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Abstract
We consider a strongly interacting Bose–Einstein condensate in a spherical
harmonic trap. The system is treated by applying a slave-boson representation
for hardcore bosons. A renormalized Gross–Pitaevskii theory is derived for the
condensate wavefunction that describes the dilute regime (like the conventional
Gross–Pitaevskii theory) as well as the dense regime. We calculate the
condensate density of a rotating condensate for both the vortex-free condensate
and the condensate with a single vortex and determine the critical angular
velocity for the formation of a stable vortex in a rotating trap.

1. Introduction

In this paper, we shall study two aspects of a strongly interacting Bose gas at high density. One
is related to a consistent treatment of a strongly interacting Bose gas in terms of an effective
Gross–Pitaevskii (GP) equation with renormalized parameters. The second aspect is related
to the formation of a vortex in a trapped condensate in the presence of strong interaction.

The stationary form of the conventional GP equation[
− h̄2

2m
∇2 − µ + V (r) + g|�(r)|2

]
�(r) = 0 (1)

describes the condensate order parameter � of a Bose gas in a trapping potential at zero
temperature, where µ is the chemical potential and g the repulsive coupling constant [1–3].
In the absence of a trapping potential, a solution of equation (1) is given by

|�|2 = µ

g
. (2)

This describes a linearly increasing condensate density (the latter is proportional to |�|2) with
respect to the chemical potential. Although it takes the repulsion into account by a factor 1/g

which is decreasing with increasing coupling constant g, the saturation of n0 cannot be seen
in this solution. From the physical point of view, in a realistic description for large densities,
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the particle density must saturate because there is a finite scattering volume around each
particle. Furthermore, for increasing particle density, the condensate density should reach
a maximum and for even larger densities, decrease again until its total destruction, because
of the increasing interparticle interaction. This behaviour has also been found by variational
perturbation theory [4] and diffusion Monte Carlo calculations [5]. In other words, the strong
effect of the repulsion in a dense condensate is not really described by the conventional GP
equation. In order to describe condensates at higher densities, the second-order term in the
low-density expansion of the energy density has been taken into account which lead to a
modified GP theory [1, 5–7].

Although in many experimentally realized situations the BEC is in the weakly interacting
regime where it is well described by GP theory, it might be possible to reach the strongly
interacting regime. The main problem at high particle densities is the instability of the Bose
gas from the formation of molecules due to three-particle interactions [8]. Here, we will
assume that molecule formation does not occur. This might be unrealistic for some systems,
but in others it is not, e.g. for Bose gases in optical lattices.

It has been shown that the slave-boson approach to a hardcore Bose gas provides a mean-
field equation, similar to the GP equation, that leads to a saturation of the condensate n0 � 1
[9–13]. Here we will discuss a simplified version of this mean-field equation which is the
same type of nonlinear Schrödinger equation as in the GP approach. However, in contrast to
the latter the parameters are renormalized such that equation (2) becomes

|�R|2 = µR

gR
,

where the renormalized parameters µR and gR are functions of the bare parameters µ and
n0. At the phase transition between the non-condensed Bose gas and the BEC µR vanishes,
then increases linearly with increasing µ, reaches a maximum and decreases again until the
condensate is destroyed totally due to strong interaction effects. We use this approach to
calculate the condensate density profile of a trapped BEC.

The formation of vortices in a rotating condensate is understood as a local destruction
of the condensate. From the depletion effect due to strong interaction it can be anticipated that
the tendency of vortex formation is enhanced in a dense Bose gas. This implies a reduction of
the critical angular velocity �c with increasing density by the interaction. Vortex formation
in rotating traps in the region beyond the validity of GP has also been studied by the modified
GP theory and by variational Monte Carlo methods [7].

The paper is organized as follows: in the following section we survey the results of
the slave-boson approach for a hardcore Bose gas on a lattice and derive a corresponding
mean-field theory for a continuous system in an external trap potential. Then we derive
the renormalized GP equation and evaluate solutions with and without a straight vortex and
determine the critical angular velocity for the vortex formation.

