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PACS. 64.70.D~ - Solid-liquid transitions.
PACS. 64.70.Rh - Commensurate-incommensurate transitions.
PACS. 64.60.K~ - Multicritical points.

Abstract. - Polymer chains with hard-core interaction on a two-dimensional lattice are modeled
by directed random walks. Two models, one with intersecting walks (IW) and another with
non-intersecting walks (NIW) are presented, solved and compared. The exact solution of the two
models, based on a representation using Grassmann variables, leads, surprisingly, to the same
analytic expression for the polymer density and identical phase diagrams. There are three
different phases as a function of hopping probability and single site monomer occupancy, with a
transition from the dense polymer system to a polymer liquid (A) and a transition from the liquid
to an empty lattice (B). Within the liquid phase there exists a self-dual line with peculiar
properties. The derivative of polymer density with respect to the single site monomer occupancy
diverges a t  transitions A and B, but is smooth across and along the self-dual line. The
density-density correlation function along the direction x, perpendicular t o  the axis of
directedness has a power law decay l/s2 in the entire liquid phase, in both models. The
difference between the two models shows up only in the behavior of the correlation function along
the self-dual line: it decays exponentially in the IW model and as l / x4  in the NIW model.

A directed random walker makes steps along a given (2) axis only in one (forward)
direction. Random fluctuations are present in the transverse directions [l]. Such walks are
the subject of great interest since they may model diverse phenomena like polymers under
flow [2], tracer diffusion [3], electrorheological fluids [4], commensurate-incommensurate
phase transitions [5], vortex lines in high-T, superconductors [6,7], world lines of quantum
particles [8], the behavior of interfaces in 1 + 1 dimensions [9], some aspects of biomem-
branes [lo], etc. They share a number of properties of dimers [9] and vortex models [ll].

Directedness makes analytic calculations considerably easier, and a number of exact
results exist both for a single walk and cases with many walks.

In the present work we concentrate on some generic properties of random walks. We
introduce and solve exactly a model with non-intersecting walks. Using the same formalism,
we also obtain the solution of a similar model, which allows for intersections. The comparison
of the two models reveals some surprising effects. The interesting feature of our systems is
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Fig. 1. - The schematic representation of the lattice where the model presented in this work is defined.
The figure shows a typical configuration of some of the directed polymers.The use of periodic boundary
conditions in the x-direction is indicated explicitly. For more details see text.

that along with second-order phase transitions, observed in previous investigations of similar
models [12-141, they contain a self-dual line, with characteristics of yet another critical
phenomenon.

We first discuss the NIW model depicted in fig. 1. Chains are pinned with one of their
ends at x = 0. In order to avoid crossing of walks in the vertical direction only steps of length
2a are allowed, where a is the lattice spacing. Each such chain can be parametrized with two
indices, r and j .  Here r are lattice sites denoted by open circles in fig. 1. The index j takes
values 0 or 1. j = 0 if a site is an r-site, and, as a consequence, can be reached from another
r-site making two steps along the elementary vectors el (site O1 in fig. 1) or e3 (site O2 in
fig. 1). j = 1 for a site which can be reached from an r-site by making a single step in the
direction of the vector e3 (site Os in fig. 1) or from a j = 1 site directly below (site O4 in fig. 1).
Chains start at x = 0, at r-sites (also needed t o  avoid crossing). This is model A of ref. [14]
which was used to describe phase transitions in biomembranes. In the present article we
investigate correlations in this model (as well as in the IW model) to provide a deeper
understanding of the statistics than what can be obtained from the thermodynamic
properties studied in ref. [14].

We impose periodic boundary conditions both in the x and x directions. We assume a
hard-core potential between walks: chains repel each other with infinite energy upon contact.
Therefore, the contribution of the configuration in fig. 1 to the partition function is zero
because of point 04. We assign unit weight to a step in the vertical direction (with length 2a
along the vector el), and a weight w to a step along the diagonals of the elementary square.
The weight (fugacity) of an empty site is denoted by p. Introducing a pair of Grassmann
variables [ E l  { !Pr, j ,  F r , j }  for each lattice site, the configurations of our  system can be
generated from the partition function

Here LnY Ln'k" denotes the Berezin integration [151 over all Grassmannians, and, the lattice
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Green’s function is given by its Fourier components

exp [ikl 1 - i.r
w(l  + exp[ -&I )

w exp [ikl I( 1 + exp [ikz I)
exp [ikl 3 - l~

-G i l  =

The 2 x 2-matrix structure reflects the dependence on the index j = 0, 1; kl and kz are the
components of the two-dimensional momentum vector along the x- and x-directions,
respectively. On a lattice with N sites expression (2) leads to a free energy

In what follows we first outline the calculation of the density nr of lines at site Y and of the
density-density correlation function. The probability that a line goes through the site (Y, j ) is
given by

