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&ncommensurate phase on a disordered surface: Instability against the formation
of overhangs and finite loops

K. Ziegler
Institut fur Theoric der Kondensierten Materie, Universitat Karlsruhe, Physikhochhaus, D 761-28 Karlsruhe, Germany

A.M.M. Pruisken
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, NL-1018 XE Amsterdam, The ¹therlands

(Received 12 October 1994)

The stability of the quenched incommensurate phase in two dimensions against the creation of
overhangs (OHs) and finite loops (FLs) in the fermion replica space is investigated for a model of
domain walls with N colors. Introducing a chemical potential c for OHs and FLs, the probability
for the formation of these objects is studied for e ~ 0. In the pure limit this probability vanishes
with e, whereas the Huctuations are long-range correlated in the quenched system. This indicates an
instability related to the symmetry in replica space. It is accompanied by the creation of a massless
boson. The latter leads to a power law decay with exponent oc 1/N for the product of the correlation
functions along the domain walls.

PACS number(s): 64.70.Rh, 64.60.Cn, 64.60.Fr

The model for the commensurate-incommensurate
transition (CIT) in d = 1+1 dimensions is the prototype
for a class of systems characterized by directed domain
walls, directed random walks, directed polymers, or Aux
lines. The common feature is that of interacting random
walks where the walkers randomly choose steps forward,
left or right but not backward. The interaction is due to
the condition that walks are not allowed to cross. In the
presence of quenched disorder these systems should ex-
hibit a phase which is related to a glass or frozen phase.
The latter can be regarded as freezing of the domain walls
(directed random walks, etc.) in a random potential.
From a conceptional point of view the CIT model has
attracted attention because it is soluble without disorder
[1] and the effect of disorder can be regarded as a pertur-
bation. The disordered case has been studied by various
methods such as the Bethe ansatz [2], scaling arguments
[3],variational approaches [4], and with perturbation the-
ory [5]. Although these works agree on the fact that the
critical exponent of the density changes from 1/2 in the
pure system to 1 in the disordered system, they came to
diferent conclusions concerning the decay of correlation
functions in the quenched system. In a recent article by
Tsvelik [6] it was argued that quenched disorder is irrele-
vant with respect to the asymptotic decay of the density-
density function. This is surprising since the correlation
function should be more sensitive to additional Huctua-
tions than the density. Therefore, at least near the CIT
one should expect that disorder changes the qualitative
properties of the model. For the corresponding model
with disorder correlated along the direction of the do-
main walls it was found that the long-range correlation
is destroyed [7]. In the following we will present a cal-
culation which shows that there is indeed a feature due
to disorder which aKects the correlations. It is character-
ized by the formation of overhangs (OHs) and finite loops
(FLs). A crucial point in the various approaches to the
CIT in the presence of disorder is the replica trick. It has

been argued that there is no replica symmetry breaking
(RSB) (however, see [8]). In contrast to this we will start
from a broken replica symmetry given by an external Geld
(chemical potential) which creates OHs and FLs. Using
a generalized model for domain walls with N colors we
see that there is RSB in the N ~ oo limit. However,
contributions O(l/%) destroy the RSB and leave only a
Kosterlitz- Thouless-like phase in replica space.

The grand canonical statistics of domain walls in d =
1 + 1 dimensions can be described by a fermion La-
grangian density in the imaginary time representation

I, = ctB c —cl ctB c —v(x, ~)etc+ @etc

and the partition function

'D[ct, c] exp ~— d7. dxI
i
.

The imaginary time w is along the direction of the do-
main walls and x is perpendicular to 7.. Disorder is in-
troduced by the random potential v(x, r), which is Gaus-
sian distributed with zero mean, and (v(x, 7)v(x', w')) =
cr28 (x —x') b (~ —7') .

The partition function is invariant under a time-
reversal transformation. Only the time differential op-
erator is changed as 8 ~ 8 = —6 by this transforma-
tion. The integration of the noninteracting fermions in
Z gives the space-time determinant det(cl + 0 + y, —v).
Then the time-reversal invariance of Z is obvious because
the transposition of the matrix leaves the determinant in-
variant.

Averaging the free energy or an expectation value can
be performed either by using a supersymmetric gener-
alization of the fermion Lagrangian [9] or by using the
replica trick lnZ = lim ~o(Z —1)/n. Since most ap-
proaches to the problem presented in the literature are
based on the latter, it will be used also in the follow-
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ing. Introducing an even number of replicas, say 2n, we
take one sector of n replicas with t9 and the other sector
of n replicas with 0 . This can be written in a spinor
representation for the Lagrangian density as

GI c

(ct1 t' 0 a. +O.' —v+ p, ) &dl
)I l(gT+g. —,+~ o &I &, )&

(3)

(ct(z, ~)d(z, r) dt(O, O) c(O, 0)). (4)

Because this is a correlation function of non-interacting
fermions it factorizes into

