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Convergence analysis of an adaptive edge finite
element method for the 2D eddy current equations
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Abstract— For the 2D eddy currents equations, we design an adaptive edge finite element method
(AEFEM) that guarantees an error reduction of the global discretization error in the H(curl)-norm
and thus establishes convergence of the adaptive scheme. The error reduction property relies on a
residual-type a posteriori error estimator and is proved for discretizations based on the lowest order
edge elements of Nédélec’s first family. The main ingredients of the proof are the reliability and the
strict discrete local efficiency of the estimator as well as the Galerkin orthogonality of the edge element
approximation.
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1. INTRODUCTION

Given a bounded, simply connected domain Ω ⊂ R
2 with polygonal boundary Γ =

∂Ω, consider the 2D stationary eddy currents equations

curlχ curl j+ σ j = f in Ω (1.1)
t · j = 0 on Γ (1.2)

where χ , σ are positive constants, f ∈ H(div;Ω), and t refers to the unit tangential
vector on Γ. The variational formulation of (1.1), (1.2) amounts to the computation
of j ∈ H0(curl;Ω) := {q ∈ H(curl;Ω) | t ·q = 0 on Γ} such that

a(j,q) = �(q), q ∈H0(curl;Ω). (1.3)
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Here, the bilinear form a(·, ·) : H0(curl;Ω)×H0(curl;Ω) → R and the functional
�(·) :H0(curl;Ω) → R are given by

a(j,q) :=
∫

Ω

[χcurl jcurl q+ σ j ·q]dx

�(q) :=
∫

Ω

f ·qdx.

In the sequel, we denote by ‖ · ‖curl;Ω the standard graph norm

‖q‖curl;Ω :=
(
‖curlq‖20,Ω +‖q‖20,Ω

)1/2
, q ∈ H(curl;Ω)

and by ‖ · ‖a the energy norm
‖q‖a := a(q,q)1/2, q ∈H(curl;Ω)

which are equivalent, i.e., ‖ · ‖curl;Ω ≈ ‖ ·‖a.
We assume thatTH(Ω) is a shape-regular simplicial triangulation ofΩ and refer

to NH(ω) and EH(ω),ω ⊂ Ω, as the sets of vertices and edges of TH in ω ⊂ Ω.
We denote by hT the diameter of an element T ∈ TH(Ω) and by hE the length of
an edge E ∈ EH(Ω). Further, we refer to ωE = T+∪T− as the union of the triangles
T± ∈ TH(Ω) sharing the common edge E ∈ EH(Ω).
The variational equation (1.3) is discretized by the lowest order edge elements

of Nédélec’s first family

Nd1(T ) :=
{
∃α ∈ R

2 ,∃β ∈ R ∀x = (x1,x2) ∈ T : q(x) = α + β
(−x2

x1

)}

with the degrees of freedom
∫

E

tE ·qds, E ∈ EH(T ).

The associated curl-conforming edge element space Nd1(Ω;TH(Ω)) ⊂ H(curl;Ω)
is given by

Nd1(Ω;TH(Ω)) := {qH ∈H(curl;Ω) | qH |T ∈Nd1(T ), T ∈ TH(Ω)}
and we refer to Nd1,0(Ω;TH(Ω)) as the subspace

Nd1,0(Ω;TH(Ω)) := {qH ∈Nd1(Ω;TH(Ω)) | t ·qH = 0 on Γ}.
Then, the edge finite element discretization of (1.3) reads as follows: Find jH ∈
Nd1,0(Ω;TH(Ω)) as the solution of

a(jH ,qH) = �(qH), qH ∈ Nd1,0(Ω;TH(Ω)). (1.4)
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An adaptive edge finite element method (AEFEM) consists of successive loops of
the cycle

SOLVE→ ESTIMATE→MARK→ REFINE . (1.5)
Here, SOLVE means the numerical solution of the edge element approximation
(1.4). We remark that efficient multilevel iterative schemes are available [3,6,13–
16,21]. They are based on the Helmholtz decomposition of the edge element space
according to

Nd1,0(Ω;TH(Ω)) = Nd01,0(Ω;TH(Ω))⊕Nd⊥
1,0(Ω;TH(Ω)). (1.6)

Here, Nd01,0(Ω;TH(Ω)) refers to the subspace of irrotational vector fields

Nd01,0(Ω;TH(Ω)) := {qh ∈ Nd1,0(Ω;TH(Ω)) | curlqh = 0} (1.7)

and Nd⊥1,0(Ω;TH(Ω)) is given by

Nd⊥
1,0(Ω;TH(Ω))

