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Characterization of the local density-of-states ūctuations near the integer quantum Hall
transition in a quantum-dot array
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We present a calculation for the second moment of the local density of states in a model of a two-
dimensional quantum dot array near the quantum Hall transition. The quantum dot array model is a realistic
adaptation of the lattice model for the quantum Hall transition in the two-dimensional electron gas in an
external magnetic ®eld proposed by Ludwig, Fisher, Shankar, and Grinstein. We make use of a Dirac fermion
representation for the Green's functions in the presence of ūctuations for the quantum dot energy levels. A
saddle-point approximation yields nonperturbative results for the ®rst and second moments of the local density
of states, showing interesting ūctuation behavior near the quantum Hall transition. To our knowledge we
discuss here one of the ®rst analytic characterizations of chaotic behavior for a two-dimensional mesoscopic
structure. The connection with possible experimental investigations of the local density of states in the quan-
tum dot array structures ~by means of NMR Knight-shift or single-electron-tunneling techniques! and our work
is also established. @S0163-1829~97!02736-7#
I. INTRODUCTION

Recently, there has been a considerable surge of interest
in the electronic properties of nanometric-scale metal and
semiconductor structures.1,2 Static as well as transport prop-
erties of these systems can be obtained from the knowledge
of the statistics of the energy level distribution for quantum-
mechanical structures in which weak disorder ~or quantum
chaos! plays a fundamental role. The presence of an external
magnetic ®eld enhances the in ūence of the quantum ūc-
tuations on the properties of these mesoscopic systems. The
remarkable advances in nanostructure fabrication procedures
have also lead recently to a good deal of experimental and
theoretical studies of the properties of quantum dots, quan-
tum wires and, moreover, of quantum dot arrays3 ~QDA!
which can be obtained by a variety of techniques at semicon-
ductor surfaces and interfaces. All these mesoscopic struc-
tures exhibit a wealth of new interesting quantum phenom-
ena in an external magnetic ®eld and at low temperatures. In
particular, QDA ~as ``arti®cial crystals'' ! offer the possibility
of investigating situations not accessible in natural crystals
for the magnetic ®elds that can be produced in normal labo-
ratory conditions.

On the other hand, a most celebrated quantum phenom-
enon, occurring at low temperatures in the presence of a
magnetic ®eld and assisted by the presence of weak disorder
in a two-dimensional ~2D! semiconductor heterostructure, is
the integer quantum Hall effect ~IQHE!.4 The plateaus in the
Hall conductivity are believed to be the result of current-
carrying edge states and localized bulk states.5 The transi-
tions between plateaus are due to localization-delocalization
transitions induced by the combined effects of the magnetic
®eld and disorder close to zero absolute temperature.6 The
behavior near a single IQHE transition ~QHT! can be de-
scribed in a number of ways, theoretically, in order to repro-
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duce the jump in the conductivity and other singularities near
the QHT. A model for the IQHE that is particularly suited to
the present work has been proposed and studied by Ludwig
et al.7 In this model, a square lattice hopping model is de-
®ned, with a ®xed half- ūx-quantum 1

2 F0 per plaquette de-
®ning the lattice spacing a , with both nearest-neighbor and
next-nearest-neighbor hopping processes considered in the
presence of a staggered chemical potential and suitable forms
of the one-particle disordered potential. In the continuum
limit, a→0 formally, and near the QHT this model yields a
valid description of the behavior near a single IQHE step.7,8

It would seem natural, therefore, to extend the model of
Ludwig et al. to the description of the QHT in a QDA sys-
tem. This has indeed been done,9 by taking into account the
ūctuations of the quantum levels pertinent to a single quan-
tum dot. The existence of a supporting lattice in the QDA
also makes the model of Ludwig et al., as extended and stud-
ied by Ziegler,9 physically more appealing. In this model a
QHT is indeed found and described in the proximity of the
transition point. It is found that the otherwise sharp QHT
step becomes rounded by the presence of level ūctuations in
the single dots.

