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Abstract. - Electrons on a square lattice with half a flux quantum per plaquette are considered.
An effective description for the current loops is given by a two-dimensional Dirac theory with
random mass. It is shown that the conductivity and the localization length can be calculated from
a product of Dirac Green’s functions with the same frequency. This implies that the delocalization
of electrons in a magnetic field is due to a critical point in a phase with a spontaneously broken
discrete symmetry. The estimation of the localization length is performed for a generalized model
with N fermion levels using the Schwarz inequality and a 1/N-expansion. An argument for the
existence of two Hall transition points is given in terms of percolation theory.

Lattice models for the two-dimensional electron gas in a strong magnetic field are of
increasing interest because of recent experiments with GaAs heterostructures [l]. Moreover,
lattice models offer new ways to the study of the quantum Hall transition. The purpose of this
article is to discuss a concept for the investigation of the localization length of the lattice
model.

The tight-binding Hamiltonian for non-interacting electrons on a square lattice with
magnetic flux $J reads, in Landau gauge,

H = -tx [exp [2ingq5/@0] c?(r + ex )c ( r )  + c t (r  + e,) c(r) +h.c.] + 2 V(r) e t  ( r ) c ( r ) .  (1)
ex, are lattice unit vectors, and c and c are fermion creation and annihilation operators,
respectively. V(r) is a potential which represents an additional structure or disorder on the
lattice. The dispersion for V =  0 and half a flux quantum per plaquette (q5 = q50/2) is E =
= +2t qcosz ICl + cos2 kz. A linear (relativistic) approximation for E - 0 around the four
nodes kj = + n / 2  is possible. For H this is still very complicated [2], and a further
simplification is useful to lift the degeneracy of the four nodes. This can be achieved by the
introduction of a next-nearest-neighbour hopping term and a staggered potential in H [3,41.
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In this case only one gap opens at the quantum Hall transition. Expansion of k =
= ( 4 2 ,  n/2) + p for small p vectors leads to the large-scale approximation by the Dirac
Hamiltonian H ' = u . p  t u3M with Pauli matrices uj . Disorder, originally introduced in H by
a staggered random potential V, is described in H '  by a random mass M [3]. The random mass
model is probably not in the universality class of the network model of Chalker and
Coddington [5] because the latter takes a random phase (i.e. a random vector potential in the
Dirac representation) into account. According to a recent study [4] the large-scale
approximation by a Dirac model is valid if only one gap opens at the quantum Hall transition.
This is in agreement with our model because the degeneracy of the nodes was lifted by the
next-nearest-neighbour hopping term and the staggered chemical potential. Physical
quantities can be obtained from the Green's function

where the Fourier component of h is pl - ipz . For instance, the frequency-dependent conduc-
tivity is given by Kubo's formula u,(w) = ( e 2 / h ) 0 2 C  r2(Gjjt (r,  0; iw)Gjvj(O,  r; - iw)) ,
where G ~ ,  ( r ,  0; i ~ ) G ~ , ~ ( 0 ,  r ;  - i w )  = (G j j f  (r,  0 ;  i w ) I 2 .  The localization length c1 is defined
as the decay of the function Cjjj ( r ,  0) = ( 1 Gjj j  ( r ,  0; i w )  I ') in space. There exists a relation of
the above expression, which is composed of Green's functions at  frequencies with opposite
sign (retarded and advanced Green's functions), with a product of Green's functions at  the
same frequency. This follows from the block matrices in (Z) ,

Gjj(r,  r ' ;  - i w )  = -Gjjjr(rf, r; i w ) ,  (3)
This identity reflects the Lorentz covariance of the Dirac theory. It implies IG$(r, r ' ;  i w )  1 '  =
= -Gjj(r,  r ' ;  iw)Gjvj1(r, r ' ;  i w )  IGjjl(r, r ' ;  io)/'= -Gjpj(r ,  r ' ;  iw)Gj jp(r ,  r ' ;  iw) .
That means only the Green's function with one frequency is required for the evaluation of
transport or localization properties in the present model.

The physics of the electrons can be understood as the statistics of current loops, created
by the magnetic field. Depending on the potential, there are local current loops with two
different directions. This observation is central for the understanding of the Hall transition
discussed subsequently. The current loops are composed from the Dirac fermions by the
creation and annihilation of particle-hole pairs. The direction can be reversed globally by a
time-reversal transformation. In terms of the Green's function this means G(w)+
-+ - u3 G(o)  0 3 ,  In general the system is not invariant under this transformation because
one direction of the currents is favoured. The favoured direction characterizes the electronic
state of a Hall plateau. The transition between the Hall plateaux corresponds to a symmetric
point with w = M = 0 which is also a critical point with a divergent localization length. The
discrete symmetry at this critical point plays a fundamental role for the lattice electrons in a
magnetic field. Taking now a random mass, which is symmetrically distributed around zero,
this symmetry is spontaneously broken for the average Green's function[61. It will be
discussed in the following that the localization length also diverges at  two critical points in
the presence of disorder where the symmetry is broken. This is an extension of a previous
work[7] where the Hall conductivity was calculated. Critical points with a divergent
localization length in a symmetry-broken regime are known from Anderson localization in
systems without magnetic field and dimensionality d > 2. However, the physics of the latter
is different because there are no current loops. As a manifestation of this difference a
continuous symmetry appears [8] instead of discrete symmetry found for localization in the
presence of a magnetic field. The large-scale approximation for the continuous symmetry

G ~ , ( r ,  r ' ;  - i w )  = -Gj j t ( r ' ,  r; io) ( j # j ' ) .

and
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leads to a non-linear sigma-model contrary t o  the Dirac theory in the presence of the magnetic
field.