2. The model

The slave-boson representation of a strongly interacting Bose gas is based on the idea that the
bosons fill the space with finite density, where each particle occupies a lattice cell related to
a sphere with radius as (s-wave scattering length) [10]. Singly occupied and empty sites are
described by two complex fields bx and ex , respectively [11]. Here, b∗

x and bx represent a
creation and annihilation process of a boson at site x, while e∗

x and ex represent the creation
and annihilation of a ‘hole’. In the functional integral representation [14], the grand canonical
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partition function in classical approximation is given as

Z =
∫

exp

[
−β

∑
x,x ′

b∗
xex tx,x ′e∗

x ′bx ′ + β
∑

x

µx |bx |2
]

×
∏
x

δ(|ex |2 + |bx |2 − 1) dbx db∗
x dex de∗

x, (3)

where 1/β = kBT is the thermal energy. In a d-dimensional lattice,

t̂x,x ′ =
{−J/(2d) if x, x ′ nearest neighbours

0 else

is the nearest-neighbour tunneling rate and µx = µ − Vx is the space-dependent chemical
potential that includes the trapping potential Vx . Instead of µx we will write only µ

subsequently and assume implicitly that the effective chemical potential can depend on space.
The fields e and b are dimensionless. Moreover, we rescale all physical energies by a multiple
of the hopping rate αJ to obtain dimensionless quantities:

t̂ → t̂ ′ = 1

αJ
t̂, µ → µ′ = 1

αJ
µ, β → β ′ = αJβ. (4)

The hopping term is quartic in the field variables, due to the fact that a hopping process is
characterized as an ‘exchange process’ of a boson and an empty site. The δ function enforces
the constraint that each lattice site is either singly occupied or empty but excludes a multiple
occupation.

A similar approach has been applied to the Bose–Hubbard model which allows multiple
occupation, by introducing additional fields, one for each occupation number [12, 13]. The
well-known zero-temperature phase diagram with Mott-insulating phases for integer lattice
fillings n = 0, 1, 2, . . . (‘lobes’) was found. In contrast, our hardcore Boson model is restricted
to the two lattice fillings n = 0, 1 which is a simplification, but contains all relevant aspects
of Bose–Einstein condensation with repulsive interaction. A second simplification of our
approach is that we neglect quantum fluctuations by treating the grand-canonical partition
function in classical approximation. This allows us to integrate the constraint exactly. On the
other hand, it restricts the applicability of our approach to non-zero temperatures.

Two new fields are introduced by a Hubbard–Stratonovich transformation, the complex
field �x which describes the condensate wavefunction and the real field ϕx which is related to
the total density of bosons [10]:

Z =
∫

exp

{
−β ′

[∑
x,x ′

�∗
x(1 − t̂ ′)−1

x,x ′�x ′ +
∑

x

ϕ2
x +

∑
x

(ex, bx)

(
2ϕx + 1 �x

�∗
x −µ′

)(
e∗
x

b∗
x

)]}

×
∏
x

δ(|bx |2 + |ex |2 − 1) dbx db∗
x dex de∗

x d�x d�∗
x dϕx . (5)

Integration over the fields � and ϕ leads back to equation (3). On the other hand, the fields bx

and ex can be integrated in (5) because they appear in the exponent as quadratic forms. This
leads to the partition function

Z =
∫

e−Sb−S1
∏
x

d�x d�∗
x (6)

with the kinetic part of the action

Sb = β ′ ∑
x,x ′

�x(1 − t̂ ′)−1
x,x ′�

∗
x ′ (7)



632                     

and the potential part

S1 = −
∑

x

log



∫ ∞

−∞
e−β ′ϕ2

x

sinh

[
β ′
√(

ϕx + µ′
2

)2
+ |�x |2

]

β ′
√(

ϕx + µ′
2

)2
+ |�x |2

dϕx


 := −

∑
x

Zx . (8)

The condensate density can be identified with

n0 = |�x |2
(1 + 1/α)2

, (9)

as argued in the appendix, and the total particle density is given by the expectation value [10]

ntot = 〈ϕx〉 + 1
2 . (10)

We apply a saddle-point approximation to the integration in equation (6). This is controlled
by the minimized action, which means that we have to solve the equation

∂S

∂�∗
x

= 0.

