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Abstract—Reputation is an important aspect of trust. If no
direct trust experiences are available, one needs to rely on
reputation data from other sources. In this paper we present
the Neighbor-Trust metric that exploits these communication
capabilities of a network by directly asking all neighbors of
a target communication partner for reputation trust data.
This results in a reputation path of length one, but also in a
vulnerability to attacks by unknown, lying entities that try to
promote not trustworthy entities. However, by adding weights
for reputation data given by entities and a learning mechanism
the Neighbor-Trust metric is able to identify and adapt to
lying participants in the network by reducing the weight
their reputation data has in future reputation calculations. We
present an evaluation for the metric and show how to exclude
lying participants from the network.
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I. INTRODUCTION

Trust is an important aspect of cooperation, it even is
the basis for cooperation. When no implicit trust exists in
a system, i.e. heterogeneous nodes in Organic Computing
systems, trust has to be build over time. Reputation is
used when no direct trust information is available and other
participants have to provide their direct trust information.
Reputation metrics are thoroughly researched in current
literature. Maresch [1] gives an overview over different
reputation metrics in the context of the Semantic Web and
illustrates that reputation metrics can be divided into two
types: global and local reputation metrics. Global reputation
metrics know the reputation data of the entire network and
globally calculate a single reputation value per user. In
general, systems in which users have to trust in the honesty
or the skills of other user’s global reputation metrics are
used to rate the trustworthiness of the individual users. The
buyer/seller rating systems of eBay or the reviewer rating
system of Amazon are good examples for such systems.
Local reputation metrics on the other hand just use the local
knowledge of a user within the system. If a user wants
to know the reputation of another user he asks around to
gather information from users that had direct interaction
with the target user. The gathered data is then aggregated
to a reputation trust value of the target user.

Organic Computing systems [2] were developed to han-
dle the growing complexity of distributed systems and
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make them controllable. To achieve this OC systems in-
troduce the so called self-x properties, self-configuration,
self-optimization, self-healing and self-protection to au-
tonomously react on changed situations. In Organic Com-
puting systems global reputation metrics are not appropriate
to use, since there is no entity that has a global view over the
network. Instead each node gathers its own experience and
relays this information to asking nodes. Organic Computing
systems typically consist of heterogencous nodes, whose ca-
pabilities, e.g. their connection to the network, may fluctuate
over time. This results in a different subjective view each
node gathers about the network and its participants. Overall
the nodes will build their own subjective view of others in
the network thereby adhering to an important property of
trust: subjectivity [3].

An important difference between Organic Computing sys-
tems and systems involving users is the confinement of OC
systems. An OC system as a purely technical system consists
of a number of nodes that can be communicated with. Nodes
can enter and leave the system but each node can be equally
communicated with. Equally here means that there exist no
social rules compared to human societies. Every node can
initiate a communication with a completely unknown node
without the need to adhere to social rules. Nodes in typical
reputation systems often ask their neighbors, directly known
communication partners, about their opinion of a target node
which will get relayed to their neighbors and so on, creating
a chain of requests that gets less meaningful the longer it
gets. The TidalTrust metric [4] is a good example for this.

The Neighbor-Trust reputation metric presented in this
paper exploits the ability of equally communicable nodes
by identifying the direct neighbors of a node and gathers
their direct trust data. This reduces the reputation chain to
one. The resulting threat of attacks by lying entities that try
to promote not trustworthy entities is reduced by a weight
for trust statements and a learning metric. The neighbor
relationships are an overlay network presenting the direct
communication experiences, and therefore the existence of
direct trust values, between different nodes. More precisely
a neighbor of an entity is an entity that has direct trust
values about the target entity. An entity can be either a
user (User-to-User Trust) or a node in a network (Device-to-



Device Trust). In Organic Computing systems the entities are
nodes. These neighbor relations build a overlay network over
the underlying communication network. The communication
channel topology can be entirely different and is independent
of the neighbor relationship topology.

The remaining paper is structured as follows. Section II
gives an overview over related work on reputation metrics
in the current literature. Section III presents our reputation
metric that is evaluated and discussed in section IV. Finally
section V concludes the paper and presents future work.

II. RELATED WORK

Several reputation metrics exist and a general overview
can be found in [1]. We restrict the related work to some
local trust metrics that influenced the development of our
metric.