The Schwarz inequality can be applied to get a lower bound for C:

/ ( G j j * ( ~ ,  0; i ~ ) G j v j W ( O ,  r ;  i w ) ) ( ' S  ( l G j j * ( ~ ,  0; iw>I2)( I G j ~ j ~ ( 0 ,  r ;  iw)(') (4)
with j f l  = j ,  jr,r = j '  or j f f  - - j f ,  j"l = j .  Writing Cji(r, o) I (Gj j ( r ,  0; i w ) G j t j f ( O ,  r ,  iw) )  and
Cj(if(r, U )  I (Gj jp(r ,  0; iw)Gjpj(O,  r ,  io)) one has ICj(ir(r, o)l S ICap(., w ) I .  C' will be used
subsequently because it is easier to calculate than C. The average correlation functions are
translational invariant. Therefore, the corresponding Fourier components C(k, w )  can be
used to calculate the localization length

A simple calculation for the pure system gives t1 = \MI -'. To evaluate the correlation
function C' (T ,  w )  a generalization of the Hamiltonian H' is introduced which describes N
levels of fermions per site [7]: Ha"' = HF' - 6 M Y '  u3 (a,  a ' = 1, 2, . . . , N> with H,""'=
= ( a - p  + (M)a3)6""'. The distribution of the Hermitian random matrix (a Gaussian unitary
ensemble [9]) 6M is given by ( 6 M Y '  6M$'"") = (g/N)6"""6"'a"6r, r t .  That means only the
random fluctuations couple the N different Dirac systems. This model has the advantage that
a f i t e  band of states is created due to disorder in the limit N +  00 and in the expansion
around this limit. Thus the limit N +  03 mimics a system with finite fluctuations. The Hall
transition is then due to the opening of a gap for sufficiently large values of 1 ( M )  1 (cf. [7]).
This behaviour is similar to the Hall transition on a pure lattice where the transition is also
due to the opening of a gap [4,10]. An alternative picture is related to strong disorder with
unrestricted fluctuations (e.g., a Gaussian distribution) and finite N .  In this case the average
density of states is non-zero for any value of (44). Then the correlation function C' decays
exponentially.

The product of two Green's functions with the same frequency can be expressed as a
functional integral [ll],

with the action (sum convention for the level index a)

U ,  = sign ( U )  and the field is @ F , j  = (U:,j, y,Rj). The first component is Grassmann and the
second is complex. The complex component is added to normalize the functional integral in
(6). It also provides a transparent representation of the product of Green's functions with the
same frequency as required for C and C ' .  Averaging with Gaussian-distributed fluctuations
yields (exp [ -SI I) = exp [ - Sz 1. 5'' is obtained from SI by replacing the second term by
(SIN)  2 ( @ ~ . a 3 @ ' ) ( @ F ' . u 3 @ ) .  This interaction term can also be created by complex
(2  X 2)-matrix fields Q, P and a complex Grassmann field I# which couple to the composite

field 2 @;@. The new field does not depend on a, the level index of the N-level fermions.

The level degree of freedom can be eliminated by integrating out the field @ in the functional

r

N

Q = 1
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integral. This leads to exp [ -NS(Q, P, q ) ]  with the action [12]

SCQ, P ,  V )  = ( l / g )  z [ T r 2 ( Q , ~ 3 ) 2  + T r 2 ( P , ~ ~ ) 2 1  +log det(Ho - 2Q + i w a o )  -

Since the number of fermion levels N appears in front of the new action, the limit N +  CO

corresponds to a saddle-point integration for the fields Q and P. I (k )  is the matrix of the
Gaussian fluctuations around the saddle-point solution Q = Qo + 6Q and P = iQo + 6P, where
Qo is the N + solution Qo = - ( 1 /2)[iyao + M ,  o3 1. M ,  is a shift of the average Dirac mass
and y shifts the frequency in the Green's function. Introducing m = ( M )  + M, as the effective
(renormalized) Dirac mass the imaginary shift is y = U, q e x p [  -2n/gl - m2 for Iml d
S exp [ -n/g]

The details of the derivation of S(Q, P, q)  from S2 and the evaluation of the saddle-point
integration can be found in ref. [12]. However, expression (8) can also be reconstructed using
the fact that Jexp [ - S1 ] d .. . = 1. The N + CO -limit gives Qo = - iPo which implies that the
large N-terms cancel each other in the action (8). First-order fluctuations do not contribute at
the saddle-point. And second-order fluctuations appear as quadratic forms of 6Q and 6P with
the matrix 1. Therefore, the condition Jexp [ - NS( Q, P ,  q)] d .. . = 1 is satisfied if a quadratic
form of / appears with a complex Grassmann field. This result reflects the supersymmetric
construction of the functional integral.

