�

2

ei� sin
�

2

0
BB@

1
CCA, ð2Þ

where b is an undetermined overall gauge degree of freedom. The effective hopping

parameter is then

teffij ¼ te�iðbi�bjÞ cos
�i
2
cos

�j
2
þ e�ið�i��jÞ sin

�i
2
sin
�j
2

� �
ð3Þ

and since jhnijnjij
2
¼ cos2

�ij
2 , with cos �ij ¼ ni � nj or �ij being the angle between

the two localized spins’ directions of quantization so that cos2
�ij
2 ¼ 1

2 ð1þ ni � njÞ,

we see that we can put

teffij ¼ teiaij cos
�ij
2

ð4Þ

where the Berry phase aij is obtained (ignoring the gauge parameters) through

eiaij ¼
cos �i2 cos

�j
2 þ e�ið�i��jÞ sin �i2 sin

�j
2

cos
�ij
2

ð5Þ

and can be evaluated, e.g. by means of

sin aij ¼ �
sin �i2 sin

�j
2 sinð�i � �jÞ

cos
�ij
2

: ð6Þ

To see what the phase aij is, geometrically, we introduce the unit vector ẑ and

evaluate the triple product

ni � nj � ẑ ¼ sin �i sin �j sinð�i � �jÞ ¼ 4 sin
�i
2
sin
�j
2
cos

�i
2
cos

�j
2
sinð�i � �jÞ ð7Þ

which shows that

sin aij ¼ �
ni � nj � ẑ

4 cos �i2 cos
�j
2 cos

�ij
2

: ð8Þ

This expression is a special case of the formula giving the solid angle �ðn1, n2, n3Þ

between three unit vectors n1, n2 and n3:

sin
�ðn1, n2, n3Þ

2
¼

n1 � n2 � n3

4 cos �122 cos �132 cos �232
ð9Þ

(as can be verified by taking, e.g. n1 ¼ x̂, n2 ¼ ŷ and n3 ¼ ẑ; �ðn1, n2, n3Þ can also

be seen as the area of the portion of the unit sphere enclosed by the maximum

circles passing through the unit vectors’ tips). In the last formula, of course,
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cos �kk0 ¼ nk � nk0 and therefore cos2
�kk0
2 ¼ 1

2 ð1þ nk � nk0 Þ. We remark that this
formula for three spins is completely analogous to that for the chirality gauge
field in the formulation of Lee and Nagaosa [12] for the chiral spin liquid theory
of high-temperature superconductivity [13]. In this formulation the instantaneous
gauge field flux through the triangular plaquette made up by the three spins
is �ðn1, n2, n3Þ ¼

1
2�ðn1, n2, n3Þ. Back to our two-spins hopping problem, we then

conclude that sin aij ¼ � sin 1
2�ðni, nj, ẑÞ, or

aij ¼ pþ
1

2
�ðni, nj, ẑÞ ð10Þ

the factor 1
2 probably being due to our specially chosen localized spin value, which

leads to the conjecture that for a generic spin-S situation the Berry phase would
be aij ¼ pþ S�ðni, nj, ẑÞ. Since the solid angle �ðni, nj, ẑÞ is also the unit sphere’s
surface area between the tips of the three vectors ni, nj and ẑ, the phase
aij ¼

Ð j
idr � A can also be seen as the flux of a magnetic monopole’s field of modulus

jBj ¼ 1
2 with the monopole placed in the sphere’s centre, or, alternatively, as the

flux of the related gauge field A through the triangle bearing on the segment (i, j )
of a triangular Kagome lattice unit cell [2, 3]. In this way, the Berry phase aij
acquires some physical meaning too.