The trust metrics TidalTrust [4] and Moletrust [5] are
very similar and were developed for the use in Trust-
Aware Recommender Systems. The aim was to improve
the quality of, e.g., product recommendations by taking into
account that people feel more confident in recommendations
made by friends than made by strangers. Both metrics use
trust networks and predict trust values of users that are no
neighbors of the active user in a breadth-first respectively a
depth-first fashion. The predicted trust statements afterwards
are used as a weight in a recommender system. However,
TidalTrust as well as Moletrust only take short paths with
a minimum strength into account because ratings of users
get less precise and useful the more distant they are. By
this means, both metrics cannot predict precise trust values
of users outside a specific range in the trust network and
for this reason, they are not suitable in Organic Computing
systems in which all devices, independent of their position
inside the network, can interact with each other. Both metrics
also require a dense network to work effectively. In Organic
Computing systems no such network can be assumed, since
the network structure is dynamically fluctuating.

The Regret [6] reputation metric is a local trust metric that
also is strongly affected by human and social behavior and
especially by the saying “Tell me who you associate with
and I will tell you who you are”. Therefore, it is split into
three parts: Witness Reputation, Neighborhood Reputation
and System Reputation. Witness Reputation refers to the
direct trust values of the neighbors of a target node, the
witnesses. Neighborhood Reputation refers to the reputation
the neighbors of the target nodes have. System Reputation
is defined as the reputation of the entire system the target
node is part of. Thus, Regret is a reputation metric that is
not limited to a special part of a trust network. However, it
strongly relics on highly subjective thoughts that are typical
for human societies but cannot be provided in pure physical
systems.

FIRE [7] is a trust and reputation model used in open
multi-agent systems and therefore developed to deal with the
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requirements of an open system. It combines several trust
types, namely Interaction trust, Role-based trust, Witness
reputation and Certified reputation. Interaction trust and
Role-based trust refer to direct trust between two participants
and are not considered in this paper. (A metric to measure
direct trust for the reliability or nodes on middleware level,
the Delayed-Ack metric, was already introduced in [8].)
Witness reputation and Certified reputation are the reputation
mechanics in FIRE. Witness reputation similar to TidalTrust
and MoleTrust uses locally close neighbors and searches
only up to a maximal length of a reputation chain before
aborting. The component we focus on is the Certified repu-
tation component. With this component an agent A is able
to ask an agent B to prove its trustworthiness and receives a
Certified reputation that consists of ratings agent B received
from other agents in past direct interactions. Because this
kind of reputation in general can be provided by almost
all agents, devices or people this approach is eligible for
our system, too. A big drawback of the Certified reputation
component is that any entity has to store the ratings received
from its neighbors. Our Neighbor-Trust reputation metric
solves the problem with long reputation chains by exploiting
the ability to identify and to contact an entity’s direct
neighbors. Furthermore, the Certified reputation component
is vulnerable to attacks from malicious entities or groups of
entities that offer false ratings to promote not trustworthy
entities.

To solve this problem, we need a trust metric comparable
to the Eigen-Trust metric [9]. This metric, for example, is
used in file-sharing networks to identify and isolate manip-
ulating people or entities so that the trust values inferred
for every person or component reflect the community’s real
opinion. We want to extend this metric by using seperated
trust values for the direct interaction with entities and for the
reputation entities provide about other entities. The reason
is, that a bad interaction partner nevertheless could be a good
informant and vice versa.

With the Neighbor-Trust metric we will present a local
trust metric that is able to identify and isolate manipulating
entities, too.

III. NEIGHBOR-TRUST REPUTATION METRIC

The Neighbor-Trust metric is based on metric 2 evaluated
by Satzger et al. in [10]. Satzger et al. gathered reputation
data from the neighbors of a node, but instead of using
a weighted mean metric he used a normal mean metric
without weights. Therefore, the Neighbor-Trust metric en-
hances Satzger’s metric by adding weights and a learning
mechanism and is able to identify and isolate malicious
entities.

If an entity wants to interact with another entity but
does not have any direct experiences yet it asks others in
the system about their opinions, their reputation. Figure 1
displays the relationship of the different entities.



