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A recursive method is developed to treat electrons coupled to phonons. It is applied to small systems with
E � � Jahn-Teller coupling. Two cases are considered, a model with one electron and two orbitals on a single
site �related to the Rabi Hamiltonian� and a model with two electrons on two sites. The corresponding Green’s
functions are represented by rational functions. It is found that the spectra change substantially when one
phonon couples to the electron but are relatively robust under an increasing number of phonons.
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I. INTRODUCTION

Small systems, like molecules or clusters of atoms, have
attracted much attention in recent years because of new ex-
perimental techniques that provide detailed information of
their spectral properties.1–4 There are two mechanisms that
control the physics of these small systems, one is the tunnel-
ing of electrons between different orbitals and different at-
oms, the other is the coupling between electrons and vibra-
tional modes �phonons� of the molecules or clusters. For the
latter the Jahn-Teller coupling scheme is relevant. Small
Jahn-Teller systems can also be understood as building
blocks for lattice Jahn-Teller systems which play a crucial
role in solid-state physics, for instance, in the form of tran-
sition metal oxids.5

The main problem of treating electrons that couple to
phonons is that even for small systems with one or a few
electrons the Hilbert space is infinite dimensional. This im-
plies a complex spectrum with level crossing and avoided
level crossing.6 There are various treatments of small Jahn-
Teller systems, e.g., exact numerical diagonalization with
truncated phonon spectrum,7–9 Monte Carlo simulations,10 or
variational methods.11 In this paper a systematic recursive
procedure for treating the phonons in small electronic sys-
tems is developed and applied to several examples. It is
based on a projection formalism.12 The method is quite flex-
ible, can easily deal with degeneracies, and was previously
introduced to two-component bosons on a lattice.13 The cen-
tral idea is to approximate the elements of a Green’s function
systematically by standard �e.g., rational� functions.

The paper is organized as follows: In Sec. II the evolution
of a quantum state and its connection to a projected Green’s
function is briefly discussed. The continued-fraction ap-
proach is developed in Sec. III. Then in Sec. IV two models
with Jahn-Teller coupling are introduced, a single-site model
where an electron tunnels between two orbitals and a model
where two electrons tunnel between two sites. The applica-
tion of the continued-fraction approach to these models is
explained in Sec. V and the results are discussed in Sec. VI.

II. EVOLUTION OF STATES: PROJECTED
DYNAMICS

The evolution of a quantum state ��t� during the time
interval �0,�� is given by

���� = eiH���0� ,

where the Hamiltonian H is measured in units of �. A
Laplace transformation for a positive time � gives for Imz
�0 a resolvent:

�
0

�

e−iz�����d� = �
0

�

e−iz�eiH�d���0� = i�z − H�−1��0� .

�1�

Suppose that the initial state ��0� is from a restricted Hilbert
space of low energy, the Green’s function �z−H�−1 acts on a
restricted Hilbert space, represented by the projector P0 and
the projected resolvent �z−H�−1P0. To evaluate the probabil-
ity for the system to return to the initial state ��0�, the fol-
lowing quantity must be evaluated:

��0���� = �i/2	��
−�

�

eiz���0��z − H�−1��0�dz .

If E j are the eigenvalues of H we can write for Eq. �1�

��0��z − H�−1��0� = 	
j

��E j��0��2

z − E j
. �2�

The poles of this expression are the characteristic frequencies
of the evolution, starting from the projected Hilbert space
and returning to it. The imaginary part of the Green’s func-
tion gives the corresponding spectral density. In particular,
the imaginary part of the projected resolvent in Eq. �2� reads

Im��0��E − i
 − H�−1��0� = 
	
j

��E j��0��2

�E − E j�2 + 
2 . �3�

For small 
 this results shows peaks of height ��E j ��0��2 /
 at
the eigenvalues E j. Thus this height at E=E j is a direct mea-
sure of the overlap between the initial state ��0� and the
eigenstate �E j� for 

0.

