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Abstract

We use an efficient real-time path integral approach to investigate general time-dependent quantum
systems which are coupled to a dissipative environment. To obtain a reliable check of this method, we
compare numerical results with available analytical results for a linear test system. This findings are
important to justify the application of the numerical algorithm to more complex, nonlinear problems
where no analytical approach is available a priori.

1 Introduction

The question how a quantum system is influenced by the interaction with its environment is of broad general
interest in physics [1, 2]. Usually, no detailed microscopic knowledge of the environment is available. How-
ever, very successful methods in phenomenological modeling of the environment have become widely known
(system-bath-models). Therefore, the central quantum system of interest is coupled bilinearly to a collection of
harmonic oscillators (heat bath, reservoir). Due to the linearity of the bath and the coupling, the equations of
motion for the bath degrees of freedom can be solved exactly. If the central quantum system itself is linear, the
model describes the Brownian motion of a quantum particle in a parabolic potential. For this system, analytical
solutions are available even when additionally the curvature is periodically modulated [3]. Other physical prob-
lems like the relaxation of a quantum system to equilibrium via tunneling involve in general non-linear potentials
for which no simple analytical solution is at hand. For such questions, a very efficient numerical method using a
quasiadiabatic propagator path integral (QUAPI) has been developed [4]. In this work, we review the application
of this technique to the parametrically driven dissipative quantum harmonic oscillator and the comparison of
the results with the known analytical results [5]. This justifies the application of the algorithm to a more complex
situation of a harmonically driven double-well potential where no analytical solution is known [6, 7].

2 The quasiadiabatic propagator path integral

The phenomenological model of a quantum system interacting with a harmonic oscillator bath is described by
the Hamiltonian

H(t) = HS(t) +HB; (1)
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where

HS(t) =
p2

2M
+ V (x; t) (2)

is the Hamiltonian of the central system of interest, i.e. a quantum particle of mass M with position operator
x and momentum operator p moving in a one-dimensional potential V (x; t) which may be in general time-
dependent due to an external driving force. The bath (including the interaction with the system) describing the
environment is modeled by

HB =
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x

�2i
; (3)

being an ensemble of N harmonic oscillators of masses mj with coordinate and momentum operators xj and
pj and potential curvatures !j . The coupling of the system to the bath is assumed to be linear with the coupling
constants cj . We assume that the density operator W(t) of the entire system-plus-bath at initial time t = t0

factorizes according to
W(t0) = �S(t0)
 Z�1 exp(��HB) (4)

with �S(t0) being the density operator of the system at time t0 and Z�1 exp(��HB) being the canonical equilib-
rium distribution of the bath at temperature T = (kB�)

�1. The bath is fully characterized by the spectral density
J(!) (for further details see e.g. [1]). Throughout this work, we assume an Ohmic bath with exponential cut-off
at !c � !0, i. e. J(!) = M exp(�!=!c), where  is the damping constant.

3 The parametrically driven quantum harmonic oscillator

The dynamics of the central system of interest is described by the time evolution of the reduced density matrix

�(x0f ; xf ; t0; t) = Trbathhx
0

f jT e
�i=~

R
t

t0
Hdt0

W (t0)e
i=~

R
t

t0
H(t0)dt0

jxf i: (5)

Here, xf and x0f are the spatial coordinates of the system at time t, T denotes the chronological operator,
W (t0) the density operator of the total system at time t0 and Trbath the trace over the harmonic oscillator
coordinates. In general, the time evolution can only be performed numerically. We use the method of the quasi
adiabatic path integral propagator in combination with a powerful tensor multiplication scheme [4] to evaluate
the quasi-adiabatic path-integral iteratively (see also [6, 7]). It is for this purpose, where we have used the
high-performance computer at the LRZ.

In the case of the central quantum system being linear, the numerical findings within the QUAPI framework can
be compared to analytical results obtained by real time path integral methods [5, 3]. The potential is given by

V (x; t) =
M

2
[!20 + � cos
t]x2: (6)

The interesting quantities we have calculated are the autocorrelations of the position and the momentum oper-
ator, i. e. �xx(t) = hx2i � hxi2, �pp(t) = hp2i � hpi2 and their cross-correlation �xp(t) =

1
2
hxp+ pxi � hxpi.

Fig. 1 shows two examples of parameter sets given in the figure caption. We see that the numerical QUAPI
algorithm results and the analytical calculations agree very well (for further discussion, see [5]). Moreover, the
dependence of the QUAPI algorithm on its free parameters (which are due to systematic approximations) can
be studied in a detailed way with the analytic solution at hand. The perfect reproduction of the analytical results
by this numerical algorithm fortifies for further applications like the investigation of relaxation phenomena in
statically tilted or ac-driven double-well potentials [6, 7].

This work was supported by the DFG and the Freistaat Bayern within the postgraduate scheme (Graduiertenkol-
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Figure 1: Left: Time-dependence of the correlations �xx(t); �xp(t) and �pp(t) for the undriven dissipative quantum har-
monic oscillator (� = 0; !0 = 1:0) with bath parameters T = 1:0;  = 0:1 and an exponential cut-off with !c = 50:0. In all
the figures, we have used scaled quantities (see [5] for further details). The solid lines show the analytic results while the
dashed lines represent the numerical solution obtained by the QUAPI algorithm with parameters M = 5; K = 4;�t = 0:2.
Right: The same for the parametrically driven dissipative quantum harmonic oscillator with a driving amplitude � = 0:1

(!0 = 1:0). The bath parameters are T = 0:1;  = 1:0 and !c = 50:0 (exponential cut-off). Here, the QUAPI parameters
are M = 5; K = 4;�t = 0:25.
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