:= {qh ∈ Nd1,0(Ω;TH(Ω)) | (qh,q0h)0,Ω = 0, q0h ∈ Nd01,0(Ω;TH(Ω))}. (1.8)
Denoting by S1,0(Ω;TH(Ω)) the finite element space of continuous, piecewise lin-
ear finite elements with respect to TH(Ω), we have the representation [17]

Nd01,0(Ω;TH(Ω)) = gradS1,0(Ω;TH(Ω)). (1.9)

Consequently, Nd⊥1,0(Ω;TH(Ω)) can be interpreted as the subspace of weakly sole-
noidal vector fields.
The following step ESTIMATE invokes the efficient and reliable a posteriori

error estimation of the global discretization error. This area has reached some state
of maturity documented by a bundle of monographs and numerous research arti-
cles published during the past decade (cf. [1,4,5,12,23] and the references therein).
With regard to the development, analysis, and implementation of a residual-type
a posteriori error estimator for edge element discretizations of the eddy currents
equations in 3D we refer to [7]. Its adaptation to 2D problems results in the estima-
tor

η2H := ∑
T∈TH(Ω)

η2T + ∑
E∈EH(Ω)

η2E . (1.10)

The element residuals ηT , T ∈ TH(Ω), and the edge residuals ηE , E ∈ EH(Ω), are
given by

η2T := h2T ‖f−σ jH‖20,T (1.11)
η2E := hE‖[χ curl jH ]‖20,E +hE‖[νE ·σ j0H ]‖20,E (1.12)

where [ · ] denotes the jump of the respective quantity across E ∈ EH(Ω) and j0H ∈
Nd01,0(Ω;TH(Ω)) refers to the irrotational part of jH .
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T bisec(T) bisec2�(T) bisec2r(T) bisec3(T) red(T) bisec5(T)

Figure 1. Possible refinements of one triangle T in the step REFINE. Data representations and a
MATLAB realization are provided in [9].

However, up to now, the convergence analysis of the full adaptive scheme (1.5)
is restricted to conforming and mixed finite element methods [10,18,19].
The bulk criterion in the step MARK was introduced and analyzed in [8,11,18]

for displacement-based AFEMs. Here, it leads to a selection of a subset M1 of
elements T ∈ TH(Ω) and a subsetM2 of edges E ∈ EH(Ω) such that

ϑ1η2H � ∑
T∈M1

η2T + ∑
E∈M2

η2E (1.13)

for some universal constant 0< ϑ1 < 1.
The convergence analysis further involves the data terms

µ2H := ∑
E∈EH(Ω)

µ2E , µ2E := h2T‖div f‖20,ωE (1.14)

which have to be controlled by selecting a subsetM3 of edges E ∈ EH(Ω) such that
for some 0< ϑ2 < 1

ϑ2µ2H � ∑
E∈M3

µ2E . (1.15)

The final step REFINE involves the refinement of elements and edges selected in
MARK. Typical refinements of a triangle T ∈ TH are displayed in Fig. 1.
The main result of this paper to prove the following error reduction property.

Theorem 1.1 (error reduction property). Let jh and jH be the adaptive edge
element approximations to j with respect to Th(Ω) and TH(Ω). Then, there exist
positive constants ρν < 1, 1 � ν � 2, and C depending only on ϑν , 1 � ν � 2, in
(1.13), (1.15) and on the shape regularity of the triangulations such that

‖j− jh‖2a � ρ1‖j− jH‖2a+Cµ2H (1.16)

µ2h � ρ2µ2H . (1.17)

The paper is organized as follows. Section 2 is devoted to the reliability of the
error estimator ηH . The main ingredient in the proof is the strict discrete local effi-
ciency which is addressed in Section 3. Together with the reliability of the estimator,
the bulk criteria (1.13), (1.15), and the orthogonality of the edge element approxi-
mation, it allows the proof of the error reduction (1.16), (1.17) which will be done
in Section 4.
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2. RELIABILITY OF THE ERROR ESTIMATOR

Throughout this paper, A � B abbreviates A � CB with a mesh-size independent,
generic constant C > 0. Finally, A ≈ B abbreviates A � B � A. The paper adopts
standard notation for Lebesgue and Sobolev spaces and norms.
Denoting by ej := j− jH the global discretization error, the main result of this

section establishes the reliability of the error estimator η .