Figure 1. nodes in the reputation graph

Alice (a) wants to get information about Carol (c), so she
asks Bob (b) about his opinion about Carol. wgy is the trust
Alice gives the information Bob provides respectively the
weight she gives his information and ¢, is the direct trust
value Bob has about Carol. Later Alice might have a direct
experience with Carol, displayed by ¢,.. To get an accurate
value, Alice will ask more entities than just Bob. She will
ask all neighbors of Carol.

To calculate a total reputation value r the following
formula is used:

ZiEneighbors(c) Wag * Lic

T =
“ ZiEneighbors(C) Wa

This formula corresponds to a weighted mean metric.
The values t;. are the direct trust values of the neighbors
to the target node ¢, and the weights w,; represent the
personal opinion of the requesting entity a, how much to
trust the direct trust values the neighbors provide. These
weights are normally independent of the context of the
direct trust value the neighbor provides. In a computational
environment, where entities are nodes in a network this
assumption can hold. In comparison to that, users sometimes
vary their weights according to the context, mostly because
of “gut feeling”. For example, if Alice asks Bob’s opinion
about Carol’s ability to repair cars as well as her ability to
craft tables, Alice might weight both information from Bob
differently because she subjectively thinks Bob knows more
about cars than tables. It is hard to find an exact specification
about this “gut-feeling” and since these nuances are highly
subjective and tend to be irrational as well, “gut-feeling” is
not a mechanic that can be transferred to a computational
system. Therefore, in our work the weight will be adjusted
independent of the context of the trust request. This also
prevents a high fragmentation of information, when a weight
is saved for every context.

Because the metric weights received trust statements to
reduce the threat of attacks by lying entities we want to
learn the weights over time by judging previous statements
of neighbors. If a neighbor gave information that corre-
sponded with the node’s own experience then the future
statements of the neighbor will be weighted higher than
before. Correspondingly, if the experience differs from the
recommendation, the weight will be lowered. Figure 2
displays the relationship of the different values.

tqc is the direct trust experience A had with C. tp. is
the trust value B told A. If both of these values are close
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Figure 2. thresholds

enough then B gave a correct statement about C’s ability.
Close enough is defined by the threshold value 7. If ¢,
and . differ by maximally 7 then the weight w will be
gradually increased, with the most increase if both value
exactly match. If they differ by more than 7, w will be
decreased, with a gradually stronger decrease the further ¢,
differs from ¢,. + 7. In addition a single transaction should
only change w by a maximal amount, called §. Limiting the
adjustment of w prevents extreme jumps in w. A single bad
recommendation should not set w close to 0. For this the
threshold 7* is introduced. It defines an area, where w will
be decreased up to 6. If ¢, is even beyond ¢,. +/- 7* then
w will be fully decreased by 6. This leads to the following
formula:

(T tatily g if 0 < fim, -t <7

n+l _ . n [tr . —ty |—7 N , .
Wy = Wap § —(Foeste—) -0, if 7 <|th, —tp.| <7°
-0, otherwise

where w7, means the weight a has of b at time n (analog
for t).
The formula is divided into three cases:

1) positive case: w will be increased by the percentage
of how close t,. and . are together. If t,. = tp.
then w will be increased by 6. If 3. = t,. £ 7 then
w remains unchanged.

negative case: Analog to the case before, w will be
decreased by an amount of 0 if ¢, is located between
toc £ 7 and t,. = 7*. Being in the middle between
both thresholds would decreases w by %9.

extreme negative case: In this case both values differ
so much from each other that w will be maximally
decreased by 6.

2)

3)

By adjusting the weights over time neighbors that give bad
recommendations are identified and their opinions weighted
down. All further reputation requests will return more trust-
worthy and accurate recommendations than the first requests,
since the opinion of lying nodes was rated down. A node
learns the trustworthiness of its communication partners over
time, similar to persons who enter a new community and
have to get to know their communication partners.

To exploit the new-found information the initial weight
of new nodes can be adjusted. By starting with w = 1



every node is trusted until proved otherwise. After some
nodes are identified as trustworthy nodes, keeping a high
weight w after several transaction, an exploitation of these
nodes compared to new nodes is desirable. By starting at
w = 0.5 a node would start with mixed feelings towards
a new node. This decreases the probability to gain bad
recommendations by newcomers that are not known so
far. This is highly relevant in Organic Computing systems
that are characterized by highly dynamic configurations. By
reducing the initial weight, nodes with knowingly high trust,
will have higher weight and their recommendations will be
preferred, while at the same time information about new
nodes can be learned with a low risk of getting a bad
interaction later on.