In this paper we present an analytical characterization of
the ūctuations of the local density of states ~DOS! for a
QDA near the QHT, using the model and calculations pre-
sented in Ref. 9. Our calculation is interesting in its own
right for a good number of reasons. First and foremost, the
averaged DOS and the moments of its distribution due to
level statistics can be studied by means of Knight shift NMR
measurements, now becoming accessible for semiconductor
heterostructures.10 Another candidate technique for measur-
ing local DOS-related properties is the single-electron tun-
neling ~SET!,11 which provides an imaging of the local DOS
in ~bulk! semiconductors. A more detailed discussion will be
presented in the Conclusions, Sec. IV. Also, from the more
9789 © 1997 The American Physical Society
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theoretical point of view, it is of interest to characterize the
ūctuations near the QHT of an observable quantity like the
DOS, considering that in the absence of ūctuations in the
levels of a dot the DOS itself vanishes at the center of the
band, E50. When ūctuations are present, a semicircle law
is obtained for the averaged local DOS ^r(r)& which does
not vanish anymore at E50. The second moment of the
global DOS vanishes identically, but not that of the local
DOS

M 2~m !5^r~r,m !2&2^r~r,m !&2, ~1!

which we calculate in this work. Here, m plays the role of a
chemical potential which controls the density of fermions in
the system ~for details see Sec. II!. We ®nd thatM 2 diverges
near the point m5mc where ^r(r,m)& vanishes, indicating
that the level ūctuations are particularly strong near this
value of the energy. From the technical point of view, our
work represents an attempt to characterize quantum meso-
scopic ūctuations in a system of dimensionality D.1 with-
out applying the 21e expansion technique. Most approxi-
mate methods in fact deal with D50 systems in the end
~e.g., single dots, or aggregates of small metallic particles!
and more rigorous and/or numerical work has been done
chie ȳ for one-dimensional systems. An alternative approach
to random electronic systems remains, naturally, the above-
mentioned 21e expansion technique,12,13 which however
applies only to the scaling regime near the mobility edge.
Therefore, our contribution to this ®eld is instrumental for
extending theoretical research to systems of dimensionality
D52, as our calculations can indeed be implemented, with
some additional computational effort, for the characterization
of the higher moments of the local DOS, as well as of those
for the conductivity. As a further remark, we point out that
the straight quantum Hall system can be viewed as a meso-
scopiclike system itself in terms of the recently discovered14
universal conductance ūctuations between quantum Hall
plateaus near the QHT. This indicates, as con®rmed by very
recent numerical studies,15,16 that the characterization of the
electronic states in the presence of level ūctuations for 2D
electron-gas systems is of interest even before the complica-
tions of a periodic QDA structure are inserted in these de-
vices.

The paper is organized as follows. In Sec. II we de®ne the
details of the model and justify its applicability to the QDA
system in the close proximity of the QHT. This is a model
for quasiparticles ~quasielectrons! in a lattice of ``arti®cial
atoms'' ~the QDA!; the quasiparticle levels are subject to
some statistics with strong correlations of universal nature
and characterized by a Wigner-Dyson distribution.17,18 The
model is set up with a ®xed ūx 1

2 F0 per plaquette, but
although this may imply a ®xed value of the magnetic ®eld,
we stress that the presence of a ~staggered! chemical poten-
tial m allows one to tune the model in the close vicinity of a
QHT. The model includes a random potential, and we take
the point of view that a random ~Dirac! mass for the elec-
trons is adequate in capturing the physics of the level ūc-
tuations inside a single quantum dot. In Sec. III we brie ȳ
discuss the functional integral representation for the appro-
priate products of Green's functions, following standard
procedures.19,20 We set up a representation in terms of super-
®elds ~bosonic as well as fermionic! to take care of the av-
eraging over level ūctuations, and carry out a large- N
saddle-point approximation to evaluate the ®rst and second
moments of the local DOS near the QHT. This is a justi®ed
approximation when N'102 represents the number of single
quantum dot levels, but the case N51, representing the
straight quantum Hall system, can in principle also be de-
scribed by this approximation. We carry out the analysis for
the Gaussian ūctuations and present our results. These are
discussed in the conclusions, Sec. IV, where the connection
with some other recent papers on the subject is established,
as is the connection between our results and their possible
experimental veri®cation by means of NMR Knight shift or
SET measurements.

II. THE MODEL

A 2D array of quantum dots in a homogeneous perpen-
dicular magnetic ®eld can be modeled by a tight-binding
tunneling ~or hopping! Hamiltonian which, neglecting quasi-
particle interactions, takes the quadratic form H
5(Hr ,r8

a ,a8cr
a² cr8

a81H.c., with cr
a² creating a quasielectron at

QDA site r in single-dot level a51,2, . . . ,N . The matrix
elements Hr ,r8

a ,a8 are chosen as9

Hr ,r8
a ,a85Hr

~0 !a ,a8dr ,r81Hr ,r8
~ t ! da ,a81Vrdr ,r8da ,a8. ~2!