We now consider this tight-binding model on the Kagome lattice with a fixed
localized-spin configuration (or spin texture) as suggested by Ohgushi, Murakami
and Nagaosa [2, 3], in which the unit vectors ni at each site of a triangular unit cell
are tilted outwards at a fixed angle � over the unit vector ẑ orthogonal to the lattice
plane. This means (labelling the spins clockwise A, B and C in the unit cell)

sin aAB ¼ sin aBC ¼ sin aCA ¼

ffiffiffi
3

p
sin2 �

4ð1þ cos �Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 sin
2 �

q : ð11Þ

The flux generated by the spins in every triangular unit is set equal to � with the
condition

ei� ¼ eiðaABþaBCþaCAÞ ¼ e3iaAB ð12Þ

with � ¼ 3aAB (mod 2p) and thus

sin
�

3
¼

ffiffiffi
3

p
ð1� cos �Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3 cos2 �

p : ð13Þ

This is equivalent to the expression proposed by Ohgushi, Murakami and Nagaosa
[2, 3] � ¼ pþ 3 argð1� i

ffiffiffi
3

p
cos �Þ. The graph for this expression of � ¼ �ð�Þ is

shown in figure 2 for convenience.
As pointed out by Ohgushi, Murakami and Nagaosa [2, 3], the flux per

triangular unit cell � is cancelled out for the chosen spin texture by the flux �2�
generated by each of the remaining hexagonal hopping plaquettes on the Kagome
lattice. There are indeed twice as many triangular units as hexagonal plaquettes,
so that the overall gauge field flux through the lattice is zero. This situation is
reminiscent of the analogous tight-binding model in a staggered magnetic field

                                                         1671



as was proposed by Haldane [8] to mimic the quantized Hall effect in a condensed-

matter situation. In the present model, the chosen spin-texture, with all localized

spins tilted by the same angle � in each unit cell, is presumably that corresponding

to the mean-field solution for some magnetic spin–spin Heisenberg Hamiltonian

which should be added to our tight-binding Hamiltonian, equation (1), to give

a total Hamiltonian of the type

Htot ¼
X
hi, j i

teffij ðfS
ð0Þ
i gÞcyi cj þ h:c:þ

X
i, j

Jij Si � Sj: ð14Þ

The role of the spin fluctuations around this ordered spin texture, fS
ð0Þ
i g, as well as

the effects of different spin textures (e.g. AFM ones) could serve as an interesting

further research problem for future studies.

2.2. Band structure for the Kagome lattice

The Kagome lattice is made up of triangular and hexagonal plaquettes and can be

seen as a triangular lattice with a three-point basis where every triangular unit cell

contains three sites, A, B, C (figure 1). The displacement vectors between these

sites are ~a1¼ð�1=2,�
ffiffiffi
3

p
=2Þ, ~a2 ¼ ð1, 0Þ and ~a3 ¼ ð�1=2,

ffiffiffi
3

p
=2Þ, with

P
i ~ai ¼ 0.

The effective hopping parameter of (1) can be written as

teffij ¼ teiaij cos
�ij
2

� �
ð15Þ

and since cosð�ij=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4 sin
2 �

q
is fixed for the chosen spin texture, �ij being the

angle between the pair of localized spins, we can choose the convention where

t cosð�ij=2Þ�1. Then, in momentum space, the Hamiltonian can be rewritten as

H ¼
X
~k

y
ð ~kÞhð ~kÞ ð ~kÞ ð16Þ

0
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Figure 2. Flux � as a function of the tilting angle � of the localized spins.
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where  ð ~kÞ ¼ ðcAð ~kÞ, cBð ~kÞ, cCð ~kÞÞ and hð ~kÞ is the (suitably symmetrized) matrix

hð ~kÞ ¼

0 2 cosð ~k � ~a1Þe
�i�=3 2 cosð ~k � ~a3Þe

i�=3

2 cosð ~k � ~a1Þe
i�=3 0 2 cosð ~k � ~a2Þe

�i�=3

2 cosð ~k � ~a3Þe
�i�=3 2 cosð ~k � ~a2Þe

i�=3 0

0
BB@

1
CCA: ð17Þ

The three eigenvalues of this Hamiltonian are

Eupð
~kÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ð ~kÞ

3

s
cos

�ð ~kÞ

3

!