This leads to another problem. By leaving the network, as-
suming a new identity and rejoining the network, a node with
bad reputation can start anew. This is especially problematic
if gaining a new identity is cheap[11]. This is a fundamental
problem with identification. In real life building up a new
identity is a costly operation in therefore not used by normal
society members. So far, we do not consider the id problem
and presume that a node is always correctly identified.

IV. EVALUATION

To evaluate the reputation metric we created a network
of 10 nodes. Evaluation with more nodes yielded similar re-
sults, but with 10 nodes more specific effects where visible.
A specific percentage of these nodes were malicious, i.e.,
they were always rating their direct communication partners
badly, independent of their response. These malicious nodes
are returning unsatisfactory results to service request and
try to sabotage the network. By giving bad ratings to honest
nodes they try to reduce their reputation value and attract
working requests.

To find the neighbors of a target node, all reputation
requests are originally sent to the target node that relays
the request to all its neighbors. A node identifies a neighbor
by observing its message flow. Every node that received a
message from the target node is considered a neighbor, so
all nodes that were sent messages are saved as neighbors by
the target node.

We investigated how good our reputation metric is able to
identify the malicious nodes and how successful their trust-
worthiness of giving correct reputation information about
other nodes gets rated down, thereby isolating them from
the network in the process. The trustworthiness matches the
weight of the node in our metric.

To identify the limits of the metric we ran simulations
with different percentage of malicious nodes: 30%, 50% and
70%. As evaluator we used the Trust-Enabling Middleware
(TEM) [12], an organic middleware developed in the OC-
TRUST project!. The TEM is a middleware system that

Uhttp://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/projects/oc-
trust/
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enables services to run on it, to save their experiences
into the middleware and to initiate direct trust and reputa-
tion calculations. A malicious node is a TEM node with
a malicious service running it. The TEM middleware is
based on the OCu[13] middleware, an organic middleware
developed in the Deutsche Forschungsgemeinschaft (DFG)
priority program 11832 on Organic Computing.

In every timestep a node selects another node as commu-
nication partner and sends it a message. As selection metric
the node asks about the reputation of all other nodes and
takes the one with the highest reputation. If several nodes
are tied, e.g. in the start when no information yet exists,
the communication partner is selected randomly. The node
replies with a positive (honest node) or negative (malicious
node) result. After the transaction the result is rated and
the rating is saved into the TEM. A honest node saves
the corresponding value, either 1.0 for successful or 0.0
for unsuccessful transactions, whereas the malicious nodes
always rate its communication partner with 0.0.
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Figure 3. 30% malicious nodes

Figure 3 shows a simulation with 30% malicious nodes.
The reputation and weight development of honest nodes can
be seen over time. The values are averaged over the honest
and malicious nodes. “Reputation: honest about malicious”,
for example, means the average reputation honest nodes
have about malicious nodes. All weights start at 1, which
is the initial value, if no information is available. The
weight of honest nodes remains constantly at 1, since these
nodes always give correct answers and therefore get never
penalized. Since malicious nodes lie about other nodes their
weights get reduced until reaching 0, effectively removing
their reputation information from the aggregated value.

The reputation value changes accordingly to the weights.
In the start the reputation of good nodes about other good
nodes is lower than 1, since the malicious nodes give false
and bad reputations. When the weight of the malicious
nodes is reduced, their recommendations get more and more
ignored until all are identified and only the honest nodes are
considered, rising their reputation up to 1. Malicious nodes

Zhttp://www.organic-computing.de/spp



have constantly bad reputation of 0, because their work is not
satisfying, which results of bad ratings from honest nodes.
Malicious nodes always rate other nodes bad, which leads to
bad ratings from all nodes for malicious nodes. This explains
the constant bad reputation of these nodes.
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Figure 4. 50% malicious nodes
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Figure 5. 70% malicious nodes

In figure 4 and 5 we increased the amount of malicious
nodes to 50% and 70% respectively. The development of
the curves is similar to the 30% case, which shows that
our metric also works for systems with a high percentage
of malicious nodes, even with over 50% malicious nodes.
This demonstrates the robustness of the metric. Since the
reputation of malicious nodes is going to 0, they will not
be chosen anymore as interaction partner, thereby isolating
them from the network.