Here we take the point of view that the single-dot electronic
states are statistically distributed with matrix elements
Hr

(0)a ,a8 de®ned by the Gaussian unitary ensemble statistics:
^Hr

(0)a ,a8Hr
(0)b ,b8&5(g/N)da ,bda8,b8, g being the strength

of the level ūctuations depending on the nature of the inter-
actions and/or disorder and chaos inside a single dot. We
take, at least initially, the point of view that weak tunneling
processes take place between neighboring dots and within
the same single-dot energy levels. Strictly speaking our for-
mulation already contains tunneling between different neigh-
boring dots' energy levels via the random occupation of lev-
els pertinent to each individual dot. Here, tunneling diagonal
in the level indices will be assumed as realistic for the actual
calculations and we take the tunneling rates to be nonvanish-
ing only between nearest-neighboring and next-nearest-
neighboring dots. These rates take into account the presence
of a magnetic ®eld that can be thought of as ®xed at the
value B5F0/2a2, in correspondence with the spacing a
~typically3 one has a5100±500 nm! between the dots. In the
Landau gauge, the tunneling Hamiltonian matrix elements
read @setting r5(x ,y) and indicating with ex and ey the lat-
tice unit vectors#

Hr ,r8
~ t !

5tepiy /adr8,r1ex1tdr8,r1ey6it8epiy /adr8,r1ex6ey

1H.c. ~3!

Finally, the potential Vr represents an additional ~e.g., elec-
tric! external ®eld and can be regarded as a staggered chemi-
cal potential: Vr5(21)x1ym , which opens a gap 2m in the
spectrum of the quasielectrons. For the ``simple'' IQHE situ-
ation, the model reduces to its N51 limit and corresponds to
the model proposed for the QHT by Ludwig et al.7 We as-
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sume for the QDA that the separation a between the dots is
much greater than the dots' size.

Now, following a standard procedure,7,8 the model ~2! is
reduced in the continuum limit ~formally a→0) and for long
wavelengths to an equivalent 2D Dirac Hamiltonian8,9

Hab5i~s1¹11s2¹2!da ,b1s3Mab ~a ,b51, . . . ,N !.
~4!

¹ is here the 2D ~lattice! gradient operator, s j are Pauli
matrices, and M is a random mass matrix with mean
m[m2t8: M r

ab5mda ,b1dM r
ab with ^dM r

abdM r8
a8b8&dM

5(g/N)da ,b8da8,bdr ,r8. The tunneling rate t is scaled out in
the Hamiltonian. Therefore, m is measured in units of t and
the ūctuation parameter g is measured in units of t2. This
model, for N51 and within a saddle-point approximation,
describes the jump in the conductivity characterizing the
QHT and displays for the local DOS a characteristic semi-
circle law.8,20 The transition is driven either by changing the
external ®eld or, equivalently, as will be argued in this work,
by changing the chemical potential m .

In principle there can be three different types of random-
ness: a random Dirac mass, a random energy, and a random
vector potential. We believe, however, that the random mass
alone correctly accounts for the effects of the level ūctua-
tions in the single quantum dots. The random vector poten-
tial does not break the time reversal symmetry of the mass-
less Dirac fermions. This is a strong restriction which
implies that the case of the massless model has very special
properties.7 Most remarkable is the fact that the average
DOS is singular and obeys a power law: ^r(E)&;Ea with
21,a,1. This is an unphysical behavior because the DOS
should be ®nite at the Hall transition. A ®nite DOS exists for
a random Dirac mass9,20 and for a random energy term.21
@Ludwig et al.7 obtained for a random Dirac mass the result
of a vanishing DOS at the Hall transition, using a perturba-
tive renormalization group calculation. Consequently, they
argued that only a combination of a random mass and a
random vector potential can lead to a nonzero DOS. How-
ever, a nonperturbative approach gives a nonzero DOS al-
ready for a random Dirac mass,9 proportional to exp(2p/g).#
The random Dirac mass creates spontaneously a contribution
proportional to the random energy ~see Ref. 9 and Sec. III A
of this paper!. This implies that including the random energy
will not lead to a qualitative change of the effect of the
random Dirac mass.

Results from previous calculations with this model will be
recalled below; here it suf®ces to notice that the Green's
function G5(H1ies0)21 has special properties because of
the Lorentz invariance of the Dirac theory. In particular we
will make use in the following of the relation
(G11,rr

aa )*52G22,rr
aa . Here, and in the following, s0 is a con-

venient notation22 for the 232 unit matrix.
As a last remark about the model, we now clarify the role

of the ``®xed'' magnetic ūx per plaquette. The physical
parameter of the model is not the magnetic ūx, but the
®lling factorn5nF0 /B (n is here the density of particles, B
the external magnetic ®eld!. n can be written as the total
number of particles divided by the total area of the system.
Since the particles are noninteracting fermions, there are at
most N particles, if N is the number of lattice sites. The local
DOS is symmetric around E50. This implies that there are
N/2 particles at E50. On the other hand, the lattice can be
divided into plaquettes of four lattice sites each. The ūx
through each plaquette is F0/25a2B , if a2 is the area of the
plaquette. Taking into account that there are N plaquettes ~in
the thermodynamic limit, when boundary effects can be ig-
nored!, we can write for the ®lling factor

n5~N/2!F0 /~Na2B !5~N/2!F0 /~NF0/2!51. ~5!