This yields the mean-field equation

β ′ ∑
x ′

(1 − t̂ ′)−1
x,x ′�x ′ −

[
∂

∂(|�x |2) log Zx

]
�x = 0. (11)

In order to derive a mean-field equation which is applicable to a continuous trapping
potential, we perform the continuum approximation of (11). If the field �r is varying only
very slowly between neighbouring lattice sites, we can approximate

(1 − t̂ ′)−1
x,x ′ ≈ 1

1 + 1/α

(
δx,x ′ +

1

1 + 1/α
αJ (J δx,x ′ + t̂x,x ′)

)
,

and perform the substitution∑
x ′

(J δx,x ′ + t̂x,x ′) → −Ja2∇2.

This leads to the equation[
−Ja2

6
∇2 + (1 + α)J − (1 + 1/α)2

β

∂

∂(|�(r)|2) log Z(r)
]

�(r) = 0 (12)

with

Z(r) =
∫

e−β ′ϕ2
r

sinh
[
β ′√(ϕr + µ′/2)2 + |�(r)|2][

β ′√(ϕr + µ′/2)2 + |�(r)|2] dϕr

for the spatially dependent order parameter �(r) in a three-dimensional space and a is the
lattice constant of the discrete system. In the continuum a loses its identity as a lattice
constant, but describes a characteristic length scale in equation (12), and can be interpreted
as the spatial extension of a boson. Thus, it should be of the same order of magnitude as the
s-wave scattering length as [1]. Equation (12) is the analogue of the GP equation in the case
of our slave-boson approach. The parameters can be identified with those of the conventional
GP equation: the mass m of the particles is given by the hopping constant J and the lattice
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constant a via

h̄2

2m
≡ Ja2

6
. (13)

3. Renormalized Gross–Pitaevskii equation

The continuum limit of the action defined by equation (7) and (8) is

S =
∫ {

β ′�∗(r)
[
− α

(1 + α)2

a2

6
∇2 +

1

1 + 1/α

]
�(r) − log Z(r)

}
ddr. (14)

Applying the variational principle

∂S

∂�∗
x

= 0,

we obtain the full mean-field equation (12) directly. If the order parameter � is small, we can
expand the potential part of the action up to fourth order:

1

1 + 1/α
|�|2 − 1

β ′ log Z(r) = a0(µ
′) + a2(µ

′)|�|2 +
1

2
a4(µ

′)|�|4 + O(|�|6), (15)

where we have introduced the coefficients

a0(µ
′) = − 1

β ′ log Z(r)

∣∣∣∣
�=0

(16)

a2(µ
′) = − 1

β ′
∂

∂|�|2 log Z(r)

∣∣∣∣
�=0

+
1

1 + 1/α
(17)

a4(µ
′) = − 1

β ′
∂2

(∂|�|2)2
log Z(r)

∣∣∣∣
�=0

. (18)

Further, we introduce the rescaled field

�R(r) = 1

1 + 1/α
�(r),

which we identify with the condensate wavefunction of our renormalized GP theory. We now
introduce the renormalized coefficients

µR(µ, J ) ≡ − (1 + α)2

α
Ja2(µ

′)

and

gR(µ, J ) ≡ (1 + α)4

α3
Ja4(µ

′).

After neglecting the term of order |�|6 in the expansion (15), we get the renormalized Gross–
Pitaevskii (RGP) equation[

−Ja2

6
∇2 − µR(µ, J ) + gR(µ, J )|�R(r)|2

]
�R(r) = 0. (19)

It has the same form as the conventional GP equation (1), when µ and g are replaced by µR

and gR. Their µ-dependence is plotted in figure 1. In the case of a trapping potential, where
the chemical potential µ is space dependent, µR and gR are space dependent as well. While
gR is always positive, µR can change sign. A BEC exists if µR > 0. The phase transition
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Figure 1. Coefficients µR and gR of the RGP theory plotted against the chemical potential µ for
the tunneling rate αJ = kBT . Both functions are symmetric in µ. A BEC exists if µR > 0. The
two points where µR = 0 mark the phase transition between the non-condensate and the BEC. The
coefficient gR is always positive.

between the BEC and the non-condensate phase, i.e. the point at which the condensate order
parameter vanishes, is given by the relation µR(µ, J ) = 0.