III. PROJECTION FORMALISM AND CONTINUED-
FRACTION REPRESENTATION

After this preparation the goal is to evaluate the projected
Green’s function P0�z−H�−1P0, where P0 projects the states
of the entire Hilbert space to the subspace H0. For a sym-
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metric Hamiltonian H it satisfies the identity13

P0�z − H�−1P0 = �P0�z − H�P0 − P0HP1�z − H�1
−1P1HP0�0

−1,

�4�

where P1=1− P0 projects onto the Hilbert space H1 that is
complementary to H0. The next calculational step is to treat
the projected operators of the inverse on the right-hand side.
First, there is the projection of P0HP0 which is completely
restricted to H0. And second, there is P1HP0 and its trans-
posed operator P0HP1 which connects the Hilbert spaces H0
and H1. Now it is assumed that the Hamiltonian H does not
connect the entire Hilbert space H1 with H0 but only a sub-
space H2. This is a condition that is valid for typical Hamil-
tonians in physics. In other words, the Hamiltonian H satis-
fies the conditions

P0HP1 = P0HP2, P1HP0 = P2HP0 �P2 � P1� .

Thus H has defined a new projection H2 and Eq. �4� be-
comes

P0�z − H�−1P0 = �P0�z − H�P0 − P0HP2�z − H�1
−1P2HP0�0

−1.

�5�

Now the identity used in Eq. �4� can be applied again to
P2�z−H�1

−1P2 on the right-hand side. A repetition of this pro-
cedure creates a hierarchy of projectors Pk onto Hilbert
spaces Hk. It is based on the fact that the projector P2j+1 is
created from P2j−1 and P2j as

H2j+1 = H2j−1 \ H2j � H2j−1,

i.e., H2j+1 is the complement of H2j on H2j−1. Moreover, the
projector P2j+2 is created by the assumption that the Hamil-
tonian H satisfies the conditions

P2j+1HP2j = P2j+2HP2j and P2jHP2j+1 = P2jHP2j+2. �6�

The hierarchy of projected Hilbert spaces is schematically
shown in Fig. 1. It implies a recursion relation that connects
pairs of projected Green’s functions:

P2j�z − H�2j−1
−1 P2j = �P2j�z − H�2j−1P2j − P2jHP2j+2

��z − H�2j+1
−1 P2j+2HP2j�2j

−1.

By using G2j = P2j�z−H�2j−1
−1 P2j and H j,j+1= P2jHP2j+2 this

reads

G2j = �z − P2jHP2j − H j,j+1G2j+2H j+1,j�2j
−1. �7�

Further simplifications are possible if it is assumed that the
Hamiltonian H can be written as a sum of two Hamiltonians
as H=H0+H1 with the following properties:

�1� H0 must stay inside the projected Hilbert space:
H0P2j = P2jH0P2j and P2jH0= P2jH0P2j.

�2� H1 maps from H2j to H2j+2:

H1:H2j → H2j+2,

where H2j is orthogonal to H2j+2. Examples shall be dis-
cussed subsequently.

IV. MODELS: E‹� JAHN-TELLER COUPLING

The Jahn-Teller electron-phonon coupling describes elec-
trons that may occupy two possible orbitals. The latter can be
understood formally as a pseudospin � with values �= ↑ ,↓.
On a molecule, a cluster or a lattice one phonon mode
couples to electrons at each site, where the interaction energy
is a sum over all sites j=1, . . .:

Heph = g	
j

�b j
† + b j��n j↑ − n j↓� .

n j� is the electronic number operator at site j and orbital �,
and b j

† �b j� is the creation �annihilation� operator of a pho-
non.

The simplest case considered in this paper is a single site
with two orbitals, where an electron can tunnel between the
two orbitals. This problem is also well-known in atomic
physics under the name of Rabi Hamiltonian.14 An extension
is a two-site system with two orbitals per site and with two
electrons. The model is simple if both electrons are in the
same orbital because of Pauli blocking. Therefore, we con-
sider the case where the two electrons sit in different orbitals.
They can tunnel between the two sites and are coupled to
each other via the electron-phonon interaction.

A. Single site: Jahn-Teller effect with interorbital tunneling

There are two electronic states, either the electron is in
orbital ↑ or in orbital ↓. Moreover, there are N �N

FIG. 1. Schematic hierarchy of recursively projected Hilbert
spaces. The spaces H0,H2, . . . ,H8 are indicated by the rings and
the brackets indicate the set of rings that belong to the correspond-
ing space H1,H3, . . . ,H7. The initial projection is H0, the other
projections H2,H4, . . . ,H8 are created by the Hamiltonian due to
Eq. �6�. H1 is the complement of H0 on the entire Hilbert space, H3
is the complement of H2 on H1, etc. The complement of H8 is
empty such that H8=H7.
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=0,1 , . . . � phonons. Thus the Hilbert space is spanned by

�N,↑�, �N,↓� .

