
Stochastic Simulation of Granular Surface Flow in Rotated
Drums

Stefan J. Linz Wolfgang Hager Peter Hänggi

Theoretische Physik I, Institut für Physik, Universität Augsburg, 86135 Augsburg, Germany

Email: linz@physik.uni-augsburg.de
hanggi@physik.uni-augsburg.de

LRZ-Account: b5101at

Abstract

Granular surface flow along granular piles in rotated drums shows for small rotation rates an inter-
esting hysteretic transition between stick-slip dynamics and continuous flow. Experimentally, this
transition is generically hysteretic. In molecular dynamical simulations of the microdynamics of these
large assemblies of grains, however, this type of transition has not been seen so far. Using a stochas-
tic dynamical model that combines the basic macromechanical mechanisms of granular surface flow
and extensive stochastic simulations, we are able to detect (for the first time in a theoretical model)
the experimentally observed type of hysteretic transition for small, but non-zero fluctuation strength.
For larger fluctuation strength, the hysteretic behavior disappears. This might resolve the afore-
mentioned discrepancy between experimental and molecular dynamical findings
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1 Introduction

In the last decade, there is a steadily increasing fascination of the dynamics of particulate or granular systems
[1]. This roots in the poor understanding of the dissipative dynamics of these large assemblies of extended
massive particles of complicated shape which interact only repulsively through inelastic collisions and friction.
The interplay between the complexity of the micromechanics of this classical many–particle system and its
comparably simple, although often surprising dynamics on a macroscopic level is the major challenge in this
field. Lacking yet any theoretically managable ab–initio–theory for the dynamics of granular systems, physicists
are mainly discussing specific paradigmatic setups that (i) can be investigated experimentally and numerically,
e.g. by using molecular dynamical simulations, (ii) allow theoretical modeling and therefore, (iii) lead to insights
in the governing physical mechanisms. Among others [1], the dynamics of avalanches and surface flow in
rotated drums or cylinders plays a very prominent role in detecting generic features of granular dynamics.
The piling of granular systems in partly filled drums shows most clearly the non–Newtonian fluid behavior of
particulate matter. Up to an inclination angle 's of the surface of the granular pile, the system stays at rest;
increasing the inclination angle ' beyond the maximum angle of repose 's the upper grain layers of the pile
start to slip, decrease the inclination angle until the avalanche stops at the minimum angle of repose 'r. As
pioneered by Jaeger et al. [2] and Rajchenbach [3], rotation of the drum about its horizontally aligned axis of
symmetry with a constant rotation rate ! leads to two very distinct types of dynamics of the surface flow. For
small !, one observes almost periodic stick–slip dynamics (SSD) alternating between avalanches and rigid pile
rotations. For larger !, the pile exhibits a continuous surface flow dynamics (CFD) with an almost constant
inclination angle 'cfd being proportional to !

2. A specific, but nevertheless important problem in this context is
the nature of the transition from SSD to CFD. As found in the experiment of Rajchenbach [3], this transition is
hysterestic: The transition from SSD to CFD while adiabatically increasing ! occurs at a threshold value !

(1)

T
,

whereas the transition value from CFD to SSD while adiabatically decreasing ! happens at !(2)
T
, being non–

zero and considerably smaller than !
(1)

T
. The hysterestic character of the transition between SSD and CFD
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has also been confirmed in other experiments, e.g. Ref. [4], but interestingly, it has not yet been reported in
molecular dynamical simulations of rotated granular materials. In particular, Buchholtz et al. [5] explicitly state
that they were not able to reproduce the hysteretic character of the transition between SSD and CFD in their
simulations; within their numerical resolution, the transition seems to be non-hysterestic. Also the simulations
of Dury et al. [6] seem to suggest that the transition from SSD to CFD and vice versa is non-hysteretic for
their particular choice of parameter values. The aim of our investigation is to try to resolve this apparent
discrepancy by investigating the transition from SSD to CFD in a stochastic extension of a recently proposed
deterministic minimal model [7] which explains phenomenologically many basic properties of the ensemble–
averaged avalanche dynamics. Using extensive stochastic simulations, we find that small velocity fluctations as
they occur naturally in particulate systems, can lead to the hysteretic transition as seen in the experiments [3, 4]
as well as to a non–hysteretic transition depending on the size of the fluctuations.

