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Estimation of variance components in linear model theory is presented as
an application of estimation of the mean by introducing a dispersion-mean
correspondence. Without any further computations; this yields most general
representations of minimum variance-minimum bias-invariant quadratic
estimates, estimates from MINQUE theory, and Ridge-type estimates of the
variance components.

1. INTRODUCTION

This note aims to emphasize that in linear model theory linear estimation of
the mean and quadratic estimation of the variance components pose the same
problem when taking a suitable point of view (Section 2). This dispersion-mean
correspondence yields most general representations of estimates of the variance
components (Section 3) for both minimum variance unbiased estimation
(Theorem 1) and MINQUE theory (Theorem 2), at the same time exhibiting
when the estimate of one procedure is optimal in the sense of the other. Finally,
the approach suggested here is used to derive Ridge-type estimates of the variance
components. All results follow from the theory of mean estimation, no further
computations being necessary.

The present paper extends the works of Mitra [2] and Seely [6]: no rank
assumptions are made, unbiasedness is replaced by the more general concept of
minimum bias, and the close relatedness to multilinear algebra is stressed.

2. THE DISPERSION-MEAN CORRESPONDENCE

Let a linear model be characterized by linear decompositions of the expectation
vector &Y and the dispersion matrix BY:

bY = Xb = i b,,x, , BY = i t,v,, (1)
T.-l n-1

                                              
                                                                        
                                                                  

   



                               627

where Y is a W-valued random vector, X = (x~ :.**: x,), x,(VJ are known
W-vectors (symmetric (n, n)-matrices), and b = (b, ,..., b,)’ and t = (tl  ,..., tic)’
are to be estimated.

Quadratic estimates Q(Y) of t are, by definition, derived from bilinear
functions B(*, .) from W x Rn into !R” by setting both arguments equal to Y.
Since the Kronecker product x @ y [5, p. 291 is a tensorproduct [l, p. 121, any
quadratic estimate factorizes according to Q(Y) = B(Y, Y) = L . Y @Y with
a (K, +matrix L. Another tensorproduct is xy’, being related to x @ y by
the inner product and tensor product preserving isomorphism vet:

(vet A)’ vet B = trace AB’, vet xy’ = x @ y,

where vet A is the column vector obtained from the matrix A by ordering its
entries lexicographically. Further, estimation oft is restricted to estimates which
are invariant under all mean translations y -+ y + Xb, b E W. A maximal
invariant statistic with respect to these translations is MY, where M = Proj(m)*
is the orthogonal projector onto the orthogonal complement of the range
(column space) of X. Hence, an estimate Q(Y) is invariant iff Q(Y) = Q(MY).
In summary, an arbitrary invuriunt quadratic estimate (IQE) of t is given by a
(K, n2)-matrix L according to Q(Y) = L * lWY @ MY.

Clearly,

IMy@MY=M.@M.d(Y-Xb)@(Y-Xb)

=M@M*vecgY =M@M*xt,vecV,.

By introducing the (n2, K)-matrices D = (vet V, :a.‘: vet V,) and DM =
M @ M * D, MY @ MY gives rise to the derived linear model

bMY@MY=M@M*Dt=D&. (2)

Estimating dispersion components in a linear model (1) is a question of point of
view: t may be looked at as regression parameter for the dispersion matrix in the
original model (1) or of the mean vector in the derived model (2).

3. ESTIMATES

Theorem 1 derives various properties of a minimum variance-minimum bius-
IQE (MV-MB-IQE) 2 of 3 from the theory of mean estimation (cf., [5, p. 3071).
Note that given 3 and q E W, the MV-MB-IQE of q’t is q’s, and that t, q’s are
unbiased whenever possible, i.e., rank DM = k, q E 9DM’, respectively.
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THEOREM 1. Let F := 9(Y - by) @ (Y - &Y) be the known matrix of
fourth moments in the linear model (l), put M = Proj(S?X)I, N = Proj(9’D&,
Fr,r =M@M.F.M@M. Then: (i) The ordinary  least squares estimate
Drvr+ . Y @Y is a MV-MB-IQE oft isf9FMD C WD, . (ii) The normal equations
D’F,+D? = D’FM+ . Y @Y yield a MV-MB-IQE of t 28 WDM C WFm.
(iii) Every  MV-MB-IQE oft when the fourth moments are G, is a MV-MB-IQE
oft when the fourth moments are F, isf9?FMN C %‘GMN.