For electronic tunneling rate t between the two orbitals the
resulting Rabi Hamiltonian reads

H = t�1 + 0�0b†b + g�3�b† + b� , �8�

where the Pauli matrices refer to the electronic states for the
two orbitals.

B. Two sites: Jahn-Teller effect with intersite tunneling

The extension of the model to two sites and two electrons
provides the opportunity to study the effect of electron-
electron interaction and electronic correlations. For a given
pair of electrons, represented by integer numbers n j�=0,1,
states with two electrons that occupy different orbitals are
considered. �Electrons stay in their orbital because inter-
orbital tunneling is not included.� Then the following elec-
tronic states are available:

�↓,↑�, �↑,↓�, �↓↑,0�, �0,↓↑� . �9�

The tunneling of the electrons and their Coulomb �Hubbard-
type� interaction is defined by the Hamiltonian He and by the
dispersionless phonons with energy 0 as

He = − t 	
�=↑,↓

�c1�
† c2� + c2�

† c1�� + U 	
j=1,2

n j↑n j↓, Hph

= 0 	
j=1,2

b j
†b j .

c j
† �c j� is the creation �annihilation� operator of an electron.

The electronic spin is not taken into accout here, i.e., spin-
polarized states are considered. The electron-phonon interac-
tion reads

Heph = g 	
j=1,2

�b j
† + b j��n j↑ − n j↓� ,

leading to the total Hamiltonian H=He+Hph+Heph.

V. APPLICATION OF THE CONTINUED-FRACTION
APPROACH TO SMALL SYSTEMS

If H1 is a small perturbation to H0 the resolvent of H
=H0+H1 can be written as a Neumann series:

�z − H�−1 = �z − H0 − H1�−1 = �z − H0�−1	
l�0

�H1�z − H0�−1�l.

Truncation after a finite number of terms yields poles only
from the zeros of z−H0. This is often insufficient to observe
a realistic pole structure of the Green’s function �z−H�−1.
The approximation can be improved by using a Padé
approximation15 or a partial summation of infinitely many
contributions.12 A systematic approach is the continued frac-
tion of Sec. III that approximates the projected Green’s func-
tion P0�z−H�−1P0 by rational functions with a complex pole
structure. Depending on the regime �weak or strong electron-
phonon interaction� there are two different approximation
schemes.

A. Strong electron-phonon interaction

If the tunneling energy is small in comparison with the
electron-phonon interaction it is possible to separate the
Hamiltonian as H=H0+H1 with

H0 = 0�0b†b + g�3�b† + b�, H1 = t�1 �10�

and consider H1 as a perturbation in the sense of the discus-
sion in Sec. III. To diagonalize H0, the Lang-Firsov transfor-
mation can be used as a unitary transformation

u = �e��b†−b� 0

0 e−��b†−b��, � = g/0

with

uH0u† = H0� = 0�b†b − �2��0.

The transformation of H1 creates a complicated expression
H1� that connects states with different phonon numbers. This
makes it difficult to perform the iteration of the recursion
relation. For P0 being the projection on the Hilbert space
with N=0 phonons after the Lang-Firsov transformation was
applied, Eq. �4� gives

P0�z − H��−1P0 = �P0�z − H0��P0 − P0H1�P1

��z − H��1
−1P1H1�P0�0

−1,

and by using the approximation �z−H��1
−1�z−H0��1

−1 one
obtains

P0�z − H��−1P0  �P0�z − H0��P0 − P0H1�P1

��z − H0��1
−1P1H1�P0�0

−1.

After a lengthy but straightforward calculation this becomes

=�z −
t2e−�2

0
� 1

�z/0 + ��
− �*�− z/0 − �2,− 4�2���−1

�0

�11�

with the incomplete Gamma function16

�*�a,y� = 	
m�0

1

m!

�− y�m

a + m
.

The renormalization factor e−�2/2 of the tunneling rate t is a
well-known effect of the phonons, originally established in
polaron physics,7,8 and also observed in the strong-coupling
regime of the Hubbard-Holstein model.17 Results of the it-
eration are shown in Fig. 2 for the spectral density. It should
be noticed that the expression for P0�z−H�−1P0 with the pro-
jection P0 before the Lang-Firsov transformation was applied
is more complicated.