Emidð
~kÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ð ~kÞ

3

s
cos

�ð ~kÞ � 2p
3

!

Edownð
~kÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f ð ~kÞ

3

s
cos

�ð ~kÞ þ 2p
3

!
ð18Þ

with

�ð ~kÞ ¼ arg f ð ~kÞ cosð�Þ þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

1þ f ð ~kÞ

3

!3

�ð f ð ~kÞ cosð�ÞÞ2

vuut
2
64

3
75 ð19Þ

and

f ð ~kÞ ¼ 2 cosð ~k � ~a1Þ cosð ~k � ~a2Þ cosð ~k � ~a3Þ: ð20Þ

The three bands touch in six points only for �¼ 0 and � ¼ �p, while for �
different from these values there is a gap between the bands, as shown in figure 3
(�¼ 0) and figure 4 (� ¼ p=3).

These nodes are ð� 2p
3 , 0Þ and ð� p

3 , �
ffiffi
3

p

3 pÞ, on the vertices of a hexagon,
as shown in figure 5.

The problem of calculating transport coefficients with this 3� 3 matrix is not
exactly solvable, so we reduce this matrix to a 2� 2 one by expanding hð ~kÞ around
the nodes. This can be done with a unitary transformation which allows us to
neglect the terms related to the lower band; in fact this band is far from the other
two and gives no relevant contribution to the Green function present in the Kubo
formula. To find this unitary transformation we consider the Hamiltonian evaluated
at a node k0. If we apply the unitary matrix that diagonalizes hðkx0, ky0Þ, where
ðkx0, ky0Þ are the node’s coordinates, to the Hamiltonian evaluated at the general
point ðkx, kyÞ, we find a matrix H0 with the structure

H0
¼

�1 �½ ~kx � i ~ky� �½ ~kx � i ~ky�

��½ ~kx þ i ~ky� �2 �½ ~kx þ i ~ky�

��½ ~kx þ i ~ky� ��½ ~kx � i ~ky� �3

0
BB@

1
CCA ð21Þ
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with ~kx ¼ ðkx � kx0Þ and ~ky ¼ ðky � ky0Þ. The elements on the diagonal are the
eigenvalues of the Hamiltonian hðkx0, ky0Þ, while the off-diagonal elements are
complex combinations of ~kx, y. Near the nodes the distance between the upper and

the middle band is small, while the lower band is distant and gives no relevant
contribution. To justify this we can consider a projection of the Green function
around the node.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2kx −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 4. Eigenvalues for the Kagome lattice for � ¼ p=3.
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Figure 3. Eigenvalues for the Kagome lattice for �¼ 0.
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We want to find a projection only on the first two eigenvalues, so we choose

a projector such that

PH0P ¼
�1 H 0

12

H 0
21 �2

� �
: ð22Þ

We define the Green function as G ¼ ðz�H0
Þ
�1 and the projection operator P

with the convention that ðAÞ�1
P ¼ ðPAPÞ�1 is the inverse operation on the projected

space, ð1� PÞ being the projection operator complementary to P. The Green

function can now be written as

G ¼ PGPþ ð1� PÞGPþ PGð1� PÞ þ ð1� PÞGð1� PÞ ð23Þ

and the projected Green function is

PGP ¼ Pðz�H 0
Þ
�1P ¼ ðz� PH 0P� PH 0

ð1� PÞðz�H 0
Þ
�1
1�Pð1� PÞH 0PÞ�1

P :

The last terms are of higher order and can be neglected. If we consider the terms

related to the lower eigenvalue, we can see that 1=ðz� �3Þ � 1=2, because we

are considering ~k near the nodes. This eigenvalue does not give an important

contribution, so it can be neglected and we can use the approximation

PGP � ðz� PH 0PÞ�1
P : ð24Þ

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

kx
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Figure 5. Nodes position for the Kagome lattice.
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Now we can write the projection of the Hamiltonian H0 as