For the asymptotic behaviour of a large correlation length it is sufficient to consider k - 0.
If k = 0 the matrix I reads

m, and zero otherwise [12].

where p = m + i y ,  a=J (1p12+k2) -2d2k /4n2  and P = J k 2 ( 1 p 1 2 + k 2 ) - 2 d 2 k / 4 n 2 .  The
inner (2 X 2)-matrix of I(k = 0) is diagonal with positive matrix elements 2/g - 4a lp 1'. It
leads always to a finite correlation length. However, this part of I does not contribute to C'
because Cjj, = - l ) , j J  + 2vJ - 1) [12]. Therefore, only the projected submatrix (PI1 is the
projector on the indices 1, 4)

with positive constants AI, B1 is of interest here. It describes the critical behaviour of the
model due to one vanishing eigenvalue for k = 0 at two critical points m = k m, . The critical
points are also characterized by a vanishing imaginary part of the saddle-point Qo , i.e. at the
points of a vanishing density of states.

The Fourier components of C' are of the form ( ? ' ( I C ,  w = 0) = (2P + b k 2 / / l p 1 2 ) / ( a '++ b'k2/(p12),wherebandb'arefiniteconstantsanda' = Il/g - 2ap2 1' - 4p2.Equation(5)
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yields for the correlation length 5 of C' ,

and

5 - 5 ~ l r ~ l - ' ( m , 2 - m ~ ) - ~ / ~ ,  for Im( ~ m , .  (1lb)

For Iml b m, there are two characteristic regimes for the correlation length 5. One is
dominated by Iml < (l /g + (l /n) log lml)1/2,  the other by Iml > (l /g + (l /n) log Iml)1/2
with the crossover condition I m I = m, exp [nm2]. The latter gives a very small value of I m I
for weak disorder such that I m I > (1 / g  + ( 1/n) log I m I )ll2 holds for almost the entire range
of m. This implies a growth of the correlation length with I m I -' as small values of m are
approached. The asymptotic behaviour 6 - (m - m,)-'/' appears only in a very small regime.
The correlation length 6 can also be evaluated for m = m, and w f 0. This leads to a different
power law 5(w>-

An alternative approach, based on a different effective field theory with N = 1 for the
correlation function C, indicates that c1 behaves similarly to 5 [13]. The exponent v = 1 of the
localization length, found here as an effective exponent, agrees with recent measurements of
the quantum Hall transition in AlG&/G& heterostructures[l] and in Si MOSFETs[14].

On the other hand, numerical results for network models and lowest Landau level
approaches [5,15-171 suggest that the localization length diverges at  the critical point with
an exponent v = 7/3. The difference is probably due to strong random phase fluctuations
studied in the numerical calculations.

The existence of the two critical points ? m, , in contrast to the single critical point in the
perturbative approach of ref. [3], is a consequence of the spontaneous symmetry breaking
due to disorder which creates a non-vanishing density of states between the particle and hole
band of the Dirac theory. This non-perturbative phenomenon was discussed in ref. [6,7,12].
The single transition point of the other approaches to the integer Hall transition [5,15-181 is
either due to different models (Landau level approach vs. lattice fermions) or due to the fact
that the two transition points were not seen because of limitations of the numerical
resolution. (The distance of the two transitions is 2 exp [ - n/g] which is extremely small for
weak disorder. It can be hidden by finite-size effects.)

Two transition points are also supported by the percolation picture of the lattice model. In
this case a space-dependent Dirac mass M ,  is considered which is either zero with probability
p or M > 0 with probability 1 - p.  I.e. the average mass (1 - p ) M  is positive for p < 1. The
correlation length 5 is infinite for p = 1 because this is the symmetric point of the pure
system. For p c  < p < 1, where p ,  is the percolation threshold, the mass is non-zero on some
finite clusters of lattice sites according to percolation theory. A large effect on the correlation
length is only expected by the creation of an infinite cluster of lattice sites with non-zero mass
at the percolation threshold p = p,. If the argument is correct that the quantum Hall
transition is connected with classical percolation [19] and corrections due to quantum
tunnelling [5], then the transition should occur close to p = p,. Therefore, the critical point is
non-zero with M,  = ( 1 - p ,  ) M. Application of the transformation G + - u3 Gus to the Green's
function G(w = 0) replaces M by -M.  Thus -M,  is also a critical point.

In conclusion, it was shown that the transport of electrons on a square lattice in a strong
magnetic field and a random potential can be described by a product of Dirac Green's
functions with the same frequency. Therefore, the physics is characterized by a discrete
symmetry. The localization length diverges at  two different critical points. The critical
exponent was estimated by v b 1 in a wide intermediate regime and by v b 1/2 in a narrow
asymptotic regime.

for w - 0.
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