4. Results

4.1. Zero-temperature result

In the zero-temperature limit we can integrate the ϕ-field in equation (8) exactly by a saddle-
point integration, as shall be shown in this paragraph. Therefore, we write

Z(r) = 1

2β ′ (Z− − Z+),

where

Z± =
∫ ∞

−∞

e−β ′f±(ϕ,|�|2)√(
ϕ + µ′

2

)2
+ |�|2

dϕ

and

f±(ϕ, |�|2) = ϕ2 ±
√(

ϕ +
µ′

2

)2

+ |�|2.

It is possible to perform a saddle-point approximation by expanding the functions f± up to
second order in ϕ around their minimum ϕ0:

f±(ϕ, |�|2) = f±(ϕ0, |�|2) +
1

2

∂2f±
∂ϕ2

(ϕ0, |�|2)(ϕ − ϕ0)
2 + O(ϕ2).

In the limit of large β, the saddle-point integration becomes exact and yields

Z± =
√

π(
ϕ0 + µ′

2

)2
+ |�|2

e−β ′f±(ϕ0,|�|2)√
β ′
2

∂2f±(ϕ0,|�|2)
∂ϕ2

.

The minimum is found to satisfy the equation

|�|2 =
(

ϕ0 +
µ′

2

)2 ( 1

4ϕ2
0

− 1

)
,

and we have

f±(ϕ0) = ϕ2
0 − 1

2
− µ′

4ϕ0
; ∂2f±(ϕ0)

∂ϕ2
= 2 − 8|�|2ϕ3

0(
ϕ0 + µ′

2

)3 .



                                                                           635

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

de
ns

ity

a
3
n0 (kBT/J = 1/5.5)

a
3
n0 (kBT/J = 0)

a
3
ntot (kBT/J = 1/5.5)

a
3
ntot (kBT/J = 0)

µ/J

Figure 2. Condensate density n0 and total density ntot of a translational invariant system, plotted
against chemical potential for zero-temperature (thick lines) and finite temperature (thin lines).

We find the following zero-temperature result for a translational invariant condensate
(�x ≡ � = const) from the mean-field equation (12): for the condensate density we find

n0 = |�|2
(1 + 1/α)2

=
{

1
4

(
1 − µ2

J 2

)
if − J < µ < J

0 else,
(20)

and the total particle density given by equation (10) is

ntot = ϕ0 +
1

2
=




0 if µ � −J

1
2

(
1 − µ

J

)
if −J < µ < J

1 if J � µ.

(21)

The solution of the mean-field equation is plotted in figure 2 for zero temperature and near
the critical temperature Tc where the BEC breaks down. In the dilute regime at T = 0, the
chemical potential can be written as µ = −J + 	µ, where 	µ 
 J . In this limiting case
we find µR = 	µ + O(	µ2) and gR = 2J , which is consistent with the conventional GP
equation with a shifted chemical potential.

4.2. Vortex-free trapped condensate

Assuming a dense condensate, where the repulsive interaction between bosons dominates their
kinetic energy, we neglect the differential term in equations (12) and (14). This is called the
Thomas–Fermi (TF) approximation [1]. In the following we use a spherical trapping potential

V (r) = m

2
ω2

hor2. (22)

In typical experiments, the oscillator length dho = √
h̄/mωho is of the order of a few µm [1],

where ωho is the trap frequency measured in Hz. Considering, for instance, 85Rb atoms near a
Feshbach resonance [15], we can study a Bose gas in a dense regime with a scattering length
as ∼ a ∼ 200 nm. In our calculations we choose the parameters

β ′ = 1,
kBT

h̄ωho
= 36.93,

a

dho
= 0.1215, (23)

and keep the hopping constant J fixed. Thus all energies can be scaled with J .
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Figure 3. Condensate density n0 = |�|2/a3(1 + 1/α)2 of a vortex-free condensate in a spherical
trap with the numerical parameters given in equation (23) and different values of the chemical
potential µ′ calculated from the full slave-boson mean-field equation (24) (thick lines) and within
RGP approximation (25) (thin lines).

