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A&WC: Wcessary and sficient conditions are established when a continuous design
contains maximal information for a prescribed s-dimensional parameter in a classical linear
model. The development is based on a thorough study of a particuls; duz.P problem and its
interplay with the optimal design problem, extending partial resulti and earlier approaches
based on different% calculus, game theory, and other programming methods. The results apply
in particular to a class of information functionals which covers c-, D-, A-, L-optimality, they
include a complete account of the non-differentiable criterion of E-optlrilality, and provide a
constructive treatment of those situations in whisln the information matrix is singular. Corol-
laries pertain to the case of s out of k paramcsters, simultaneous optimality with respect to
several criteria, multiplicity of optimal designs, %unds on their weights, and optimuiity which is
induced by admissibility.

                                                                

                                                                                   
                                                                                         
                             

Convex programming methods are app!ied to the approximate, or continuous
design theory of classical linear models. Emphasis is on characterizing those
designs which provide maximal information on the unknown parameter, in
contrast to the customary approach which prefers to minimize some kind of loss.
Although the distinction between maximizing information and minimizing loss
seems nlarginal, the information pint of view has Ied tcj a consistency of
exposition Yrfhich 1 failed to gain otherwise.

Our investigations synthesize partial resulrs and previous aisproaTflr=s based on
differential calculus, game theory, and programmilrrg methods In partic&Gar, the!
resolve the two open problems of charaticrizing oFtimality of singular informa-
tion matrices, and of characterizing optimality with respect tfs non-differentiable
criteria, SUCL as E-optimality. More gene&, 0~ approach cove?+; Kiefer’s (1974

72) L-optima!ity, snd orher f
S CdGLL v; k t;ar

short summary, and then list the notation to be used in the sequel.
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Section 2 introduces the optimal design problem (P) as one of maximizing an
information functional over a compact convex set 98 of information matrices, for
a fixed s-dimensional linear parameter K/3. More precisely, the objective func-
tion is constructed by first reducing any k x k information matrix IU E % to a s X s;
matrix J(M). callled information matrix for K’CJ, and then mapping J(M) into a
non-negative real number by means of a positively homogeneous and concave
function j, called information functional. Simultineous optimal& with respect to
all information functionals leads to uniform optimahty (Theorem i), existence of
optimal information matrices is settled by semi-continuity (Theorem 2). Section 3
characterizes optim?Wy using duality theory of convex analysis. The dual problem
(n>) amounts to maximizing the polar information functional over the polar set of
information matrices, this problem being considerably smoother than the primal
problem (P) in that the new objective function does not require any matrix
inversion and always is semi-continuous. Stir main result is the detailed duality
relation, established in Theorems 3 and 4. An optimality characterization closer
to the well known Kiefer-Wolfowitz type equivalence theorems is deduced in
Theorem 5, with corollaries on c-, and U-optimality, and on possible multiplicity
of optimal information matrices.

Section 4 further specifies the optimal design problem in the usual manner, i.e.,
by generating the information matrices M as moment matrices of design measures
5, The interplay of design measures and their information matrices is studied by
bounding the number of support points of 6 given M (Theorem 6), identifying
possible support points of design measures which are optimal (Theorem 7), and
computing the weights that an optimal design assigns to its support points
(Corollary 7.1).

In Section 5 these results are applied to the j,-family of information functionals
which correspond to Kiefer’s @$-criteria (Theorem 8). Corollaries pertain to the
case of s out of k parameters, linear parameters K’@ which do not have full rank
s, simultaneous optimality with respect to ah j,-criteria, and optimality induced by
admissiibility. Section 6 concludes the paper with some examples.