2 Model

Our investigation is based on a model for granular surface flow that extends the deterministic minimal model
(DMM) [7] for surface flow along granular piles by the incorporation of small stochastic forces. In this macrome-
chanical modeling approach, the dynamics of the global inclination angle '(t) of the granular pile and the
characteristic velocity v(t) of the surface flow (being proportional to the square root of the total kinetic energy
of the flow or the the moving grains) is represented by the stochastic dynamical system

_v = g[sin'� (b0 + b2v
2) cos'+ ~�(t)]�('; v) (1)

_' = �av + ! (2)

with the indicator function for surface flow given by

�('; v) = �(v) + �('� 's)��(v)�('� 's): (3)

Here, �(y) denotes Heaviside’s step function [�(y) = 0 (1) if y � 0 (y > 0)], a, b0 and b2 are positive constants,
g is the gravitational acceleration, and ! the external rotation rate of the drum. Equations (1) and (2) combine
Coulomb’s theory of frictional motion on an inclined plane with viscoplastic arguments and the dynamical nature
of the surface motion granular systems: (i) a nonlinear dynamic friction coefficient kd(v) = b0 + b2v

2 with b0 > 0

and b2 > 0 in (1) which interpolates between solid and Bagnold friction [7] and is monotonically increasing with
v and, therefore, velocity-strengthening, (ii) the fact that a granular pile is statically stable until the inclination
angle 's exceeds the maximum angle of repose, (iii) the fact that a surface flow v(t) is always directed down the
pile, v(t) > 0, and stops if v(t) reaches zero, and (iv) the fact that a surface flow v(t) 6= 0 also excites dynamical
changes of the inclination angle ' which counteract the acceleration of the surface flow. The facts (ii) and
(iii) are mimicked by the indicator function for flow, �, given in Eq.(3Modelequation.583). Stochasticity that
reflects micromechanically generated, but also macromechanically observable fluctuations of the inclination
angle ' and the global velocity v(t) [4], enters in the model (1) and (2) through the simplest possible stochastic
process, namely by a macromechanical Langevin “force” ~�(t) being Gaussian white noise with zero mean and
a correlation or fluctuation strength given by

< ~�(t)~�(t0) >= ~�2
�(t� t

0): (4)

Further simplification can be obtained by taking advantage of the experimental observation [2, 3, 4] that the
angular variations during avalanching are typically small in comparison to the inclination angle of the pile.
Basically, the angular dynamics of the avalanches of eqs.(1) and (2) is centered about the angle 'd = tan b0 [7].
Introducing the deviation from this angle,

�(t) = '(t) � 'd; (5)

non–dimensionalizing time by t ! t=
p
ga and velocity by v ! v

p
g=a, setting ! = !=

p
ga, and performing

a small angle approximation in � (since the difference 's � 'r is only a few angular degrees), we obtain the
following simplified macromechanical model,

_v = [��v2 +
2
0�+ �(t)]�(�; v) (6)

_� = �v + ! (7)
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where the indicator function for flow is given by

�(�; _�) = �(� _� + !) + �(���s)��(� _� + !)�(���s); (8)

and �s = 's �'d, � = (gb2=a) cos'd > 0, and 
2
0 = 1= cos'd > 0. After non-dimensionalization, the fluctuation

strength of the stochastic variable �(t) reads � = ~�=g. In the deterministic limit, � = 0, and for small rotation
rates !, the model shows periodic global avalanches which start from �s = 's � 'd with v = 0 and decay to
�r = 'r � 'd ' ��s when v = 0 has been reached again. They are separated by rigid pile rotations until
�s is reached again by virtue of the external rotation !. The duration of the rigid pile rotation is determined
by (�s � �r)=!. For larger rotation rates, however, there is a transition to a continuous surface flow with a
constant velocity vcfd = ! and a constant inclination angle �cfd = �!