B. Weak electron-phonon interaction

If the tunneling energy is large in comparison with the
electron-phonon interaction a different separation of the
Hamiltonian H=H0+H1 is needed:

H0 = t�1 + 0b†b�0, H1 = g�3�b† + b� .

Equation �7� can be truncated for N phonons. This leads to
the equations
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G2j = �z�0 − t�1 − j0�0 − g2�3bG2j+2b†�3�N−j
−1

with terminating condition

G2N = ��z − N0��0 − t�1�−1

=
1

�z − N0�2 − t2�z − N0 t

t z − N0
� .

Some results of the iteration for the spectral density are
shown in Fig. 3.

The single-site model of Eq. �8� was also studied in the
context of quantum optics18 and in the context of the two-site
Holstein model.19 The continued-fraction method of these
works is the same as the one discussed in Sec. V B, except
for an additional diagonalization of the 2�2 matrix struc-
ture. Moreover, the continued fraction is obtained directly

from the iteration of a tridiagonal matrix with scalar ele-
ments and does not require the projection of the Hilbert
space.

C. Two sites with two electrons

The Hamiltonian of Sec. IV B reads in the basis of Eq. �9�

He =�
0 0 − t − t

0 0 t t

− t t U 0

− t t 0 U
� ,

�12�

Hph = 0�b1
†b1 + b2

†b2��
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� ,

and

Heph = g�
− �† − � 0 0 0

0 �† + � 0 0

0 0 0 0

0 0 0 0
� � g��† + ��S ,

�13�

where �=b1−b2. Thus � ��†� lowers �raises� the number of
phonons by one.

Using H0=He+Hph and H1=Heph �this is the weak-
coupling case� the recursion relation of Eq. �7� reads

G j = �z − P j�He + Hph�P j − g2P j�SG j+1S�†P j� j
−1 �14�

with the terminating condition for a maximum of N phonons:

GN = �z − PN�He + Hph�PN�N
−1. �15�

This 4�N+1��4�N+1� matrix is diagonal in terms of the
phonon states. There are N+1 different phonon states, since
there can be k �=0,1 . . . ,N� phonons at the first site and N
−k phonons at the second site.

The action of the phonon operators P j� and �†P j on the
4�j+2��4�j+2� phonon-diagonal matrix G j+1 creates a 4�j
+1��4�j+1� phonon-diagonal matrix with 4�4 matrices
D�k , j+1−k�=G j+1�k , j+1−k �k , j+1−k�:

P j��
D�0, j + 1� 0 . . . 0

0 � � ]

] � � 0

0 . . . 0 D�j + 1,0�
��†P j

= 2�
D�0, j� 0 . . . 0

0 � � ]

] � � 0

0 . . . 0 D�j,0�
� .

This can be used to perform the iterations according to Eqs.
�14� and �15�. The results for the spectral density of the

FIG. 2. Strong coupling approach: The spectral density of the
single-site model −Im��↑��z−H�−1�↑ �� for z=E+0.05i, g=1, N=1,
and t=0,0.5,1, where all energies are measured in units of the
phonon frequency 0. �6t is added to the curves for better
visibility.�

FIG. 3. The spectral density −Im��↑��z−H�−1�↑ �� of the single-
site model with z=E+0.02i, t=g=1 and N=1,2 ,3 ,4 ,5. �1.5N is
added to the curves for better visibility.�
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electronic states �↑,↓� and �↑↓,0� with a maximum of N=5
phonons are shown in Figs. 4–6 for different values of U and
g.

VI. DISCUSSION

The recursive evaluation of the projected Green’s function
of Secs. V B and V C can be easily performed with an alge-
braic manipulation program. To demonstrate the qualitative
tendencies the case for small numbers of phonons N
=1,2 ,3 is discussed in the following. It should be noticed
that much higher numbers can be studied with little effort.
They show the same tendencies as those of small N.

A. Single-site model

In the strong-coupling regime the tunneling between the
orbitals can be completely suppressed �i.e., t=0�. Then the
projected Green’s function has only one pole, namely z=0.

For any t�0, however, there are infinitely many poles due to
the incomplete Gamma function in Eq. �11�. But not all poles
contribute with the same weight, as it is shown in Fig. 2.
There are two effects: �i� Phonons lower the groundstate en-
ergy and �ii� the weight of the excitations decreases rapidly
with increasing energy.