In this paper all matrices are real matrices. The foilowing notation will be used
throughout:

R”
R kxs

A’, A , A+

(A, B)
IA I”
S&k)
&(A 1

L,(A)

Euclidean n-space of column vectors
the linear space of all k x s matrices
the transpose, an arbitraryy g-inverse, the Moore-Penrose
inverse of a matrix A
trace A’& the Euclidean matrix inner product
&race A’A, its associated norm
the linear space of all symmetric k x k matrices

the smallest and largest eigenvalue of a symmetric matrix A

the closed convex cone of all symmetric non-negative definite
k x k snatrices
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JO-
B<A
PW)

if and only if A - B is non-negative definite, the Loewndz
ordering of symmetric matrices
the relatively open convex cone of all symmetric positive
definite k x k matrices

A real function j is called super-additive if j(C+D) 2 j(C) -t- j(D); a concave
function j is said to be closed if j is upper semi-continuous.

Consider a classical linear model Y-i ; Eli,) in which n real observations
Y 1, . . . p Y, form a randarm IF&vector Y which has mean vector X/3 and disper-
sion matrix 0~1,. The n y\ k matrix X may be chosen by the experimenter prior to
drawing the obsenations, as will be specified in Section 4, Among all linear
functions K’@ of the vector parameter p ER’ only those are of interest which are
identifiable in the model Y -_ (Xp; a21,). Tlis means that when the mean vector
of Y may be represented as both X@ and ,X7 with two values 8, y E Rk, then K’P
and K’r rntise coincide, The following definition is adapted to the present
situation in which K is fixed and X may vary.

a 1. Let K be a fixed k x s matrix of rank s. Then the set B(K) is defined
to consist of al2 those matrices A E NND(k) whose range contains the range of K.

Hence K’P is identifiable in the model Y C- (Xp; o*Z”) if and only if X’X lies in
%(Z<). As is easily seen the set B(K) is a convex cone, its relative interior is
PD(k), and 3s closure is NND(k j. If s < k then both inclusions PD(k) c a(K) c
NND(k) are proper and a(K) is neither relatively open nor closed, if s = k then
g(K) equals PD(k). The following notions aim to distinguish one model from
another by the different amount of information they contain about K’p.

2. Define .I to be ttle fmction from NND(k) into NND(s) which maps
A into (K’A’K)‘l if A E B(K), am! into 0 &em&.

It is well known that the function :‘ is well defined, concave, and isotone, see
Pukelsheim and Styan (1979, Theorem I), Gaffke and Krafft (1979, Theorem
4.8). In a normal model Y -%,(Xp; o*ZJ the information matrix for IS@ is
J(X’X)la2, in the sense that it provides the Crami: ao bound for unbiased
estimation of on Sa.3), and that it determines the power
of the F-test (1978, Sate %.I). Information matrices
associated with different design matrices A need not be comparable in the
Loewner-ordering <, and this suggests to s dy real functions j of
itself. Certainly j should have properties whi a~jpr~~r~atel~ relate to
of i .
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B&Gtion 3. A real function j on NND(s) will be called an infomat;ion functional
if j is

(a) non-negative on m(s), and positive on PD(s),
(t) positively homogeneous, and
(cj super-additive.

AS a contequence every !nformation functional j is concave and isotone, and
s,&& j(0) = 0. If j is strictly concave then it is also strictly isotone, i.e., C< D
:;xI Cf D imply j(C)< j(D). However, j(C) = trace C is a strictly isotone
irrformation functional which fails to be strictly concave. Other information
functionals are:

jL (C) = trace CL, (L E NND(s), 1, f 0).

i,(C) = (trace CV/s)‘/p, (pdLp#Oj,
j&I’) = (det C)*“,

j_JC) = A,,,(C).

The family {jp 1 p E [ --a~, + 1D leads to the Qp-criteria of Kiefer (1974, eq. (4.18)),
jl is also implicit in Silvey dnd Titterington (1974, p. 301), Kiefer (1975, p. 338),
and Titterington (1975), (1980). For other discussions of general optimality
criteria see Kiefer (19’74), Silvey (1978), Gafike (1979).