2
=
2. Note that (i) the existence of this

fixed point of Eq.(6) and Eq.(7) is a direct consequence of the dependence of the dynamic friction coefficient
on the square of the velocity and (ii) that this result agrees with Rajchenbach’s experimental findings of the
dependence of the averaged inclination angle on the rotation rate. For small enough fluctuation strengths
�, this basic mechanism is still present in the stochastically extended model, Eqs.(6) and (7), however, with
superimposed small stochastic variations of the velocity of the surface flow and the inclination angle of the
pile. In order to detect the characteristics of the surface generated by Eqs. (6) and (7), we have integrated
the stochastic model using a stochastic modification of the standard Euler time discretization method [8]. The
extensive numerical calculations have been performed on the LRZ IBM SP2.

3 Results

Here, we review the results of extensive numerical simulations of the macromechanical model, Eq.(6) and
Eq.(7), that show the drastic impact of Langevin forces on the transition between SSD and CFD for the granular
surface flow. The parameter values, �s = 0:0194, � = 0:1, and 
0 = 1:1, used in these simulations of the
model, Eq.(6) and Eq.(7), are extrapolations [7] from experimental data in Ref. [3, 4]. For small correlation
strength �, the effect of the stochastic forces on the dynamics are (a) in the stick-slip regime corresponding
to small ! the duration of the avalanches is no longer constant, but is distributed about the average avalanche
duration < Tav > which is practically given by its deterministic limit. As our numerical calculations show,
this distribution is roughly Gaussian. Another effect is that the duration of the rigid-pile-rotation Trpr is also a
stochastically distributed quantity, even though the next avalanche again starts sharply at the maximum angle
of repose 's. (b) In the continuous flow range corresponding to larger !, the velocity of the continuous surface
flow and the inclination angle of the pile do not reach a steady state, but fluctuate about their mean values.
For the small fluctuation strengths considered here, the mean values are basically equal to the deterministic
fixed point mentioned above. To substantiate that stochastically perturbed SSD and CFD dynamics can be still
distinguished, we show as representative examples in Fig. 1 the dynamics of the perturbed SSD and CFD
states in the phase space spanned by v and �. Note that in presence of external rotation the maximum and
minimum angle of inclination of the pile for SSD occur during the avalanching process in form of an inertia-
related over- and undershooting effect. This effect has also been reported in the experiments in Ref. [4]. For
nonzero fluctuation strength� and very close to the transition point from SSD to CFD and vice versa, one finds
numerically that the dynamics of the surface flow in the model (6) switches erratically beetween avalanching
and continuous flow. In order to distinguish between SSD and CFD states in our simulations of the surface flow
dynamics, one has to define more precisely a SSD state and a CFD state. As a criterion for our simulations, a
large fixed number N of successive avalanches without any jump to CFD has been used to characterize a SSD
state. If during the simulations such long sequences of avalanches could not be observed, it has been identified
as a CFD state. In our simulations, we used N = 200. To analyse and quantify the transitions from discrete
avalanches to continuous flow and vice versa, it is also convenient to introduce appropriate order parameters
which allow a clear distinction between both dynamics. The simple choice of the time average of the reduced
inclination angle, < � >, however, is not sensitive enough for such a distinction. For demonstration purposes,
we use in the SSD-range the time average of the maximum and minimum angle of inclination < �max > and
< �min > occuring during avalanching, whereas in the CFD range the averaged inclination angle < �cfd > is
used.