Eigenvalues in the weak-coupling regime in the absence
of phonons �i.e., N=0, where H0= t�1+0b†b�0� are E= ± t.
This is a level splitting caused by the tunneling between the
two orbitals. Already a single phonon lowers the ground state
and creates new excited states, as shown in Fig. 3. Additional
phonons do not affect the ground state but shift excited states
and create new ones. In Fig. 3 this is plotted for phonon
numbers up to N=5. The spectral weights of the excited
states are also affected by the increasing number of phonons.
All these effects are related to fact that the elements of the
projected Green’s function are rational functions

PN�z�
QN�z�

, �16�

where N is the maximal number of phonons taken into ac-
count in the virtual processes. For t=g=1 and N=0,1 ,2 ,3
the Green’s function ��↑��z−H�−1�↑ � is calculated with
MAPLE as

FIG. 4. The spectral densities of the two-site model with z=E
+0.02i, t=g=1, U=0, and N=1,2 ,3 ,4 ,5: −Im��↓ , ↑ ��z
−H�−1�↓ , ↑ �� �upper panel� and −Im��↓↑ ,0��z−H�−1�↓ ↑ ,0�� �lower
panel�. �1.5N is added to the curves for better visibility.�

FIG. 5. The same as the previous Fig. but for U=2.
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N = 0:

z

z2 − 1

N = 1:

−
− 4z + z3 + 7z2 + z5 − 4z4 − 1

− 5 + 4z2 + 12z + z4 − 14z3 + 4z5 − z6

N = 2:

−
4 + 3z − 46z2 + 33z4 + 24z3 + 10z6 − 33z5 − z7

− 11 − 64z + 46z2 + 94z3 + 31z6 − 14z5 − 82z4 − 10z7 + z8

N = 3:

−
8 − 218z + 701z2 − 558z3 − 449z6 + 759z5 − 361z4 + 128z7 + z9 − 18z8

− 180 + 872z − 716z2 − 1156z3 − 519z6 − 440z5 + 1809z4 + 414z7 − z10 + 18z9 − 126z8 .

FIG. 6. The same as the previous Fig. but for N=2 and g2=1,2 ,3. �1.5g2 is added to the curves for better visibility.�
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Apparently, the order of the polynomial PN�z� is one less
than the order of QN�z� and increases by 2 for N�1:

PN�z� = z2�N+1�+1 + o�z2�N+1��, QN�z� = z2�N+2� + o�z2�N+2�−1� .

B. Two-site model

In the case of two electrons on two sites there is tunneling
between the two sites. Without phonons the Hamiltonian
H0=He in Eq. �12� has eigenvalues

E = 0, U,
U ± �U2 + 16t2

2
.

Without Hubbard repulsion U there are three different eigen-
values, where the degeneracy of E=0 represents the states

E = 0:�↑,↓� + �↓,↑�, E = U:�↓↑,0� + �0,↓↑� .

With Hubbard repulsion U�0 there are four nondegenerate
eigenvalues. The most obvious effect in this two-site model
is the lowering of the ground state energy already by a single
phonon and the creation of excitations on energies above the
ground state energy. It is interesting to notice that more ex-
citations contribute to the singly occupied Green’s function
�↓ , ↑ ��z−H�−1�↓ , ↑ � than to the doubly occupied Green’s
function �↓↑ ,0��z−H�−1�↓ ↑ ,0�. Moreover, there is always a
state with maximal weight at E=U for the state �↓↑,0�.

The Green’s function with maximally N phonons is again
a rational function of the form �16�. For t=g=1 and U=0 the
expression

�↓ ,↑��z − H�−1�↓,↑� =
PN�z�
QN�z�

is calculated with MAPLE as
N=0:

P0�z� = z2 − 2, Q0�z� = z�z2 − 4�

N=1:

P1�z� = �z5 − 3z4 − 7z3 + 15z2 + 8z − 10��z2 − 2z − 5�

Q1�z� = z8 − 5z7 − 10z6 + 62z5 + 33z4 − 221z3

− 44z2 + 176z − 40

N=2:

P2�z� = z10 − 13z9 + 49z8 + 11z7 − 378z6 + 386z5 + 720z4

− 852z3 − 536z2 + 408z + 144

Q2�z� = z11 − 13z10 + 45z9 + 61z8 − 562z7 + 396z6 + 1788z5

− 2092z4 − 1368z3 + 1632z2 + 224z − 192

N=3:

P3�z� = z13 − 24z12 + 226z11 − 1000z10 + 1578z9 + 3192z8

− 15756z7 + 15484z6 + 16149z5 − 35976z4 + 8226z3

+ 15076z2 − 7944z + 672

Q3�z� = z�z13 − 24z12 + 222z11 − 906z10 + 708z9 + 7046z8

− 22638z7 + 9330z6 + 61467z5 − 98222z4 + 18512z3

+ 56152z2 − 38816z + 7168� .