Hence, the ®lling factor is 1, regardless of all other model
parameters.

A. Second moment of the local DOS

According to standard Green's function theory, the local
DOS ~LDOS! is obtained from

raa~r ,M !5
1
p
Im@G11,rr

aa 1G22,rr
aa #

5
i
2p

@G11,rr
aa 1G22,rr

aa 2~G11,rr
aa !*2~G22,rr

aa !*# . ~6!

For the tight-binding model without magnetic ®eld this im-
plies that one has to evaluate the two-particle Green's func-
tion with opposite signs of the frequency ~advanced and re-
tarded Green's functions ! in order to get the second moment
of the LDOS.19,28 This is the same problem as in the evalu-
ation of the conductivity. In the model with half a ūx quan-
tum per plaquette, however, we can use the relation
(G11,rr

aa )*52G22,rr
aa to write

raa~r ,M !5
i
p

~G11,rr
aa 1G22,rr

aa !, ~7!

and consequently

raa~r ,M !rbb~r ,M !

52
1

p2 ~G11,rr
aa 1G22,rr

aa !~G11,rr
bb 1G22,rr

bb !. ~8!

In this way we set out to evaluate

M 2
ab5^raa~r ,M !rbb~r ,M !&dM

2^raa~r ,M !&dM^rbb~r ,M !&dM

52
1

p2 ~^G11,rr
aa G11,rr

bb &dM2^G11,rr
aa &dM^G11,rr

bb &dM

1^G11,rr
aa G22,rr

bb &dM2^G11,rr
aa &dM^G22,rr

bb &dM !1@1↔2# .

~9!

III. FUNCTIONAL INTEGRAL REPRESENTATION

By means of a standard representation, we write, quite
generally20

Grr , j j
aa 52iE xr , j

a xÅr , j
a exp~2S1!)

r
dFrdFÅr

[2i^xr , j
a xÅr , j

a &S , ~10!
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and consequently

Grr , j j
aa Grr ,kk

bb 5E xr , j
a xÅr , j

a Cr ,k
b CÅr ,k

b exp~2S1!)
r

dFrdFÅr

[^xr , j
a xÅr , j

a Cr ,k
b CÅr ,k

b &S , ~11!

with the supersymmetric action ~sum convention for a)

S152iseH @F ,~H01es0!FÅ#1(
r

dM r
aa8~Fr

a8
•s3FÅr

a!J ,
~12!

where se5sign(e) and the ®eldFr , j
a 5(Cr , j

a ,xr , j
a ). The ®rst

component is Grassmann and the second complex. We notice
that the normalization of the functional integral in Eq. ~11! is
due to the combination of Grassmann and complex ®elds.
Averaging with Gaussian distributed ūctuations in the
``masses'' M r

ab yields exp(2S2)5^exp(2S1)&dM , with

S252ise@F ,~H01es0!FÅ#1
g
N(

r
~Fr

a
•s3FÅr

a!2.

~13!

Thus we have derived an effective ®eld theory forF which
serves as a generating functional for the averaged Green's
function. It is important to notice that not only dM creates
the fermion-fermion interaction in Eq. ~13! but that also
other types of randomness can do this job. For instance, the
interaction can also be created by a term which couples to a
matrix ®eld (m51, . . . ,4 includes the complex and Grass-
mann components!:

expF2
g
N(

r
~Fr

a
•s3FÅr

a!2G
5E expF2~N/g !( QÃr;m ,m8~s3!m8QÃr;m8,m~s3!m

2i( QÃr;m ,m8Fr ,m8
a FÅr ,m

a GD@QÃ# , ~14!

with the supermatrix
QÃ5S Q QÅ

Q 2iP D . ~15!

The ®eldF appears only in a quadratic form on the right-
hand side. Therefore, it can be integrated out. This leads to

^Grr , j j
aa &dM5E G11,j jexp~2NS3!D@Q ,P ,Q#[^G11,j j&Q ,

~16!

and consequently

^Grr , j j
aa Grr ,kk

bb &dM5E ~2G12,k jG21,jkda ,b1G11,j jG22,kk!