Theorem 2.1. There holds

‖ej‖2curl;Ω � η2H + µ2H . (2.1)

The proof of (2.1) uses the decomposition of the error into its irrotational and
its weakly solenoidal part which allows to estimate both parts separately. It relies on
the Helmholtz decomposition of H0,Γ(curl;Ω) according to

H0,Γ(curl;Ω) = H00,Γ(curl;Ω)⊕H⊥
0,Γ(curl;Ω) (2.2)

into the subspace of irrotational vector fields

H00,Γ(curl;Ω) := {q ∈ H0,Γ(curl;Ω) | curlq = 0}
and the subspace of weakly solenoidal vector fields

H⊥
0,Γ(curl;Ω)

:= {q ∈H0,Γ(curl;Ω) | (q,q0)0,Ω = 0, q0 ∈ H00,Γ(curl;Ω)}.
It is easy to see that ej ∈ H0,Γ(Ω) satisfies the error equation

a(e,q) = r(q), q ∈ H0,Γ(Ω) (2.3)

where the residual r is given by

r(q) := (f,q)0,Ω −a(jH ,q). (2.4)

In view of the Helmholtz decomposition (2.2), we decompose the error ej ∈H0,Γ(Ω)
according to

ej := e0j + e⊥j , e0j ∈ H00,Γ(curl;Ω), e⊥j ∈ H⊥
0,Γ(curl;Ω). (2.5)

Then, it follows readily from (2.3) that the irrotational part e0j and the weakly
solenoidal part e⊥j satisfy the error equations

a(e0j ,q0) = r(q0), q0 ∈ H00,Γ(Ω) (2.6)

a(e⊥j ,q⊥) = r(q⊥), q⊥ ∈H⊥
0,Γ(Ω). (2.7)



24 C.Carstensen and R.H.W.Hoppe

In order to establish an upper bound for the L2-norm of e0j , we make use of the
representation

H00,Γ(curl;ω) = gradH1
0(Ω)

and introduce the Scott–Zhang interpolation operator PH :H10,Γ(Ω)→S1,0(Ω;TH(Ω))
which has the following properties [22]:

PHϕ = ϕ , ϕ ∈ S1,0(Ω;TH(Ω)) (2.8)
‖gradPHϕ‖0,T � ‖gradϕ‖0,DT , T ∈ TH(Ω) (2.9)
‖ϕ −PHϕ‖0,T � hT ‖gradϕ‖0,DT , T ∈ TH(Ω) (2.10)

‖ϕ −PHϕ‖0,E � h1/2E ‖gradϕ‖0,DE , E ∈ EH(Ω) (2.11)

with DT and DE being given by

DT :=
⋃

{T ′ ∈ TH(Ω) | NH(T ′)∩NH(T ) �= ∅} (2.12)

DE :=
⋃

{T ′ ∈ TH(Ω) | NH(T ′)∩NH(E) �= ∅}. (2.13)

Lemma 2.1. There holds

‖e0j ‖20;Ω � ∑
E∈EH(Ω)

hE‖[νννE ·σ jH ]‖20,E + µ2H . (2.14)

Proof. We have e0j = gradψ for some ψ ∈ H10 (Ω). Then if we choose q0 =
gradψ in (2.6) and observe r(grad(PHψ)) = 0, we obtain

‖e0j ‖20;Ω = ‖gradψ‖20;Ω � (σgradψ ·gradψ)0,Ω
= r(gradψ) = r(grad(ψ −PHψ)). (2.15)

If we apply Green’s formula, observing div jH |T = 0, T ∈TH , and take (2.10), (2.11)
into account, we find

|r(grad(ψ −PHψ))| (2.16)
= |(f,grad(ψ −PHψ))0,Ω −a(jH ,grad(ψ −PHψ))|
=

∣∣∣∣ ∑
T∈TH(Ω)

(div f,ψ −PHψ)0,T

+ ∑
E∈EH(Ω)

([νννE ·σ jH ](ψ −PHψ))0,E

∣∣∣∣
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� ∑
T∈TH(Ω)

‖div f‖0,T ‖ψ −PHψ)‖0,T

+ ∑
E∈EH(Ω)