PH0P ¼

�1 �½ ~kx � i ~ky�

��½ ~kx þ i ~ky� �2

0
@

1
A

¼

1þ
ffiffi
3

p
�

3 h1 � ih2

h1 þ ih2 1�
ffiffi
3

p
�

3

0
@

1
A

¼ Iþ
m h1 � ih2

h1 þ ih2 �m

!
¼ Iþ h

ð25Þ

where I is the identity matrix, with

h1 ¼ �1 ~kx þ �2 ~ky

h2 ¼ ��2 ~kx þ �1 ~ky

m ¼

ffiffiffi
3

p

3
�,

ð26Þ

where �1 and �2 are the components of a complex parameter, depending on

the node we are considering. The new matrix representing the Hamiltonian has

eigenvalues �� and eigenvectors �� with

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h21 þ h22

q

�� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð���mÞ
2=jkj2

q 1
���m

k

!
:

As was said, the bands touch only when �¼ 0 and � ¼ �p. Here we consider �
different from zero, but small enough so that we create a small gap between the

two bands.

2.3. Band structure of the honeycomb lattice

Here we also consider the case of a honeycomb lattice, as was first envisaged by

Haldane [8]; this is made up of two sublattices that we call A and B (figure 6),

or by a triangular lattice with a two-point basis. The displacement vectors from

a B site to the three nearest neighbours are ~a1 ¼ ð�
ffiffiffi
3

p
=2, 1=2Þ, ~a2 ¼ ð0,� 1Þ and

~a3 ¼ ð
ffiffiffi
3

p
=2, 1=2Þ, while the displacement vectors from the site B and the nearest

neighbours on the same sublattice are ~b1 ¼ ð�
ffiffiffi
3

p
=2,� 3=2Þ, ~b2 ¼ ð

ffiffiffi
3

p
, 0Þ and

~b3 ¼ ð�
ffiffiffi
3

p
=2, 3=2Þ (again,

P ~bi ¼ 0).
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Here too, we consider a tight-binding model in the presence of a staggered mag-

netic flux [8]; the Hamiltonian for this Haldane model is H ¼
P

~k
 y

ð ~kÞhð ~kÞ ð ~kÞ with

hð ~kÞ ¼ 2t2 cos�
X
i

cosðk � biÞIþ t1
X
i

½cosðk � aiÞ�1 þ sinðk � aiÞ�2�

þ ½M� 2t2 sin�
X
i

sinðk � biÞ��3, ð27Þ

where t1 is a hopping parameter between nearest neighbours on different sub-

lattices, t2 is a hopping parameter between nearest-neighbour sites on the same

sublattice, and �i are the three Pauli matrices. If we rewrite the Hamiltonian as

H ¼ a�1 þ b�2 þ c�3, the Hamiltonian matrix reads

H ¼
c a� ib

aþ ib �c

� �
: ð28Þ

The eigenvalues of this matrix are �� with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
(figure 7 (�¼ 0)

and figure 8 (� ¼ p
3)), while the eigenvectors are

� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð��Þ2

jkj2

q
1

��� c

k

0
B@

1
CA ð29Þ

where k ¼ a� ib. Formally this case is similar to that of the Kagome lattice,

after the reduction of the original matrix to a 2�2 matrix. The two bands meet

when the condition a2 þ b2 þ c2 ¼ 0 is satisfied. This becomes a condition on the

b3

b1

b2

a1 a3

a2

Figure 6. Honeycomb lattice.
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parameter M: there are nodes when M ¼ 3
ffiffiffi
3

p
t2� sin�, with � ¼ �1. When �¼ 0

and M¼ 0 there are six nodes: ð� 4p
3
ffiffi
3

p , 0Þ and ð� 2p
3
ffiffi
3

p , � 2p
3 Þ (figure 9), while when

M ¼ 3
ffiffiffi
3

p
t2� sin � there are only three of these nodes.