To calculate the profile of the condensate density in a BEC without vortex, we solve the
TF equation

(1 + 1/α) − (1 + 1/α)2 ∂

∂|�(r)|2 log Z(r) = 0. (24)

In the RGP approximation (19), the solution is

|�R(r)|2 = µR

gR
= − a2(µ

′)
(1 + 1/α)2a4(µ′)

. (25)

Solutions for typical values of the parameters are plotted in figure 3. The results we get from
the renormalized GP approximation show only small deviations from the numerical solutions
of equation (24). We find a condensate depletion at the trap centre for µ′ = 1. This is due to
the fact that the condensate is partly suppressed by strong interaction effects [4, 5, 11]. For
µ′ = 2 the condensate is completely destroyed at the trap centre. We find particle numbers in
the condensate of the order N0 ≈ 104 . . . 105.

We note that the total particle density ntot is much larger than the condensate density
n0 and takes values of about 0.5a−3 at the trap centre. Thus the interaction between the
non-condensed and the condensed parts of the Bose gas plays a significant role. This implies
that the conventional GP equation, which neglects the non-condensed part, is not reliable in
this parameter regime.

4.3. Rotating condensate with a single vortex

In the case of a trap rotating about the z-axis with an angular velocity �, one must include
the additional angular momentum term −�Lz�(r) on the left-hand side of the differential
equation (12), where Lz is the z-component of the angular momentum operator. This term
must also be kept in the TF approximation. The condensate wavefunction may then develop
a vortex. We assume here a straight single vortex along the z-axis. This can be described
by using cylindrical coordinates and the ansatz �(r) = φ(r⊥, z) eiϕ , where r⊥ is the distance
from the z-axis and ϕ the polar angle. The angular momentum operator is given as Lz = −i ∂

∂ϕ
.
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Figure 4. Critical angular velocity plotted against the total number of particles in the condensate.
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Figure 5. Condensate density of a condensate with a single vortex, with same parameters as in
figure 3, calculated from the full mean-field equation (26) (thick lines) and within RGP
approximation (27) (thin lines). The rotating frequencies of the trap were chosen to be close
to the critical angular frequency �c.

This gives rise to an additional term
(
�/αJ − a2

/
α
(
6r2

⊥
))∣∣�(r)|2/(1 + 1/α)2 in the action

(14). Instead of equation (24) we have to solve

(1 + 1/α) +

(
a2

α6r2
⊥

− �

αJ

)
− (1 + 1/α)2 ∂

∂|�(r)|2 log Z(r) = 0, (26)

and the solution in the RGP approximation is

|�R(r)|2 = − 1

(1 + 1/α)4a4(µ′)

[(
a2

α6r2
⊥

− �

αJ

)
+ (1 + 1/α)2a2(µ

′)
]

. (27)

A condensate that is rotating with given angular velocity � forms a stable vortex, if its
total energy is lower than that of a vortex free condensate. This is equivalent to the condition

Svort(�) − S < 0 (28)

which can be checked numerically by using the TF approximation of equation (14) for a
condensate with vortex Svort

FT (�) and without vortex STF. The critical angular velocity �c
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above which the vortex is stable is plotted against the number of condensed bosons N0 in
figure 4, where N0 is given as

N0 =
∫

1

a3
|�R(r)|2 d3r. (29)

The RGP approximation is in good agreement with the results of the full mean-field equation.
The decreasing critical angular velocity for higher values of N0 indicates that a high interaction
energy favours the formation of a vortex. This agrees with results derived from the GP equation
by perturbation theory [16] as well as numerically [17].

Typical solutions for shapes of condensate density profiles of BECs with a stable single
vortex are shown in figure 5. In contrast to the case without a vortex, the condensate is always
completely destroyed at the trap centre, a feature that also shows up in the conventional GP
approximation [1]. Again, the RGP approximation is in good agreement with the numerical
results from (26).