3exp~2NS3!D@Q ,P ,Q#

[^2G12,k jG21,jkda ,b1G11,j jG22,kk&Q ,
~17!

where we have de®ned

G5S G0
2122tQt 22tQÅt

22tQt G0
2112itPt

D
rr

21

. ~18!

Here G05(H01ies0)21, t5As3, H0[^H&5(s1¹11
s2¹2)1s3m , and
S35
1
gTrgS Q QÅ

Q 2iP D 1lnFdetgS i~H11ies022tQt ! 22itQÅt

22itQt i~H11ies012itPt !
D G , ~19!
where we have introduced the graded ~or19 super-! trace and
determinant. This implies for the local DOS

1
N(

a
^raa~r ,M !&dM5

1
Np(

a
(
j

^xr , j
a xÅr , j

a &S

5
i
gp(

j
^@tQrt# j j&Q . ~20!

For the correlation of the local DOS, it follows that
M 2
ab5

1
p2 (

j ,k51

2

@^G12,k jG21,jkda ,b2G11,j jG22,kk&Q

1^G11,j j&Q^G11,kk&Q# . ~21!

A. Saddle-point approximation

The number of levels N appears in front of the action.
Thus the effect of level ūctuations for N→` can be evalu-
ated within a saddle-point approximation ~SPA!.20 The SP
equation reads
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d

dQF1g TrQ21lndet~G0
2122tQt !G50. ~22!

A second SP equation appears from the variation of P by
replacing Q→2iP . As an ansatz we take a uniform SP so-
lution Q052iP052(1/2)@ ihs31mss0# . Then Eq. ~22!
leads to the conditions h5hgI , ms52mgI/(11gI) with
the integral I5*@(m1ms)21h21k2#21d2k/2p2. There is
both a trivial and a nontrivial solution, h50 and hÞ0. The
latter is possible for m2,mc

2 with mc52exp(2p/g). This
means the level ūctuations shift the energy e→e1h and
the Dirac mass m→mÅ5m1ms , where h(m) and ms(m) are
solutions of the SP equation ~22!. The sign of h is ®xed by
the condition that h must be analytic in e; this leads to
sign(h)5sign(e). It is important to notice that h is propor-
tional to the energy and not to the mass. That means the
random Dirac mass creates spontaneously a contribution
which would be expected from a random energy term. This
fact indicates that an additional random energy term may not
qualitatively change the properties of the random Dirac
mass.

The average local DOS can now be directly calculated
from Eq. ~20! in SPA,

^raa~r ,M !&dM'
h

pg 5
1

2pg
Amc

22m2Q~mc
22m2!,

~23!
where Q(x) is the Heaviside step function. We see that a
semicircle law is reproduced. In the following we will con-
sider only the regime where the average local DOS is non-
zero, i.e., m2,mc

2 .

B. Gaussian ūctuations

In order to evaluate the second moment of the local DOS
the Gaussian ūctuations around the SP must be calculated.
Since Q , P , and Q are 232 matrices, the ūctuations can
also be parametrized as four-component vector ®elds:
q15dQ11 , q25(dQ121dQ21)/2, q352i(dQ122dQ21)/2,
q45dQ22 with analogous de®nitions forp1 , . . . ,p4 and the
Grassmann ®eld c1 , . . . ,c4 with c25(Q121Q21)/2 and
c352i(Q122Q21)/2. The action of the Gaussian ūctua-
tions reads, in Fourier representation20

S'E (
m ,m851

4

~Ik!m ,m8~qk ,mq2k ,m81pk ,mp2k ,m8

12cÅk ,mc2k ,m8!d
2k , ~24!

with the ūctuation matrix Ik . The stability matrix reads
I~k8!5S I11 I12 I13 I14
2I12* /r I22 I23 rI12
2I13* /r I23 I33 rI13

I14* 2I12* 2I13* I11*
D, ~25!

with r5m/m* and m5m/21ih . In particular, for a vanishing wave vector we have

I~k850 !5S 1/g2m*2/2pumu2 0 0 1/g21/2p

0 2/g21/p 0 0
0 0 2/g21/p 0

1/g21/2p 0 0 1/g2m2/2pumu2
D . ~26!

Thus the Gaussian ūctuations are always massive except for the critical points m56mc . This re ēcts the discrete symmetry
of the Hamiltonian ~4! ~for a more detailed discussion of the symmetry properties see Ref. 20!. For k8;0 we obtain

I1151/g2m*2/2pumu2, I125
m*

2pumu
k28
umu

, I135
m*

2pumu
k18
umu

,

I1451/g21/2p1o~k82!, I235
1
2p

k18k28
umu2

, I22/3352/g21/p , ~27!

that is, I14 is real.