3. Transport properties

Based on linear-response theory, a suitable Kubo formula and the corresponding
conductivity tensor can be studied for the Hamiltonians considered in section 2.
Some details are given in Appendix A. From this result we can derive the Hall

−3 −2 −1 0 1 2 3kx
−3 −2 −1 0 1 2 3

ky

−3

−2

−1

0

1

2

3

E(k)

Figure 7. Eigenvalues for the honeycomb lattice for �¼ 0.
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Figure 8. Eigenvalues for the honeycomb lattice for � ¼ p
3, M 6¼ 0 and M 6¼ 3

ffiffiffi
3

p
�t2 sin�.
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conductivity �xy and the longitudinal conductivity �xx of our two-dimensional tight-

binding model. We explicitly verify the quantization of �xy as a function of � (or �)
and calculate explicitly the longitudinal conductivity �xx which also appears to

be quantized in the absence of disorder or other symmetry-breaking conditions.

For the two models considered, these are our main new results.

3.1. Hall conductivity

For � 6¼ 	 the third term in equation (62) (Appendix A) vanishes and after integra-

tion with respect to E we find that the Hall conductivity, in the limit of !¼ 0

and T¼ 0, is

�xy ¼ �
1

�h

Re

X
k

�k½U
yj�ðh� �k þ 2i
Þ�1j	U�kk, ð30Þ

where U is the unitary matrix that diagonalizes the Hamiltonian matrix hð ~kÞ, while
jx and jy are the current matrices. From this we find that the Hall conductivity

for every node n for the case of the Kagome lattice is

�nxy ¼
e2

�h


ðþ1

�1

12m


8ðm2 þ h21 þ h22Þ
3
2

d2k

ð2pÞ2
¼

e2

2h
sgnð�Þ: ð31Þ

The integration being over the hexagonal Brillouin zone, we considered only one-

third of the integral and then we have to multiply by the number of nodes. We can

conclude that the Hall conductivity is different from zero and it is quantized in the

−4 −3 −2 −1 0 1 2 3 4

kx

−4

−3

−2

−1

0

1

2

3

4

ky

Figure 9. Node positions for the honeycomb lattice for �¼ 0.
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presence of a gap between the bands (that is, for � different from 0, �p) and is

equal to

�xy ¼
e2

h
sgnð�Þ: ð32Þ

So, we have another model of transverse conductivity quantization in the absence

of an external uniform magnetic field.
Now we consider the case of the honeycomb lattice, in Haldane’s model. For

M¼ 0 and �¼ 0 the bands touch in six points: ð� 4p
3
ffiffi
3

p , 0Þ, ð� 2p
3
ffiffi
3

p , � 2p
3 Þ and the

Hamiltonian is simply of the form

0 a� ib

aþ ib 0

� �
: ð33Þ

Expanding the terms around the nodes, we find that the function to integrate in

order to find the Hall conductivity is

�
9ab

8ða2 þ b2Þ
3
2

ð34Þ

but the integral of this term gives zero contribution. To generate a gap we have

to move away from the situation in which M¼ 0 and �¼ 0. We add a small mass

contribution M	1, but we maintain �¼ 0; now the Hamiltonian is

M a� ib
aþ ib �M

� �
: ð35Þ

In this case the function to integrate is

�
9t21M


8ða2 þ b2 þM2Þ
3
2

; ð36Þ

three nodes give a positive contribution and three a negative one, to give

�
e2

2h
sgnðMÞ: ð37Þ

Summing up all the contributions we find that the Hall conductivity is zero. A

different situation is that in which we consider M¼ 0, but we add a small flux �.
We rewrite the Hamiltonian as

c a� ib
aþ ib �c

� �
, ð38Þ

where

c ¼ �2t2 sin �
X
i

sinðk � biÞ: ð39Þ

1680               



Now the function to integrate is (k ¼ a� ib)