‖[νννE ·σ jH ]‖0,E‖ψ −PHψ‖0,E

� ∑
T∈TH(Ω)

hT‖div f‖0,T ‖gradψ‖0,DT

+ ∑
E∈EH(Ω)

h1/2E ‖[νννE ·σ jH ]‖0,E‖gradψ‖0,DE

�
(

∑
T∈TH(Ω)

h2T‖div f‖20,T
)1/2(

∑
T∈TH (Ω)

‖gradψ‖20,DT

)1/2

+
(

∑
E∈EH (Ω)

hE‖[νννE ·σ jH ]‖20,E
)1/2(

∑
E∈EH(Ω)

‖gradψ‖20,DE

)1/2

�
(

µH +
(

∑
E∈EH(Ω)

hE‖[νννE ·σ jH ]‖20,E
)1/2 )

‖e0j ‖0,Ω.

Using (2.16) in (2.15) gives the assertion. �

For the estimation of the weakly solenoidal part e⊥j of the error, we use a vector-
valued counterpart of PH given as follows

PH :H1(Ω)∩H0,Γ(curl;Ω) → Nd1,0(Ω;TH(Ω)) (2.17)

PHq := ∑
E∈EH (Ω)

(tE ·q,ϕE)0,E qEH .

Here, ϕE ∈ S1,0(E;TH/2(E)) denotes the nodal basis function associated with the
nodal point mid(E)with respect to bisection of E . Moreover, qEH ∈Nd1,0(Ω;TH(Ω))
stands for the canonical edge element basis function associated with the edge E , i.e.,

∫

E ′∈EH (Ω)

tE ′ ·qEH ds = δE,E ′.

Referring to D2E , E ∈ EH(Ω) and D2T , T ∈ TH(Ω), as the sets

D2E :=
⋃

{T ∈ TH(Ω) | E ∈ EH(T )}
D2T :=

⋃
{DE | E ∈ EH(T )}

we have the following properties of PH.
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Lemma 2.2. Let q ∈ H1(Ω)∩H0,Γ(curl;Ω). Then, there holds

PHqH = qH , qH ∈ Nd1,0(Ω;TH(Ω)) (2.18)
‖PHq‖0,T � ‖q‖1,D2T (2.19)

‖curlPHq‖0,T � ‖q‖1,D2T (2.20)
‖q−PHq‖0,T � hT‖q‖1,D2T (2.21)

‖q−PHq‖0,E � h1/2E ‖q‖1,D2E . (2.22)

Proof. The interpolation property (2.18) follows readily by definition of PH.
Using the shape regularity of the triangulation and the trace inequality, for T ∈
TH(Ω) we get

‖PHq‖20,T � hT ∑
E∈EH(T )

|(tE ·q,ϕE)0,E |2

� hT ∑
E∈EH(T )

‖tE ·q‖20,E‖ϕE‖20,E � ‖q‖1,D2T

which proves (2.19). The stability property (2.20) can be shown in a similar way,
whereas the approximation properties (2.21) and (2.22) can be verified by Bramble–
Hilbert type arguments. �

Lemma 2.3. There holds

‖e⊥j ‖20;Ω � ∑
T∈TH (Ω)

h2T‖f−σ jH‖20,T + ∑
E∈EH(Ω)

hE‖[χ curl jH ]‖20,E . (2.23)

Proof. We use the fact that H⊥
0,Γ(curl;Ω) is continuously imbedded in H1(Ω)∩

H0,Γ(curl;Ω) and there exists a positive constant C depending only on Ω such that

‖q⊥‖1,Ω �C‖curlq⊥‖0,Ω.

We choose q⊥ := e⊥j in (2.7). Taking r(PHe⊥j ) = 0 into account, it follows that

‖e⊥j ‖2curl;Ω � a(e⊥j ,e⊥j ) = r(e⊥j −PHe⊥j ). (2.24)

By Stokes’ theorem and the approximation properties (2.21), (2.22) we find

r(e⊥j −PHe⊥j ) = (f,e⊥j −PHe⊥j )0,Ω −a(jH ,e⊥j −PHe⊥j ) (2.25)

� ∑
T∈TH(Ω)

‖f−σ jH‖0,T ‖e⊥j −PHe⊥j ‖0,T
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+ ∑
E∈EH(Ω)

h1/2E ‖[χ curl jH ]‖0,E‖e⊥j −PHe⊥j ‖0,E

� ∑
T∈TH(Ω)

hT ‖f−σ jH‖0,T
]
‖e⊥j ‖curl,D2T

+ ∑
E∈EH(Ω)

h1/2E ‖[χ curl jH ]‖0,E‖e⊥j ‖curl,D2E

�
[

∑
E∈EH(Ω)

hE‖[χ curl jH ]‖20,E + ∑
T∈TH(Ω)

h2T‖f−σ jH‖20,T
]
‖e⊥j ‖1,Ω

�
[

∑
E∈EH(Ω)

hE‖[χ curl jH ]‖20,E + ∑
T∈TH(Ω)

h2T‖f−σ jH‖20,T
]
‖e⊥j ‖curl,Ω.