C. Expansion of G

Retaining only terms up to the second order, we have

^G12,k jG21,jkda ,b2G11,j jG22,kk&Q1^G11,j j&Q^G11,kk&Q'4da ,b^@G0tQtG0#rr ,k j@G0tQÅtG0#rr , jk&dQ , ~28!

with
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G05S ~H022tQ0t1ivs0!
21 0

0 ~H022tQ0t1ivs0!
21D . ~29!

Now we have to perform the Grassmann integrations, ending up with

^Q j8 j9,r8Q
Åk8k9,r9&dQ5U j8 j9,nUk8k9,n8

T ^cn ,r8c
Å

n8,r9&dQ5~1/2!U j8 j9,nUk8k9,n8
T Ir8r9,nn8

21 , ~30!

with the unitary matrix

U5
1
A2S 1 0 0 0

0 1 2i 0
0 1 i 0
0 0 0 1

D . ~31!

The stability matrix ~26! has one zero eigenvalue if m is real, i.e., for m56mc . Consequently, there is a singularity in the
Fourier components of I(k) at k50. The leading behavior in the k;0 asymptotics of I21 can be extracted as

S ^Q11QÅ11&dQ ^Q11QÅ22&dQ

^Q22QÅ11&dQ ^Q22QÅ22&dQ
D 5

1
2S I1121 I14

21

I41
21 I44

21D 5
21/4

12cos~2x !1~g/2pumu2!cos~x !k2S 22p1e2ixg 2p2g
2p2g 22p1e22ixg D ,

~32!
where m*5umue ix. We consider weak ūctuations: higher
order contributions in g in the numerator and in the coef®-
cient of k2 have been neglected. We make use of the follow-
ing approximation

~H022tQ0t1ivs0!rr8
21'dr ,r8E ~ umu21k2!21

3d2k/~2p !2S m* 0
0 2m D

5~1/4p !dr ,r8ln~11l2umu22!

3S m* 0
0 2m D , ~33!

where l is a UV cutoff. For simplicity, we assume in the
following l51. Then the second moment of the local DOS
reads

M 2
ab5dabp22(

l ,l8
g l
2g l8

2 t l
2t l8

2 E K l ,l8~k !d2k/~2p !2,

~34!

with K1,15I11
21 , K1,25I14

21 , K2,15I41
21 , and K2,25I44

21 , and
g15m*ln(11umu22), g252g1* . Furthermore,

M 2
ab5da ,bp22@2Rem*4~2p2e2ixg !

22umu4~22p1g !#CE $12cos~2x !

1@gcos~x !/2pumu2#k2%21

3d2k/~2p !2, ~35!

where C5@(1/4p)ln(11umu22)#4/2. The factor in front of
the integral reads also

p22$4p@cos~4x !11#22g@cos~2x !11#%umu4. ~36!
Integration with respect to k gives

E $12cos~2x !1@gcos~x !/2pumu2#k2%21kdk/2p

;2
umu2

2gcos~x !
lnH 12cos~2x !

12cos~2x !1@gcos~x !/2pumu2#J .
~37!

Then

M 2
ab'2da ,bC

4umu6@cos~4x !11#

gcos~x !

3lnH 12cos~2x !

12cos~2x !1@gcos~x !/2pumu2#J . ~38!

IV. DISCUSSION

Making use of the evaluation described above, we can
now display and discuss the dependence of M 2 on the effec-
tive chemical potential m5m2t8 and on the amount of
chaos or disorder in each single dot, g . According to the
average DOS ~23! there is a narrow band of bulk electronic
states. Moreover, there are also edge states which carry the
Hall current for m.mc . In the following we will discuss
only the bulk states. At the band center the second moment
of the LDOS is M 2

ab5dab(mc/2g)4/p . The ratio AM 2/r at
m50 then is Apmc/2g .

Figure 1 shows the dependence of M 2 ~suitably scaled! on
the parameters m and g . This ®gure, obtained for typical
values of the parameters, displays an interesting dramatic
increase as a function of m for the second moment M 2 of the
local DOS as the edge of the energy band, m5mc , is ap-
proached. This ~logarithmic! divergence of M 2 at the edge of
the band indicates a power law singularity for the ūctua-
tions near the QHT. This is in agreement with the results of
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FIG. 1. Second moment M 2 of
the local density of states ~LDOS!
as function of effective chemical
potential m and strength of level
ūctuations g .
the 21e expansion.23,24 Also, notice that, as they should, the
ūctuations decrease as randomness decreases, except in the
vicinity of m5mc . To our knowledge, these results, ob-
tained for a realistic lattice of ``arti®cial atoms,'' have not
been discussed before ~but see, however, below!. The data in
Fig. 1 show quite clearly the presence of important ūctua-
tions in the local DOS as a consequence of single-dot level
ūctuations, the ūctuations becoming perhaps critical at the
edge of the band.