5. Conclusion

The slave-boson approach allowed us to study the condensation of a trapped high-density Bose
gas in a regime where the conventional Gross–Pitaevskii approach is not valid. Starting from
the saddle-point approximation, we have derived a renormalized Gross–Pitaevskii equation
with a space-dependent coupling constant. This provides good results in comparison with the
more complicated slave-boson saddle-point calculations. At high densities, we have found a
depletion of the condensate at the trap centre due to the interaction between the condensate
and the non-condensate parts of the Bose gas. This feature is not covered by the conventional
Gross–Pitaevskii equation. The behaviour of the critical angular velocity for the formation of
a single vortex agrees qualitatively with previous results in the literature but supports also the
formation of a vortex for increasing N0.
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Appendix

For a Bose system with creation operators a+
x and annihilation operators ax at a lattice site x,

an appropriate definition of the condensate density is [3]

n0 := lim
x−x ′→∞

〈
a+

xax ′
〉
. (A.1)

In our slave-boson representation, a creation process of a particle is associated with the product
b∗

xex and an annihilation process with e∗
xbx , thus

n0 = lim
x−x ′→∞

〈b∗
xexe

∗
x ′bx ′〉. (A.2)

Here, the expectation value is defined with respect to the functional integral (5) by

〈· · ·〉 = 1

Z

∫
· · · exp[· · ·]

∏
x

δ(|bx |2 + |ex |2 − 1) dbx db∗
x dex de∗

x d�x d�∗
x dϕx .

We are interested in the connection between the correlation function 〈�x�
∗
x ′〉 and the

condensate density. For this purpose we integrate the field � to transform the correlation
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function of the field � back to a correlation function of the fields b and e. Therefore, we
perform the integration

β ′2
∫

�y�
∗
y ′ exp

[
β ′ ∑

x,x ′
�x(1 − t̂ ′)−1�∗

x ′ + β ′ ∑
x

�xb
∗
xex + β ′ ∑

x

�∗
xe

∗
xbx

]∏
x

d�x d�∗
x

= ∂

∂(b∗
yey)

∂

∂(by ′e∗
y ′)

∫
exp

[
β ′ ∑

x,x ′
�x(1 − t̂ ′)−1�∗

x ′

+ β ′ ∑
x

�xb
∗
xex + β ′ ∑

x

�∗
xe

∗
xbx

]∏
x

d�x d�∗
x

= ∂

∂(b∗
yey)

∂

∂(by ′e∗
y ′)

det β ′(1 − t̂ ′) exp

[
β ′ ∑

x,x ′
b∗

xex(1 − t̂ ′)e∗
x ′bx ′

]

= β ′2 det(1 − t̂ ′)

[
(1 − t̂ ′)y,y ′ + β ′ ∑

x,x ′
b∗

xexe
∗
x ′bx ′(1 − t̂ ′)y ′,x ′

]

× exp

[
β ′ ∑

x,x ′
b∗

xex(1 − t̂ ′)x,x ′e∗
x ′bx ′

]
.

Since we are interested in the limit y − y ′ → ∞, and the matrix t̂ ′y,y ′ includes nearest-neighbour
hopping only, the term (1 − t̂ ′)y,y ′ does not contribute. This yields for far distant lattice points
y, y ′ the expression

〈�y�
∗
y ′〉 =

∑
x,x ′

〈b∗
xexe

∗
x ′bx ′〉(1 − t̂ ′)x,y(1 − t̂ ′)y ′,x ′ .

In this sum, only those terms contribute, where x, y as well as x ′, y ′ are nearest neighbours.
In the limit y − y ′ → ∞ we can assume 〈b∗

xexe
∗
x ′bx ′〉 = 〈b∗

yeye
∗
y ′by ′〉. Thus we can use∑

x

(1 − t̂ ′)x,y =
∑
x ′

(1 − t̂ ′)y ′,x ′ = (1 + 1/α)2. (A.3)

We get

lim
y−y ′→∞

〈�y�
∗
y ′〉 ≈ (1 + 1/α)2 lim

y−y ′→∞
〈b∗

yeye
∗
y ′by ′〉 (A.4)

and therefore

n0 ≈ 1

(1 + 1/α)2
lim

y−y ′→∞
〈�y�

∗
y ′〉. (A.5)

On the mean-field level, this justifies our identification of the condensate density in
equation (9).
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