In figure 6 we noticed an interesting effect. A single
honest node, in this case node7, had a constant reputation
value of 0 from other honest nodes. This happened because
by chance all honest nodes chose another node, node8 here,
as communication partner and continued to do so, since
they received satisfactory results. This resulted in a situation,
where no honest node had a direct interaction with the shown
node7. This lead to no honest trust ratings about node7, just
negative results of 0 from malicious nodes. In total this kept
the reputation of node7 at a constant value of 0. The reason
is the selection algorithm used to select a communication
partner. The selection algorithm was choosing a random
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node if several nodes had the same reputation value. If a
satisfactory node was chosen no more exploration for further
possible communication partners was done. To counter this,
nodes have to restart exploring, e.g. with not so important
tasks, to create a good mix of direct trust values.
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Figure 7. 30% malicious nodes with threshold 0.5

Another point we noticed was specific by using a mid-
dleware system. Since the TEM middleware provided the
capacities to save the gathered measurements and calculate
trust values from them, a malicious service, running on a
TEM node, was unable to distinguish its wrongly written
observations from rightly written observations from other
honest services. The malicious service wrote its wrong
observation into the middleware but when a reputation value
was calculated these wrong results were indistinguishable
from honest observations. This lead to disadvantages for the
malicious services, that would require a lot of extra work to
circumvent. Since the reputation calculations happen within
the TEM middleware an extra malicious TEM node would
have to be created, instead just a malicious service.

Figure 7 shows a related effect. We can see that the
average weight of honest nodes about malicious nodes stays
stable above 0. In this example the following situation oc-
curred: Honest and malicious nodes interacted with a differ-
ent set of nodes in the end. This resulted in no more updates
to weights, since no additional comparison between direct
interaction and reputations were possible. Apart from that



some malicious nodes never interacted with the interaction
partners of the honest nodes and thereby no more reputation
information about them are given, leaving the mean above 0.
In total this was a combination of several factors: Malicious
nodes set their weights to honest nodes to 0 after some
time. Since reputation calculations and weight adjustment
happen internally in the TEM the malicious nodes cannot
influence these calculations. Therefore, honest nodes return
a reputation value of 1 while malicious nodes rate all direct
interactions with 0, which leads, being different, to a weight
reduction down to 0. Since malicious nodes always return 0
as trust value for all other nodes this resulted for all nodes
to be considered untrustworthy by all malicious nodes. All
honest nodes chose only two other nodes to interact with and
stayed with them. The malicious nodes stayed with different
nodes. In this situation the malicious nodes interacted with
different nodes than the honest nodes. Therefore, no more
weight adjustments are done, since no more additional direct
comparisons that bring new results are performed. This
situation was favored by the fact, that unknown nodes were
seen as equivalent to nodes with 50% reputation by the
selection algorithm. In previous examples we set unknown
nodes equivalent to 0% nodes.

V. CONCLUSION AND FUTURE WORK

We have shown that the Neighbor-Trust reputation metric
can identify lying malicious nodes and isolate them from
the network. Their further recommendations get weighted
lower and lower until they are no longer taken into account.
We have also seen that the selection algorithm for possible
interaction partners, as well as a recurring exploration phase,
is important to get meaningful reputation values in the long
run.

In future work we want to explore different neighbor
finding algorithms. By relaying reputation requests to its
neighbors the target node is able to lie about its neighbors
and only relay the request to nodes that will return a good
rating. This is related to a modification to malicious nodes:
malicious communities. Malicious communities consist of
malicious nodes that know each other and rate each other
positively while lying about all others. We want to evaluate
our reputation metric using malicious communities.

Finally we want to investigate the addition of direct
trust values into the selection of communication partners.
In this paper we only took reputation into consideration,
but existing direct trust values should be included into the
decision as well. This also could include the trustworthiness,
in our case the weight, of the other nodes. By adding such
information not only nodes that return satisfying results but
are also honest can be selected. We want to examine possible
ways, how to weight reputation to direct trust and explore
possible aggregation mechanisms.
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