Next we show that the incorporation of stochastity can indeed lead to the type of hysteretic transition as seen
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Figure 1: Representative examples of the effect of the Langevin “forces” on (a) SSD (! = 4 10
�2
) and (b) CFD (! = 10

�1)
in the (v;�) phase space. Parameter values are �s = 0:0194, � = 0:1, 
0 = 1:1, and � = 10

�3.

in the experiments [3, 4]. We consider two cases: the deterministic case, � = 0, and the stochastic case with
a fluctuation strength � = 8 10�4. In both cases, we investigate the transition from SSD to CFD and back to
SSD again in the model, Eqs.(6) and (7), by (i) adiabatically increasing the rotation rate ! until a CFD state has
been reached and then (ii) subsequently decreasing the rotation rate ! in an adiabatic way again. By doing
that, we are able to detect the two transition transition points !

(1)

T
from SSD to CFD and !

(2)

T
from CFD back

to SSD. The result for the zero and the representative non-zero fluctuation strength � is shown in Fig. 2. In
Fig. 2(a), the deterministic limit of the model (6) and (7) (� = 0) is depicted. Increasing ! from zero, the
broadening of the SSD limit cycle in the phase space spanned by v and � can be seen. This is reflected by the
increase of the modulus of maximum and minimum angle of inclination �max and �min, respectively, that occur
during avalanching due to the afore-mentioned over- and undershooting effect. The sudden transition from
SSD to CFD at !(1)

T
' 0:074 occurs if simultaneously � = 0 and v = 0 are reached. Decreasing ! again, the

surface flow dynamics is caught in the CFD fixed point which is linearly stable against small perturbations as
they occur when the rotation rate is lowered. Due to the lack of a destabilization mechanism for the continuous
flow, however, the system remains in the CFD solution until !(2)

T
= 0 when ! is adiabatically decreased. As a

consequence, the deterministic limit of the granular surface flow model exhibits hysteresis. It is, however, too
large in comparison to the experimental findings [3, 4] where !

(2)

T
is non-zero.

In Fig. 2(b), the dynamics of the stochastically extended model (6) and (7) is depicted. For small enough
rotation rates the averaged broadening of the perturbed SSD limit cycle in the phase space spanned by v and
� is quantitatively the same as in the deterministic limit. However, the transition from SSD to CFD represented
by the jumps from < �max > and < �min > to < �cfd > is largely reduced and happens at !(1)

T
' 0:045. Above

that value, the surface flow is in the CFD state. Lowering the rotation rate again leads to the major effect of the
Langevin term in Eq.(6). The transition from CFD to SSD at !(2)

T
represented by the jumps from < �cfd > to

< �max > and < �min > occurs at a non-zero value of !. The value of the fluctuation strength � = 810�4 has
be chosen such that there is a striking agreement with the experimental findings of Rajchenbach [3]. There,
the transition from CFD to SSD, !(2)

T
, occurs at a rotation rate that is slightly smaller than half of the rotation

rate for the transition from SSD to CFD, !(1)
T
.

Finally, we numerically investigate the location of the transition points from SSD to CFD, !(1)
T
, and from CFD

to SSD, !(2)

T
, as a function of the fluctuation strength �. The results are shown in Fig. 3. The crosses in Fig.

3 denote the numerically obtained data of the stochastic simulations. The solid and the dotted lines represent
smooth interpolations of the data for !(1)

T
and !(2)

T
, respectively. For the deterministic case,� = 0, one recovers

the analytically known result that !(1)
T
' 0:074 and !

(2)

T
= 0. Increasing � from zero has three major effects.