Inserting (2.25) into (2.24) gives the assertion. �

Proof of Theorem 2.1. Combining (2.14) from Lemma 2.1 and (2.23) from
Lemma 2.3 proves the reliability (2.1) of the estimator. �

3. STRICT DISCRETE LOCAL EFFICIENCY

The strict discrete local efficiency of the error estimator ηH states that up to the
local data terms µE the H(curl)-norm of the difference jh− jH in the fine and coarse
mesh approximations can be locally bounded from below by the local contributions
ηT and ηE of the estimator.

Theorem 3.1. Let E ∈ EH(Ω) be a refined edge with E = T1∩T2, Tν ∈ EH(Ω),
1� ν � 2, and ωE = T1∪T2. Then there holds

η2T + η2E � ‖jh− jH‖2curl,ωE + µ2E . (3.1)

The proof of (3.1) is carried out by means of the following results.

Lemma 3.1. Let E ∈ EH(Ω) be a refined edge. Then there holds

h2T‖f−σ jH‖20,ωE � h2T ‖jh− jH‖20,ωE . (3.2)

Proof. We choose ϕωE ∈ S1,0(ωE ,Th(ωE)) such that

(gradϕωE )|ωE = |ωE |−1
∫

T

(f−σ jH)dx .

It follows that

‖gradϕωE‖20,ωE � ‖f−σ jH)‖20,ωE =
∫

ωE

(f−σ jH) ·gradϕωE dx.
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Since gradϕωE is an admissible test function for the edge element approximation
jh, we have ∫

ωE

σ jh ·gradϕωE dx =
∫

ωE

f ·gradϕωE dx.

Consequently, we obtain

h2T ‖f−σ jH‖20,ωE = h2T
∫

ωE

(
σ (jh− jH)

)
·gradϕωE dx

� h2T ‖jh− jH‖0,ωE ‖f−σ jH‖0,ωE .

Applying Young’s inequality gives the assertion. �

Lemma 3.2. For a refined edge E ∈ EH(Ω) there holds

hE‖ [χ curl jH ]‖20,E (3.3)
� ‖curl (jh− jH)‖20,ωE +h2T ‖jh− jH‖20,ωE +h2T ‖f−σ jH‖20,ωE .

Proof. We choose ψψψωE
∈ Nd1,0(ωE ,Th(ωE)) such that

tEν ·ψψψωE
|E =

{
[χ curl jH ]|Eν , 1� ν � 2, E = E1∪E2
0, Eν ∈ Eh(int(ωE)\E).

Consequently, we have

‖ψψψωE
‖20,ωE � hE ‖[χ curl jH ]‖20,E = hE

∫

E

[χ curl jH ] · (tE ·ψψψωE
)dσ . (3.4)

Since ψψψωE
is an admissible test function for the edge element approximation jh, we

have ∫

ωE

(
χ curl jh · curlψψψωE

+ σ jh ·ψψψωE

)
dx =

∫

ωE

f ·ψψψωE
dx. (3.5)

On the other hand, taking ψψψωE
|∂ωE = 0 and curl (χ curl jH)|T ≡ 0, T ∈ TH(Ω) into

account, Stokes’ theorem yields∫

E

[χ curl jH ] (tE ·ψψψωE
)dσ = −

∫

ωE

χ curl jH · curlψψψωE
dx. (3.6)

The combination of (3.4), (3.5) and (3.6) followed by Cauchy inequalities leads to

hE ‖[χ curl jH ]‖20,E = hE
∫

E

[χ curl jH ] · (tE ·ψψψωE
)dσ

� (‖jh− jH‖0,ωE +‖f−σ jH‖0,ωE )‖ψψψωE
‖0,ωE

+hE ‖curl jh− curl jH‖0,ωE ‖curlψψψωE
‖0,ωE .
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This and observing the inverse inequality ‖curlψψψωE
‖0,ωE � h−1E ‖ψψψωE

‖0,ωE allows
to conclude the proof. �

Lemma 3.3. For a refined edge E ∈ EH(Ω) we have

h2T‖f−σ jH‖20,ωE +hE‖[χ curl jH ]‖20,E (3.7)
� ‖j⊥h − j⊥H‖2curl,ωE +h2T ‖j0h− j0H‖20,ωE .