Apparently, the order of the polynomial PN�z� is again one
less than the order of QN�z� and increases by 3 for N�1:

PN�z� = z3�N+1�+1 + o�z3�N+1�� ,

QN�z� = z3�N+1�+2 + o�z3�N+1�+1� .

As shown in Figs. 4–6 the first three low-energy states are
not affected if the phonon number exceeds N=3.

C. Physical interpretation

Experiments with molecules or small mesoscopic systems
are usually dealing with single-electron effects.20 This means
that one could consider one electron at a single site that
couples to the vibrational degress of freedom of the mol-
ecule. This site is contacted with leads such that an electron
can enter or leave the molecular site through a tunneling
process. The latter can be described by a phenomenological
complex potential �or self energy�.20 In the case of a strong
intramolecular interaction, however, a single-electron de-
scription is insufficient. Considering for instance the states of
a two-site model given in Eq. �9�, several scattering pro-
cesses inside the molecular system can take place. In the case
of the initial state ��0�= �↓ , ↑ � the simplest processes are

�↓,↑� → �↓↑,0� → �↓,↑�, �↓,↑� → �0,↓↑� → �↓,↑� ,

where phonons appear only in the intermediate state. If the
initial state is ��0�= �↓ ↑ ,0� the simplest processes are

�↓↑,0� → �↑,↓� → �↓↑,0�, �↓↑,0� → �↓,↑� → �↓↑,0� ,

where again phonons appear only in the intermediate state.
These processes have very different properties �cf. Figs.
4–6�. The large weight of Im��↓↑ ,0��z−H�−1�↓ ↑ ,0�� �lower
panels� at E=U has an interpretation by using the relation
between the peak height h
 and the overlap ��E j ��0�� of Sec.
II:

h
  ��E j��0��2/
 .

Thus the results of Figs. 4–6 indicate that there is a large
overlap for the eigenstate with energy U and the doubly oc-
cupied state �↓↑,0�. On the other hand, the overlap of the
eigenstates with �↓,↑� �upper panels in Figs. 4–6 is weak in
comparison. This provides an experimental access to the
strength of the intramolecular Coulomb interaction by mea-
suring the spectral density of a molecular system.

The elements of the spectral function Im��0��E− i

−H�−1��0� usually can be measured only indirectly, for in-
stance, by attaching leads to the molecule and measuring the
current through the molecule.2,3,21,22 In a strongly interacting
electronic system this current is given as20,23
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I = I0
� 	
j

��E j��0��2

�E − E j�2 + 
2 �f1�E� − f2�E��dE


 I0	
j

��E j��0��2�f1�E j� − f2�E j�� �
 
 0� , �17�

where 
 and the prefactor I0 depend on the details of the
leads and their coupling to the molecule. f1�E� and f1�E� are
the Fermi function with respect to the two contacts and their
chemical potentials � j at temperature T:

f��E� = �1 + e�E−���/kBT�−1.

From the expression of the current in Eq. �17� the steps of
the conduction at the poles E j can easily be calculated.

VII. CONCLUSIONS

A a recursive method has been developed to study the
spectral properties of small Jahn-Teller systems. It is based
on a decomposition of the infinite-dimensional Hilbert space,
spanned by a few electronic and an unlimited number of
phononic states. Two cases were considered, one for an infi-

nite number of phonons �the strong-coupling case� and one
in which the number of phonons is increased by one in each
iteration step of a recursive equation �the weak-coupling
case�. In both cases the iteration of the recursion relation
leads to a continued-fraction representation of a projected
Green’s function. The matrix elements of the resulting
Green’s function are related to the incomplete Gamma func-
tion in the strong-coupling case and to rational functions in
the weak-coupling case, respectively.

An advantage of this method is that it approaches the
exact solution systematically by standard functions. It is an
alternative to perturbative approaches, based on a power se-
ries of a model parameter �e.g., the tunneling rate t or the
electron-phonon coupling constant g�.
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