PðkÞ ¼ �
9c
t21

8ða2 þ b2 þ c2Þ3=2
: ð40Þ

Near three of the six nodes P(k) is negative, but approximating c around these points

we find c ’ 3
ffiffiffi
3

p
t2 sin�, so the function to integrate is negative. After the integration

we find that every one of these three points gives a conductivity equal to

e2

2h
sgnðsin�Þ: ð41Þ

For the other three points P(k) is positive, but the expansion of c is c ’

�3
ffiffiffi
3

p
t2 sinð�Þ. So, now the function to integrate is negative too and it gives the

same result as before. Summing over all the points and remembering that the

integration is over the hexagon we find that the Hall conductivity for the honey-

comb lattice case is

�xy ¼
e2

h
sgnðsin�Þ: ð42Þ

We can conclude that the Hall conductivity can be rewritten as

�xy ¼ 	
e2

h
ð43Þ

with 	 ¼ �1, depending on the sign of �.

3.2. Longitudinal conductivity

Here too we use the general expression derived from the Kubo formula. In this

case (� ¼ 	 ¼ x) the longitudinal conductivity �xx derived by expression (62), after

the energy integration, is

�
1

�h

X
k,m

�0ð�kÞðU
yjxU ÞkmðU

yjxU Þmk

�!þ 2i


1

�m � �k � !þ 2i

þ

1

�m � �k þ !� 2i


� �
:

After summing over the eigenvalues, substituting the values of �k and � ¼ 
þ i!
2

we find

�xx ¼ �
1

2�h�

ðþ1

�1

ðUyjxU Þ21ðU
yjxU Þ12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h21 þ h22

q
m2 þ h21 þ h22 þ �

2

d2k

ð2pÞ2
: ð44Þ

From this expression, we have still to subtract the diamagnetic term and so we

evaluate [14]

~�xx ¼ �xx �
1

�
lim
�!0

��xx: ð45Þ

For the Kagome lattice the product of the matrix elements of the currents is

ðUyjxU Þ21ðU
yjxU Þ12 ¼

3ð4m2
þ 3h21 þ 2

ffiffiffi
3

p
h1h2 þ h22Þ

4ðm2 þ h21 þ h22Þ
, ð46Þ
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and remembering that h1 and h2 are symmetric variables and using polar coordinates

we can rewrite �xx as

�xx ¼ �
e2

4h�

ð1
0

m2rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ r2

p
ðm2 þ r2 þ �2Þ

drþ

ð1
0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ r2

p
m2 þ r2 þ �2

dr

" #
, ð47Þ

so that carrying out the integrals we find

ð1
0

rm2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ r2

p
ðm2 þ r2 þ �2Þ

dr ¼

m2

�2
arccos

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p
!

if m > 0

0 if m ¼ 0

m2

�2
p� arccos

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p
!!

if m < 0:

8>>>>>><
>>>>>>:

ð48Þ

For the second integral we introduce a cut-off � and evaluate

ð�
0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þr2

p
�ðm2þr2þ�2Þ

dr¼

�

�
�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ�2

p� 	
þarctan

m

�

� 	
�arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ�2

p
�

!
ifm>0

�

�
�arctan

�

�

� �
ifm¼0

�

�
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ�2

p� 	
�arctan

m

�

� 	
�arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ�2

p
�

!
ifm<0:

8>>>>>>>>><
>>>>>>>>>:

ð49Þ

We consider two cases: m equal to zero (that is, the flux � is zero) and m different

from zero. In the first case, after having removed the diamagnetic term, the

conductivity is

~�xx ¼
e2

4h
arctan

�

�

� �
: ð50Þ

Now we can take the limit for �! 0 (thus making the cutoff irrelevant). We find

that the conductivity for every node is different from zero and is equal to

~�xx ¼
1

3

e2

4h

p
2
: ð51Þ

After the sum over all six nodes is done we can conclude that the longitudinal

conductivity for m¼ 0 is

~�xx ¼
e2p
4h
: ð52Þ

The case where m is not zero is quite different. Now, after having done the diamag-

netic subtraction (45), the conductivity is

~�xx ¼
e2

4h

m2

�
arccos

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p
!
�
m

�
þ arctan

m

�

� 	
� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ �2

p
�

 !" #
, ð53Þ
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but the limit for �! 0 gives a vanishing result. We conclude that the longitudinal
conductivity is different from zero only when there is no gap between the two bands,
that is in our case for m¼ 0.

Next we consider the longitudinal conductivity for the honeycomb lattice.
We expect that it is different from zero when the bands touch. This happens in six
points, when M¼ 0 and �¼ 0, and in three points when M ¼ 3

ffiffiffi
3

p
�t2 sinð�Þ. To

calculate �xx, we use the expression (44). In the first case every node gives a
contribution different from zero and equal to each other, so with the same observa-
tions made for the Kagome lattice we find that the longitudinal conductivity is

�xx ¼
e2p
4h

ðM ¼ � ¼ 0Þ: ð54Þ

When M>0 and �¼ 0 we find that the conductivity is

�xx ¼ �
1

2�h�

9

8

1

ð2pÞ2

ð1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22 þM2

q
h21 þ h22 þM2 þ �2

d2k

�
1

2�h�

9

8

1

ð2pÞ2

ð1
�1

M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22 þM2

q
ðh21 þ h22 þM2 þ �2Þ

d2k

but, as in the case of the Kagome lattice, this integral vanishes; so in this case
the longitudinal conductivity is zero.

The last case we consider is for M ¼ �3
ffiffiffi
3

p
�t2 sinð�Þ 6¼ 0. Here the bands touch

only in three points and these give a contribution to the conductivity since now
there is a gap where before there were three nodes. Around the three nodes the
term c is zero, so formally the problem is the same as that of the case M¼ 0 and
�¼ 0 and only in these three points is the longitudinal conductivity different
from zero. The result is equal to half of what was found in the case in which M
and � are zero, that is

�xx ¼
e2p
8h

ðM ¼ �3
ffiffiffi
3

p
�t2 sinð�Þ 6¼ 0Þ: ð55Þ

We can conclude that the longitudinal conductivity can be rewritten as

�xx ¼ �
e2p
8h

ð56Þ

with � ¼ 0, 1, 2 for the honeycomb lattice and � ¼ 0, 2 for the Kagome lattice.

4. Discussion and conclusions

We have considered both Haldane’s model for electrons in a staggered flux on
the honeycomb lattice and the model by Ohgushi, Murakami and Nagaosa for
electrons in the presence of a canted spin-12 texture on the Kagome lattice. We
have shown how similar these two models are in that the transverse Hall conductivity
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�xy is quantized as �e2=h as a function of the tuning parameter (e.g. the magnetic

flux per plaquette, �).
Whilst for the Hall conductivity �xy we have obtained the same results both

for the Kagome lattice in the presence of a spin texture (as found by Oshgushi

et al. [2, 3]) and for the honeycomb lattice with staggered magnetic field (as found

by Haldane [8]), we stress that we have used a different method of calculation

based on implementing the band structure of each model in the Kubo formula.