In general, the average off an arbitrary collection of information functionals, and
the minimum of a finite collection again are information functionals. Even the
itrfimum of an arbitrary collection is an information functional, provided it is
positive on PD(s). This applies in particular to the polar function j” of an
information function.2 i, which is given by

j”‘(D) = inf{(C, D>lj( C) 1 C E PD(s)}.

For when D is positive definite then j”(U) is bounded from below by

WC. LV 10~ NPXW, llC/ = Q/sup {j(C) 1 Ce PD(s), IICll- l}>O.

Mcreover j'.' is closed, being the infimum of a collection of upper semi-
corZ’;3k’rfit 5 !! unctions.

MOT@ + 4’0,” .&XI. thaiI joist closedness of i, irr order to ensure closedness of the
cumpositi~:Si:t (c _! An irbformation functional i will be said to vanish outside PD(s)
if lim p \() : ( i;, -i 2_, r ) = 0. 5.N 111 a singular matrices Co E NND(s).

I, T%ze conrpositim jo J is non-raegative on NND( k), pasitive on a(K),
positiueely hmogeneous, super-additive, concave and i,sotone, and satisfies jo.l(O) =
0. Fcspthcrmore j 3.f is cbsed if and only if j vanishes outside PD(s).

rst set of ~~r~~~ert~es 4s immediate. Assume, then, t
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let COe W(s) be singular, and define CE = Co + EI,. Verify J(KC,K’) -
(K’(I(Z‘,K’)+K)-l = Ce. Now Corollary 7.5.1 in ltaoclcafellar (1970) yields

lim j(CJ = lim joJ((1 - A)KK’+ hKC,K’) = joJ(KC,K’) = 0.
@‘LO Afl

ConverrsYy, assume that j vanishes outside PD(s), and foi A E NND(k) dc;Cne
Ae = A + ~1~. By Theorem 7.5 in Rockafellar (1970) closedness of j oJ follows
provided lim elo jeJ(A,) = joJ(AJ, for all A eNNTI(k). This limit formula cer-
tainly holds for A E’%(K), since then even K’AZ’K tends to K’AX, see Lemma
5.6-3 in Bandemer et al. (1977). Herrce cokder A@?l(K), and let A be its
maximal eigenvalue. Since X(1, - AA”)K# 0, there exists a non-zero R” -vector z
such that n(K’K)-1’2K’(I, - AA+)K(K’K)-1/2+ zz’. The following estimate. is
then easy to derive:

K’(A +E&)-‘K$ s-‘K’(& -AA+)K+(A +E)-%%A+K
= (A + &)-‘(K’K)“2{IS + E-*,(K’K)-‘/~K’(;~, - AA+)K(K’K)-1’2}(K’K)E ‘2
3 (A + e)- ‘(K’K)‘/2{IS + E-‘zz’}(K’K)‘/~.

With the singular matrix Co = z’z(K’K)-’ - (K’K)-“2z2’(K’K)-1’2 this yI : kk

J(A,)< (A + e,(K’K)-“‘{Is -(e J z’z)-‘zz’}(K’K)-~‘*

= (A + e){CO+ c)(K’K)-II/(& + z’z).

Monotonicity of j, and again Theorem 7.5 in Rockafellar (1970) finally give
lim E L0 joJ(A,) S (A/z’z)lim, ,,o j(Co + e(K’K)-‘) = 0, as desired.

Now assume %! to be a compact convex subset of NND(k) which in@ersects
B(K). Any member of w will be called an infomzation matrix. The optin:;+! 9 .4gn
problem then reads:

P) Maximize joJ(M),
subject to n/r E m.

The optimal value v =sup,,~joJ(M) is the maximal j-information for ;. e in
\%, any informatic!n matrix IWE m for which joJ(A.4) attains this value will kL; said
to have !Vbmaximal j-information for K’@.