(ct(x, ~)d(x, v-)) (dt(0, 0)c(0, 0))

where c and d are n-component fermions and the matrix
in (3) is diagonal with respect to the n replica compo-
nents. Now we introduce a chemical potential e, which
allows the formation of OHs and FLs by combining the
two different replica sectors. This means that the chemi-
cal potential creates a particle-hole pair c~d which can be
annihilated at another space-time point by dtc. Includ-
ing this chemical potential in the Lagrangian density (3),
we replace the zeros in the diagonal elements by ie. The
imaginary unit i guarantees a positive weight for the OHs
and FLs in the partition function because OHs and FLs
always contain a sequence of reversed Grassmann vari-
ables which contribute a minus sign. The density of OHs
and PLs can be measured by varying locally the chemical
potential p, (z, 7) cc (c (z, r)d(z, w) + d (z, w)c(z, r)). In
the pure limit v = 0 this density can be evaluated by a
simple calculation leading to a continuously vanishing p,
for vanishing chemical potential e. Thus the pure system
is stable against the formation of OHs and FLs. Another
interesting quantity is related to the fact that OHs and
FLs are given by a combination of local edges (see Fig.
1) which are separated by a distance in x and r. To eval-
uate the correlation of an edge at (z, 7 ) and another one
at (0, 0) we consider

(a)

FIG. 1. (a) A finite loop and (b) an overhang created for
the domain wall segments from difFerent sectors of the replica
space j and A:.

do not interact. The disorder potential, on the other
hand, is chosen as v p(x, r) with a, P = 1, ..., N such that
elements of the domain walls may randomly change the
color &om n to P. This mechanism reduces the efFective
hard-core repulsion because the domain walls can avoid
each other by changing the color. The complex matrix
elements v p are statistically independent except for the
symmetry v p ——v&

Although the properties of the model for N )) 1 might
be different from those for N = 1, one can hope that at
least the large scale properties of N = 1 can be obtained
from the 1/N expansion.

After averaging we obtain an effective interaction for
the fermions [c = (d, c)] in the replica model

2 2n N0 c. cg,pc. pcj,~-
i)j=1a,P=1

—(c'(»r)c(0 o)) ("'(o o)"(»~)).

The first term measures the density of OHs and FLs
whereas the second term is the product of correlations
along the domain walls from (0, 0) to (x, 7). Without
disorder the first term vanishes and the second term de-
cays like (x + w ) on large scales.

Our calculation will be based on the generalization of
the domain wall model to one that has walls with N
different colors. Without quenched disorder the present
model separates into N independent models: individual
domain walls are uniformly colored and different colors

The degeneracy with respect to the N colors can be used
to replace the color degree of freedom by the number of
colors N. This is achieved if one decouples the effec-
tive fermion-fermion interaction of the quenched model
by a difFerent random matrix field Q, which includes
fIuctuations of both chemical potentials p and e: we re-
place 0 N ct c pet- pcj ~ ——o N ct cj ~ct pc p by
2iQz, gc,. c~ . Q is a Hermi. tian 2n x 2n matrix field.
Going back to the replicated partition function Z " we
integrate out the fermion field c;~. This leads to an ef-
fective action which depends only on the decoupling field
as

Syf ——N dr dx Tr2~[Q(x, 7') ] —N—lndet te + 2tQ2i (x, ~)
0 19 +0 + p+2Z 2g X)7

0 + 8 + p+ 2iQii(z, 7r)
llie+2iQi2(z, ~) )
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Tr2 denotes the trace with respect to the 2n replicas
and det the determinant with respect to the 2n replicas
and x, w. This is the (1+1)-dimensional replica version of
the (2 + 1)-dimensional "supersymmetric" action found
for the fiux lines in a random potential [9].
S,yy depends on the number of colors only through

the prefactor ¹ Therefore, the effective field theory for
large N enables us to do the functional integration in a
saddle point approximation. This approximation can be
interpreted as the replacement of the chemical potentials
p and e in the free fermion propagator by a self-energy
term which is determined by the saddle point equation
8S ff —0. There are two contributions if we assume that
Q provides only additive corrections to the two chemical
potentials. One is a shift of the chemical potential p in
the limit e ~ 0

'L

~ ~1——2(Q»+ Q22) =1+ —k'+ I
'

Qe&2 + ( k2 + ~l)2

p' & 0 and e' ~ 0 implies p ~ 0. The density vanishes
linearly. For instance, the d.ensity of the RS solution is
p oc 0 + p. T-hus the density of the RS as well as the
RSB solution is in agreement with the linear behavior of
the Bethe ansatz calculation of Kardar [2].

Finally, we evaluate the Gaussian Buctuations around
the saddle point solution which are the 1/N corrections.
The stability matrix can be taken from Ref. [9]. The
fluctuations of Qii, Q22 are massive with the eigenvalues
Ag,

p, = 2iQ~,. = —cr dkdur= — 2
—k +)kk+ p,

D e'

with D(c') = c' + ur + (—k + p, + )kk,), and the other
is a shift of the chemical potential for OHs and FLs,

A+ ——A + 4 dkdLd(d /D(E')

For c Q 0, A ls

A = 4e' dkd(u/D(c');

(14)

(15)

e' = 2Qi2 ——2Q2i ——c'cr dkd~/D(e'). (8)
i.e. , the eigenvalues of the RSB solution are always posi-
tive (stable). On the other hand, for c' = 0 the eigenvalue

is
0 is always a solution of (8). This is a replica-

symmetric (RS) solution. A RSB solution c' g 0 can be
found lf A = 2/0 —2 dkd~/D(0).