Furthermore, we have explicitly evaluated in this way, and for the first time, also

the longitudinal conductivity �xx starting from the Kubo formula. This quantity

is also quantized in the absence of symmetry-breaking, non-ideal features of the

system, but not in terms of integer multiples of e2=h.
For the Kagome lattice model, we find metallic behaviour for a ferromagnetic

state of localized spins perpendicular to the plane of the lattice. This state has a

vanishing flux (�¼ 0) in each plaquette of the Kagome lattice. Metallic behaviour

exists also for a canted state where the spins are inside the plane (� ¼ p=2, in this

case the local flux is � ¼ p). The longitudinal conductivity is for both cases

�xx ¼ e2p=4h and the Hall conductivity vanishes. In figure 10 we show the schematic

behaviour of the Hall conductivity for the model defined on the Kagome lattice

and as a function of the parameter �. This is to be compared with the richer

phase diagram for the Haldane model on the honeycomb lattice, reported in

figure 11 also as a function of �. The longitudinal conductivity �xx as evaluated

in this work is shown schematically in figure 12.
Removing some of the nodes in the DOS by breaking symmetries (like for

the case of a square lattice with next-nearest neighbour terms) alters the Hall con-

ductivity substantially. Also the introduction of disorder (e.g. slow fluctuations

of the localized spins, fluctuations around the perfect canted spin texture) may

sxy

−2p 2p−p p0 f

− e2

h

e2

h

Figure 10. Hall conductivity for electrons on the Kagome lattice.
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remove some of the nodes and yield non-universal features in the transport proper-

ties. There is also another interesting effect due to disorder in our two-dimensional

lattices. The longitudinal conductivity �xx is usually based on diffusion of charge

carriers; however, the diffusion coefficient D is infinite in our model, since there

is no scattering in the absence of imperfections. Nevertheless, the longitudinal

conductivity, expressed through the Einstein relation

�xx ¼
e2

�h
D�,

is finite thanks to a vanishing density of states at the nodes. The cancellation of the

divergent diffusion coefficient and the vanishing density of states is subtle. Since

there is scattering by impurities in a realistic system, a finite diffusion coefficient

M
t2

0

−p p

n = −1 n = +1

n = 0m = 1 m = 1

m = 2

n = 0

0

3 3

−3 3

Figure 11. Hall conductivity on the honeycomb lattice as a function of �; the parameter 	
quantizes �xy in units of e2/h and � quantizes �xx in units of e2p/8h.

sxx

e2p
4h

0 f−p p 2p

Figure 12. Longitudinal conductivity for electrons on the Kagome lattice.
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is more natural. On the other hand, impurities create additional states near the
nodes such that a non-vanishing density of states exists. This effect was studied
in the case of 2D Dirac fermions with random scatterers [15–17]. In particular,
it was found that random scattering broadens the metallic state [17], and the
maximal conductivity value is lowered by a factor 1=ð1þ g=2pÞ, where g is the
strength of the random fluctuations.
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Appendix A: Linear response and the Kubo formula

From the Kubo formula we know that the conductivity tensor can be written as [18]

��	 ¼
e

i�h
lim
�!0

ð0
�1

eði!þ�ÞtTr ½�0, r��e
�iHt=�hj	e

iHt=�h

 �

dt ð57Þ

where �0 is the Fermi function. Using the Green functions defined as

G�ðE Þ ¼ ðH=�hþ E� i
Þ�1
ð58Þ

we can use the substitution

e�iHt=�h
¼ � lim


!0

ð1
�1

e
iEtG
ðE Þ
dE

2pi
ðt � 0Þ ð59Þ

and the conductivity can be rewritten as

��	 ¼
e

�h

ð1
�1

Tr½ �0, r��GþðE Þ j	G�ðEþ !Þ
dE

2pi
: ð60Þ

The current operator is

j	 ¼
e

i
½H, r	�: ð61Þ

Using this expression iteratively, we find that the conductivity can be rewritten as
a sum of three terms:

��	 ¼ �
1

�h

ð1
�1

Trf�0GþðE Þ j�GþðE Þ j	G�ðEþ !Þg
dE

2p

�
1

�h

ð1
�1

Trf�0GþðE Þ j	G�ðEþ !Þ j�G�ðEþ !Þg
dE

2p

þ
e

�h

ð1
�1

Trf�0GþðE Þ½ j	, r��G�ðEþ !Þg
dE

2p
:

ð62Þ
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