Proof. The results follow when the theory of mean estimation is applied
to the derived model, cf., [7, p. 654, 658; 3, p. 1481.

EXAMPLE. When Y is normally distributed with zero mean one has
F . vet A = (9Y @ Y) vet A = (9Y) @ (9Y) . vec(A + A) for any (n, n)-
matrix A. Let S?r be the set of dispersion matrices admissible in model (l), and
let 9 be the subspace of symmetric matrices spanned by the V, . Then 9?D ==
vet a, and 9?FD = vec(9Y) g(.9Y). When I, ~gi, then the least squares
estimate is of minimum variance with respect to every V E S?$ iff VBV C S? for
all V E 9r , by Theorem l(i). This leads to quadratic subspaces as introduced and
discussed by Seely [6, p. 7141. Applications to Hsu’s model are given in [4].

Theorem 2 concerns Rao’s MINQUE theory [5, p. 302-3051 where unbiased-
ness is relaxed to minimum bias. Assume T to be nonnegative definite. When
estimating a linear form q’t one has to minimize

trace ATAT = 11 T1j2MAMT112 II2 = li(vec A)’ * M @ M . (T @ T)1/2 [I2

among all MB-IQEs Y’AY = (vet A)’ . MY @ MY. When estimating t this
generalizes to minimizing I/ L M @ M . (T @ T)*/a II2 among all MB-IQEs
Q(Y) = L . MY @ MY. A resulting estimate will be called minimum norm-
minimum bias-IQE (MN-MB-IQE) of t.

THEOREM 2. Assume the notation of  Theorem 1 and let T be nonnegative
de$nite. Then: (i) Parts (i) and (ii) of  Theorem 1 remain true for MN-MB-IQEs
instead of  MV-MB-IQEs if  F is replaced by  T 67~ T. (ii) There is a unique
MN-MB-IQE for t z# My @ My E gDNI + 9FM for all y E 88”. (iii) Every
MN-MB-IQE is a MV-MB-IQE when the fourth moments are F, #S?F,N C
9I’MTM @ MTM . N.

Proof. Minimizing variances of L . MY @ MY would mean minimizing
trace 9L . MY @ MY = I/ L . M @ M . F1j2 (12. The theorem thus follows by
formal identification of MN-MB-IQEs with MV-MB-IQEs when the fourth
moments are F = T @ T, cf., [5, p. 3051. Part (ii) follows since the MV-MB-IQE
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has a unique representation iff all  possible observations are in k%DM + aFM
[7, p. 6581.

EXAMPLE. Let T be positiv definite, R = T-1 - T-iX(XTIX)-XT1, and
S = D’ . R 0 R 1 D, whence R = (MTM)+, &?R = WMTM = WM, WDhl’ =
WS. By Theorem 2(ii), Theorem l(ii), the unique MN-MB-IQE of t is
S-D’ * RY @ RY. For q E R*, q’t is estimable iff q E &?DM’, i.e., q e WS, and in
this case its MINQUE is

q’S-D’ . RY @ RY = A’D’ . RY @ RY = Y’RxX,V,RY, SA = q,

as given by Rao [5, p. 3041.
Finally, the derived model (2) may successfully be employed to derive

Ridge-type estimates for the variance components t. For example, an IQE
L . MY ‘@MY of a linear form q’t, q E W, minimiqes the weighted sum
s = /’ L . M @ M . F1j2 iI2 + r2 11 L . DM - q’ 112, 72 > 0, of variances and bias
iff L = q’w(r2FM + DmDM’)- [5, p. 305-3061. Note that the mean square
error of L . MY @MY at t is 11 L * M @ M . F1/2 II2 + (I(LDI, - q’)t 112, with
maximum value s when t varies subject to 1) t/I < T; hence an estimate as
mentioned above minimizes the maximal mean square error when 1) t )I < 7.
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