(4)

where the last equation follows from translational invariance. The average value in (4) is to
be calculated using the partition function given by (1) and (3). It is easy to see that n can be
expressed in terms of the Green’s function as

nr = (1 - ,up;, 0 Y;, 0 )  = n

n = 1 + r;  oo. (5)

The calculation of the Green’s function is tedious but straightforward. Starting from the
Fourier components of the Green’s function in (2), the diagonal matrix elements of G
read

By evaluating the double integral in (6 ) ,  we finally arrive at

Here T corresponds, respectively, t o  cases p > 1 and p e 1.
The result given in (7) corresponds to the phase diagram shown in fig. 2. lu = 1 ? 2w

(A and B, respectively, in fig. 2) are lines of phase transitions from a dense system of directed
polymers (n = 1) t o  a polymer liquid (0 < n e 1) and finally to a system without directed
polymers. Approaching the phase transition lines from the regions I1 and I11 along directions
parallel to the w-axis, one finds an/a,u - l/G, where E = 1 - (1 - ,u)/2w and E = 1 - ( p  - 1)/
/2w, respectively for the two cases. There is another critical phenomenon at  p = 1 (broken
line in fig. 2). Across this line the above partial derivative of the density varies smoothly.
This critical behavior can be understood from the density-density correlation function C,,,
which measure the correlation perpendicular to the polymer direction. Cx, is given in terms of
the Green’s function
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Fig. 2. Fig. 3.

Fig. 2.  - The phase diagram of the model. In regions I and IV, n = 1 and n = 0, respectively.
Fig.3. - The behavior of the density of polymer lines along lines w = 0.4 (full line) and w = 0.6 (dashed
line) in fig. 2.

as

Performing the kl integration in (8), one arrives at

with k* = cos-* [( 1 - p)2 /2w2 - 11 and a = 2w2 (1 + cos k 2 ) .  k* takes the values x and 0
along the line p = 1 and the transition lines p = 1 ? 2w, respectively. The calculation of the
integral in (10) is an exercise in complex contour integration, and in the large-x limit can be
performed analytically for any value of k*, with the result

for k* = n,

Finally, the density-density correlation function decays as l / x4  along the line p = 1 and as
1/x2 elsewhere in the liquid phase.

The special property of the line p = 1 is also elucidated by noting that the expressions for
the density of polymer lines, given in (7) are invariant under a <<duality transformation,) p +
+ l /p  and w + w/p. This duality at p = 1 reflects the equivalence of directed polymer lines
and lines of empty sites on the lattice. p = 1 is a self-dual line along which polymers and
empty sites compete with the same weight. This competition leads t o  a faster decay of the
density-density correlation function.

In regions I and IV in fig. 2, n has the values 1 and 0, respectively. Figure 3 shows the
behavior of n along the lines w = 0.4 and w = 0.6.

If the restrictions imposed on the model as defined above (only steps of length 2a are
allowed in the vertical direction, chains must start at  x = 0, at r-sites) are relaxed, the model
describes a system of intersecting random walks. The analogous calculations for the partition
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function (g), density of lines (E) and the correlation function (E,) are even simpler in this case
(one deals with a simple Bravais lattice as opposed t o  a lattice with basis in the case of
non-intersecting walks). We only quote the results

dkl dk2
--log(p -2wexp[ikllcosk2 - exp[2ikl]).
2x 2x

-7r  -n
N

Although the above expression for the free energy clearly differs from (l), surprisingly, for
the density one obtains ii n, where the expression for n is given in (7). This in turn implies
that the phase diagram for the IW model is the same as the one obtained for the NIW model.
Finally, the correlation function E, can be calculated similarly to C, in (9). However, instead
of G, in (10) we now have for p = 1

with a = 2w cos k2. Considering p = 1 and, for simplicity, w = 1 and comparing G, and e,, we
notice that the arguments of the square root in the denominators are quite different. As a
function of x = exp [ik2] the square root of e, is analytic in a vicinity of the unit circle.
Therefore, the path of integration can be contracted to a smaller circle with 1x1 e 1.
Consequently, e, decays exponentially on the ,U = 1 line. Everywhere else in the liquid
phase[13] it decays as l/x.

In conclusion, the analysis of the simple models of non-intersecting and intersecting
directed polymer chains presented in this work (and studied earlier in ref. [13,14] leads,
surprisingly, to identical thermodynamic properties. The phase diagram is unusually rich
with multiple transition lines and phases. There are second-order phase transitions, with
diverging second derivatives of the free energy. The region of the phase diagram between
these transitions, the liquid phase (A and B in fig.2) is critical in the sense that in it the
density-density correlation function decays everywhere according to a power law. An
additional feature of the phase diagram is a self-dual line in the liquid phase, which manifests
itself also in the change of the decay of correlations. This change of correlations does not seem
to affect the behavior of the thermodynamic quantities; they vary smoothly across the
self-dual line. The difference between the two models, in our study shows up only in the
behavior of the correlation function along this line.

* * *
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