The level ūctuations for an isolated quantum dot are de-
scribed by a single random matrix s3Mab which remains
from the Hamiltonian of Eq. ~4!. The random matrix has, in
contrast to the full Hamiltonian ~4!, a continuous unitary
symmetry. This generates in the N→` limit a saddle-point
manifold which we have to integrate out. The remaining
functional is a zero-dimensional nonlinear s model28 for the
evaluation of the ūctuations of the DOS. The crossover
from the fully coupled quantum dots to isolated dots can be
achieved by decreasing the tunneling rates t and t8. Since
t was scaled out in the Hamiltonian, we must study for
this purpose the rescaled mass m/t and the rescaled disorder
parameter g/t2. Sending t→0, mc goes like 2t/
Aexp(2pt2/g)21→A2g/p . Therefore, the level ūctuations
create a broad ``band'' which is surpressed by the tunneling
term to a much narrower band. Moreover, the ūctuations of
the local DOS are also reduced by the tunneling between the
quantum dots.

Notice that the strength of the ūctuations in the local
DOS depends on the parameter m5m2t8. This requires tun-
ing the value of the chemical potential m or of the next-near-
neighbor hopping t8. Both could be achieved in experimen-
tally realizable QDA by means of a varying gate voltage or a
suitable design in the gate structure and in its voltages.

It is important to discuss, at this point, the relevance of
our calculation for perspective experimental observations on
QDA. To our knowledge the local DOS can be accessed
experimentally by two possibilities: the Knight shift of the
NMR ~nuclear magnetic resonance! line shape due to the
electron polarization25 and the SET ~single-electron tunnel-
ing! technique.11 From these measurements one can gain ac-
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cess to the statistics of the local DOS mesoscopic ūctua-
tions.

A. NMR Knight shift spectroscopy

We begin by discussing the NMR Knight shift technique,
which has recently witnessed considerable revival both for
mesoscopic semiconductor structures and for high-
temperature superconductors. For zero-dimensional meso-
scopic structures ~single dots, small metallic particles, or ran-
dom aggregates of these! the Knight shift method has been
discussed by Efetov and Prigodin19,26 and by Fal'ko and
Efetov.27 For the one-dimensional disordered metal a related
discussion for the connection between the local DOS and the
Knight shift can be found in the work of Altshuler and
Prigodin.28 Here we give a formulation for the Knight shift
in a 2D QDA. We adapt the treatment for the Knight shift in
a traditional solid ~like, e.g., Li! ~Ref. 25! to the situation in
which a ~2D! solid of ``arti®cial atoms'' is considered. As-
sume that a tight-binding description of quasielectron tunnel-
ing ~or hopping! is appropriate ~as advocated in the calcula-
tion of the previous sections! and that a single-dot con®ning
potential approximately of the square-well type can be used
to describe the single ``atomic'' levels $Ea ,wa(r)% of a
single dot. Then a ``band-structure'' approach becomes a
realistic calculation of the energy levels of the entire 2D
QDA made up of these ``atoms'' and we can envisage the
creation of ``bands'' of energy states from each ``atomic''
level Ea . We label the 2D QDA energy levels, therefore,
Ea(k)5Ea1(de ik•d and these will normally overlap due to
the closeness of the levels Ea of the single dots. By building
the many-electron wave function in the normal way, the hy-
per®ne interaction Hamiltonian can be averaged over the
electronic degrees of freedom to give the contribution to the
nuclear Hamiltonian arising from the electron polarization in
the QDA that ultimately leads to the Knight shift formula,

Dv~r!
v0

5
8p

3 E d«x~« !r~r,« !^uu«~r!u2&uEa~k!5« , ~39!

at the nuclear site r. In the above formula, beside the local
DOS which is the subject of the present investigation, appear
also the single dot wave function u«(r) ~averaged over an
equal-energy surface! and the electron spin susceptibility

x~« !5
1
H0

ge\
1
2 „f ~« ,2 1

2 !2 f ~« , 1
2 !…

'
~ge\ !2

8kBT
1

cosh2S «2EF

kBT
D , ~40!

where the approximation holds at low temperatures @where
the Fermi distribution function f (« ,ms) can be expanded#.
Since the low-temperature form of x(«) is d-like, we essen-
tially get that the Knight shift is proportional to the local
DOS, evaluated at the Fermi level, however through a mul-
tiplicative constant that is in principle also randomly distrib-
uted, in a way that is beyond the scope of the present treat-
ment. We conclude with the form
Dv~r!
v0

'
8p

3 ^uu«~r!u2&u«5EF
x~EF!r~EF ,r!, ~41!

for the expected Knight shift from a QDA. If we assume that
the wave function at the Fermi level has much smaller ūc-
tuations than the local DOS, then the moments of the local
DOS can be extracted by looking at the moments of the
Knight shift itself.