(9)

Since the denominator D(c') is increasing with increasing
there is an e', that satisfies

dkd~/D(c') = 1/cr (10)

This can be rewritten as

~ 'i/'2 —O-2
1

1+~2+ (—k2+ p, '/c')2

In this case we obtain from (7) a renormalized chemical
potential

Since inequality (9) holds if there are two saddle point so-
lutions, A of the RS solution (16) is negative (unstable)
when the RSB solution exists. The other two eigenvalues
of the RSB solution are As ——2(A+ —A ) ) 0 (related
to Qi2 —Q2i) and the massless one A4 ——0 (related to
Qi2+ Q2i). The massless fiuctuations are a consequence
of a global symmetry of the model [9]. They can be ex-
pressed as a nonlinear 0 model for Q with the constraint

= 1, Tr2 Q = 0, and Qcr2Q = —cr2. The constraint
can be satisfied if we parametrize Q by an n-component
field p as Q = crs(cos p —sin p) + 2o'i cosy sing. This
parametrization neglects a unitary transformation inside
each replica sector, which is not expected to affect the
properties of the y-dependent part of the model. With
the field p the action of the nonlinear 0 model reads

p = @+ps
—k2+

1 + kk) + —k + P'

D(e') is increasing with decreasing )kk' & 0. This implies
that there is a p,, & 0 (which depends on cr) such that
f dkCku/D(0) & 1/a 2 for p' & p, . Consequently, there is
only a RS solution e' = 0 for p, ' ( p . This behavior de-
scribes a transition from a RS solution to a RSB solution
if we change p or the disorder o.

The evaluation of the density of domain walls in a sad-
dle point approximation requires a cutoff because only a
Gnite number of domain walls per unit length is reason-
able. With the cutoff k = 1 we obtain, after integration
over cu,

S yy = e' N dxdrp—(B + c) )(p. (17)

—~"/2~+
(k)ss(n, c)k)sc(0, 0)) const x (c + s* (18)

for large distances. Thus there is no replica symmetry
breaking for finite N because the correlation of the or-
der parameter decays. However, disorder changes the

Formally, this is a result of a strong disorder expansion
[9]. It implies that we cannot directly take the pure limit
from this expression. From the bilinear action we can
evaluate the correlation function of the density of edges
defined in (4):
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exponent of the correlation function, which was 1 in the
pure case according to the remark below (4). This corre-
lation indicates a Kosterlitz-Thouless phase in terms of
the spinor structure inside the 2n replicas; i.e. , it is re-
lated to the correlations of the OHs and FLs. In contrast
to the corresponding correlation on the pure surface, it is
not only a result of the decay of the correlations along the
domain walls, but comes from the combination of Buctu-
ations of the domain walls and quenched disorder. This
creates an efI'ective correlation between difFerent domain
walls. With increasing disorder e is also increasing. Con-
sequently, the correlation decays faster with increasing
disorder, as one would expect from uncorrelated disor-
der. On the other hand, the correlation becomes stronger
with increasing ¹ This can be explained by the increas-
ing ability of domain walls to reduce "screening" due to
the interaction of the disorder mediated correlation by
reducing the efFective hard core.

Our result is based on a saddle point calculation for an
effective self-energy in the replica model with 2n replica
and N colors. The properties of the model are similar
to those of the Gross-Neveu model [10] and other (1+1)-
dimensional fermion models with attractive interaction
[ll]. The creation of OHs and FLs in the quenched CIT
model is plausible because the random potential favors
OHs and FLs that can easily circumvent an unfavorable
potential or freeze into the local potential wells. Since

there are no OHs and FLs by definition, the replica model
creates them spontaneously by combining wall elements
coming from different replica sectors. However, the efI'ect
of the OHs and FLs is only marginal in our calculation
because they appear with vanishing density. Neverthe-
less, the instability related to the OHs and FLs implies a
drastic change in the quenched state compared with the
pure CIT problem, as one can see from the change of the
exponents.

A similar instability was also discussed in the context
of the Gross-Neveu model by Witten [12), who evaluated
the correlation function of the massless bosons. Those
bosons also lead to a power law decay with an exponent
proportional to 1/N.

It should be emphasized that the formation of OHs and
FLs is a special type of instability regarding the freezing
into local minima of the random potential. Although we
cannot exclude other instabilities, OHs and FLs seem to
be natural candidates for a modification of the CIT due
to disorder.

In conclusion, we have investigated a model for the in-
commensurate phase on a disordered surface, where the
domain walls elements can choose randomly N colors.
The N —+ oo limit can be solved using a mean-field so-
lution. Then it was found that one has (i) RSB on a
mean-Field level and (ii) a destruction of RSB by fluctua-
tions analogous to the Kosterlitz-Thouless phenomenon.
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