Proof. The proof of (3.7) follows readily by combining Lemma 3.1 and Lemma
3.2. �

Lemma 3.4. For a refined edge E ∈ EH(Ω) there holds

hE‖[νννE ·σ jH ]‖20,E � ‖j0h− j0H‖20,ωE + µ2E . (3.8)

Proof. We choose ϕE ∈ S1,0(ωE ,Th(ωE)) such that

ϕE(mid(E)) = [νννE ·σ jH ]. (3.9)

Since ϕE is piecewise affine along E , it follows that

2hE
∫

E

[νννE ·σ jH ]ϕE ds = hE ‖[νννE ·σ jH ]‖20,E . (3.10)

Since ϕE |∂ωE = 0 and div jH = 0 on T±, Green’s formula applied to T± results in
∫

ωE

σ j0H ·gradϕE dx =
∫

ωE

σ jH ·gradϕE dx =
∫

E

[νννE ·σ jH ]ϕE ds. (3.11)

Observing gradϕE ∈ Nd0
1,0(ωE ,Th), we have

0 =
∫

ωE

(σ j0h− f) ·gradϕE dx (3.12)

=
∫

ωE

div fϕE dx+
∫

ωE

σ j0h ·gradϕE dx.

Combining (3.11) and (3.12) gives

hE
∫

E

[νννE ·σ jH ]ϕE ds (3.13)

� hE ‖div f‖0,ωE ‖ϕE‖0,ωE +hE ‖j0h− j0H‖0,ωE‖gradϕE‖0,ωE .
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Finally, observing that (3.9) implies

‖ϕE‖0,ωE � h1/2E ‖[νννE ·σ jH ]‖0,E
‖gradϕE‖0,ωE � h−1/2E ‖[νννE ·σ jH ]‖0,E

(3.10) and (3.13) give the assertion. �

Proof of Theorem 3.1. The proof of (3.1) in Theorem 3.1 now follows readily
by combining Lemmas 3.1–3.4. �

4. PROOF OF THE ERROR REDUCTION PROPERTY

We now combine the reliability of the error estimator, the strict discrete local effi-
ciency of the estimator and the Galerkin orthogonality of the edge element approx-
imations to deduce the error reduction property (1.16) of Theorem 1.1.

Proof of Theorem 1.1. Observing ‖ · ‖curl,Ω ≈ ‖ · ‖a, the reliability (2.1) of the
error estimator ηH and the bulk criteria (1.13), (1.15) imply

‖ej‖2a � η2H � ∑
T∈M1

η2T + ∑
E∈M2

η2E + µ2H .

Using the strict discrete local efficiency (3.1), it follows that there exists a constant
C > 0, depending only on ϑν ,1 � ν � 2, in the bulk criteria (1.13), (1.15) and on
the shape regularity of the triangulations such that

‖ej‖2a �C‖jh− jH‖2a +Cµ2H . (4.1)

Due to the Galerkin orthogonality of the edge element approximations and the nest-
edness of the edge element spaces we have

a(j− jh, jh− jH) = 0

which implies
‖jh− jH‖2a = ‖j− jH‖2a−‖j− jh‖2a . (4.2)

Combining (4.1) and (4.2) yields

C‖j− jh‖2a � (C−1)‖j− jH‖2a+Cµ2H

and hence, (1.16) follows with ρ1 = 1−1/C.
For the proof of (1.17) consider K ∈ Th(Ω) such that K ⊂ T ∈ TH(Ω) with

EH(T )∩M3 �= ∅. Then, T is at least halved, and hence,

µ2h � 1
2 ∑

E∈M3

µ2E + ∑
E∈EH(Ω)\M3

µ2E = µ2H − 1
2 ∑

E∈M3

µ2E .
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Observing (1.15), it follows that

ϑ2
2

µ2H � 1
2 ∑

E∈M3

µ2E � µ2H −µ2h

which proves (1.17) with ρ2 = 1−ϑ2/2. �
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