B. Single-electron tunneling spectroscopy

SET spectroscopy is well known as a tool for the investi-
gation of discrete single- and few-electron energy states in
quantum dots.29 Lerner and Raikh30 have proposed to apply
the technique to study the weak-localization effects in disor-
dered heterostructures, and the use of SET spectroscopy for
imaging the local DOS in a disordered ~bulk! semiconductor
heterostructure has been recently reported.11 Thus, SET
spectroscopy appears to be a promising tool for an experi-
mental investigation of local DOS ūctuations in a QDA.

Lerner and Raikh30 show that, for the resonant-tunneling
junction geometry, the measurement of the conductance G t
gives direct imaging of the local DOS, r:

G t5
pe2SG0

2k\
r , ~42!

with G0, k , and S geometrical parameters. A more compli-
cated treatment ensues for a disordered material in the junc-
tion's barrier. The conductance presents mesoscopic ūctua-
tions at low temperatures and one can show30 that the second
moments of local DOS and conductance are related by the
formula

M 2~G t!

^G t&
}
M 2~r !

^r&
. ~43!

However, Schmidt et al.11 propose a double-barrier tunnel-
ing experimental geometry which leads through the measure-
ment of the I-V characteristic to the relation

dG~r!5d~dI/dV !}d„dr~r,E !/dE…, ~44!

for the local ūctuations of the conductance G of the disor-
dered sample. Thus, SET spectroscopy can provide informa-
tion, in principle, to local DOS statistical properties perhaps
also in the case of a QDA setup.

We mention, before concluding this subsection, the pos-
sibility of imaging the local DOS for surface electronic states
also by means of scanning-tunneling microscopy.31 This
technique also relies on the measurement of the differential
conductance, dI/dV , at local sample's sites; from this, the
shape of the local DOS and its ūctuations' statistics can be
reconstructed. This technique is perhaps more suitable for
2D systems like our QDA.

Whether from the Knight shift in NMR or from the con-
ductance in SET experiments, the measurement of the value
of the local DOS in a real QDA should allow ~via, e.g.,
repeated measurements! for a statistics of its ūctuations and
the experimental determination of M 2. This will be an indi-
rect observation of the existence of level ūctuations in
single quantum dots.
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C. Beyond 2D: d521e , 1 and 0 dimensions

In dimensions higher than d52, there already exist cal-
culations of the second moment of the local DOS for the
situation in which randomness creates a mobility edge in the
Anderson transition for a disordered metal.32 These calcula-
tions are based on 21e-type expansions on the Q-matrix
nonlinear s model and lead to the result that M 2
;(E2EC)2m2 with m2521O(e). This shows the existence
of the possibility of a divergence for the second moment of
the local DOS near the mobility edge. Although the Ander-
son transition situation is not exactly the same QDA problem
treated in the present paper, nevertheless these calculations
show that a divergence of M 2 is to be expected.

In lower dimensions, we recall the work of Altshuler and
Prigodin, for d51,28 and of Efetov and Prigodin, for d50
~Ref. 26! ~a single dot in our picture!, for the case of a
disordered metal. In d51, exact diagrammatic techniques
can be employed to work out the entire probability dis-
tribution for the local DOS of a weakly disordered metal.
The resulting distribution depends strongly on the type
~open or closed! of boundary conditions. Finally, in d50 the
nonlinear-s-model calculations involving supersymmetry of
Refs. 19,26 can be employed.
D. Conclusions

We have shown how, by means of the technique of Dirac
fermions in d52, one can characterize the distribution of the
ūctuations of the local DOS in the proximity of an IQHE
transition. We have restricted the calculation to characterize
the second moment M 2(r), but in principle also the higher
moments can be evaluated ~with increasing technical dif®-
culties!.

We have made extensive use of the fact that in the Dirac
fermions approach one is dealing with a unique saddle-point
solution, unlike in the case of the nonlinear-s-model ap-
proach. This is a consequence of the discrete symmetry of
the model of Ludwig et al.7 for the case of a random mass,
which we use for our calculations. This simple structure of
the saddle-point solution made the 2D calculation possible.
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