First, the transition points !(1)

T
from SSD to CFD (upper curve in Fig. 3) decrease with increasing, but still small

enough � until a minimum of !(1)
T

at about� = 0:002 is reached. The decrease !(1)

T
with � results from the fact

that for non-zero� the minimum angle of repose �r is distributed about its mean < �r >. The latter is basically
determined by its deterministic value. Since the width of this distribution increases with �, the dynamics can
escape to the CFD dynamics for smaller rotation rates than in the deterministic case. For larger �, !(1)

T
slightly
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Figure 2: Hysteretic transition between SSD and CFD for (a) � = 0 and (b) � = 8 10
�4. In the SSD state, the maximum

(minimum) angles during flow are < �max > (< �min >). At !(1)

T
the transition from SSD to CFD occurs, and at !(2)

T
the

transition from CFD to SSD.

increases again. Second, the transition points !
(2)

T
from CFD to SSD (lower curve in Fig. 3) are non-zero as
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Figure 3: The dependence of the transition points ! (1)

T
and !

(2)

T
on the fluctuation strength�. The model parameters are

�s = 0:0194, � = 0:1, and 
0 = 1:1.

soon as � is non-zero and they increase, at least for larger �, weaker than linear with increasing fluctuation
strength. At least for very small � this can be explained as follows. Since the velocity v(t) of CFD fluctuates
about its mean, it can reach v = 0 for non-zero !. After reaching v = 0, the system is trapped in the SSD state.
Since the width of the v distribution is proportional to �, one must expect a linear increase of !(2)

T
for small �.
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Third, the curves for !(1)

T
and !

(2)

T
approach each other and apparently merge above � ' 0:002. Within our

numerical resolution, the difference between both curves cannot be distinguished above � ' 0:0021.

The consequences for the granular dynamics in a rotated drum experiment are as follows. Below !
(2)

T
only

SSD exists, whereas above !
(1)

T
, only CFD can exist. The wedge-shaped area enclosed by !

(1)

T
and !

(2)

T

in Fig. 3 represents the combinations of rotation rates ! and fluctuation strengths �, where hysteresis, i.e.
a coexistence of SSD and CFD states, occurs. The hysteretic range bounded by !

(1)

T
and !

(2)

T
shrinks with

increasing fluctuation strength � until merging occurs. Moreover, for larger fluctuation strengths � beyond the
merging, the transition from SSD to CFD is non-hysteretic and increases with increasing �. We note that the
transition curves !

(1)

T
and !

(2)

T
have some dependence on the definition of the stochastically perturbed SSD

and CFD states. As mentioned above, we used N = 200 successive avalanches for a SSD state. For a smaller
number of avalanches entering in the criterion, the merging point of !(1)

T
and !

(2)

T
is shifted to slightly larger �.

Extensive numerical simulations with various values of N show that the scenario depicted in Fig. 3 remains
qualitatively unchanged.

4 Conclusion

To summarize, we have demonstrated that the hysteretic transition from discrete avalanches to continuous
flow in rotated drums as detected in the experiments [3, 4] can be understood as a transition being induced
by the impact of small Langevin forces in the deterministic minimal model for granular surface flow [7]. This
stochastically entended minimal model also offers an explanation why this hysteretic transition has not been
seen in molecular dynamical simulations of granular drum flow yet. Hysteresis can only occur as long as the
fluctuation strength� is below some limit. For larger fluctuation strength, the transition from SSD to CFD is non-
hysteretic. The magnitude of the fluctuations is clearly related to micromechanical properties of the granular
system such as, e.g., the degree of inelasticity of the grains. Therefore, the reason why the hysteretic transition
has not yet been observed in molecular dynamical simulations might be caused by too weak inelasticity of the
grains in comparison to the experiments [3, 4]. Further details concerning the stochastic model for granular
surface flow and, in particular, the investigation presented here are described in Ref. [9, 10].

Bibliography

[1] for an overview see: H.M. Jaeger, S.R. Nagel, and R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996); H.
M. Jaeger and S. Nagel, Science 255, 1523 (1992).

[2] H. M. Jaeger, C.-h. Liu, and S. Nagel, Phys. Rev. Lett. 62, 1988 (1989).

[3] J. Rajchenbach, Phys. Rev. Lett. 65, 2221 (1990).

[4] M. Caponeri, S. Douady, S. Fauve, and C. Larouche, NSF Report No. NSF-ITP-92-140 (1992).
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