A special case arises when s = 1. Thcri K may be identified with a iRk-ve~%xr c,
and the concept of information functionals trivializes, since joJ(A) =. j(I)/A-c
whenever A E 8(c). Hence in this case an optimal solutip)n of (P) wi!l sJnq 114 be
said to have %!-maximal information for C’ e situatiolss in which -se of
information functionals is redundant are descr m the following theorem; if an
information matrix satisfies any one of its four statements it ~3% be call&!
uniformly optimal foi , cf., rl (1978, p. 1367).
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E%o& Apply (a) to j&C) = Z’CZ to obtain (b). Conversely, (b) implies (a).
Equivalence of (b) and (c) is immediate. Now assume (c), If c = Kz, with z E W,
then M E!%(G). Choose any competing information matrix A ~2% f?%(c). From
AM + (I. - A.)A E \JUE n’%(K) it follows that c'M-c = z'.K?WKZ s $K' (AM+
(  1 -  A)A) - I CY S Ac' l Wc - t - (  1 - A)c’A’-c. Letting h tend to 0 shows that A4 has
$%&maximal information for ~‘6. Conversely, (d) implies (c).

The topological assumptions underlying the optimal design problem (P) have an
immediate consequence concerning the existence of optimal information matkes.

The~rerm 2 (Existence). If j uunishes owtside PD(s) or if !IIR is a subset of %(K)
then there exists an i~tformatiopl matrix irt !Pll which has 9%maximal j-informution
for K’P.

Proof. If j vanishes outside PD(s) then j0.I is upper semi-continuous, by Lemma
1, and hence attains its supremum over the compact set !Vl. In fact, the proof of
Lemma 1 shows that if Y!IR is a subset of a(K) the same argument applies to
/t(M) = joJ(M) if MEN, II(M) = --00 otherwise.

More and proper use of convexity will be made in the following section on
necessary and sufikicnt conditions for optimality.

The optimal design problem (P) will be paired with a dual problem (D) which
efkctively amounts to maximizing the polar information functional j” over the
polar set ‘2V’. For the set !m of information matrices its polar set is the closed
cmvcx xt given by

SW1={RERkXk I(M, S)S 1, for all ME(Jrrl}.

Because of the monotonicity behaviour of j” it suffices, in fast, to study the
smaller set s9I defined by

e convention l/O = +m the dual of t is CT the
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following Qqe: 

$3 . Minimize l/j’(K’NK), 
subject to N&R. 

The next two theorems relate problerlsg (P) a~:<! (D) in the expected manner: they 
bwnd each other, and they sh the same optimal value. 

3 (Mutual boundedness). For every information matrix ME W nnd for 
every matrix IV E % one has jo J(M) s l/j’(K’NK), with equality if and only if M 
lies in %(K) and Conditions (l), (2), (3) are satisfid with C = J(M) and D = 
K’NK: 

(1) trace MN = 1, 
(2) A&V= KCK’N, 
(3) j(C) 4 j”(D) = trace CD. 

Proof, Xb M$%(K) then joJ(M) = 0~ l/j”(K’NK), and equality is impossible. If 
ME%(K) the assertion follows from the triple inequality 

1 Z(M, N)Z(C, D)Z j(C) 0 j”(D). 

Conditions (l), (2), (3) correspond to equality in the first, second, and third 
inequality, respectively. 

The definition of %? gives I Z(M, IV), and (1). Since N is taken to be 
non-negative definite we may continue (M, N) = ((M*‘2N1’2(12. Now T(A) == 
M”‘*‘KCK’M”*+A is an orthogonal projection on IWk Xk, since 63 = (K’M+K)-‘. 
The Pythagorean Theorem yields ((AP~N*/*(~* z llT( M1’2N”2)(12, then, with equal- 
ity if and only if M”2N”2 = T(M”*N”*). The fact M&l(K) entails 
M”*M’I”+K = K, Condition (2), and 

The last inequality follows from the definition of j”. 

The value of Theorem 3 lies in the explicit information obtained in Conditions 
(l)-(3). Also it makes evident that for a matrix ME tU{ to have Y!%maximaB 
j-information for K’/3 it is sufficient to find a matrix NE% which satisfies 
joJ(M) . j”(K’NK) = 1. ‘Fhzorem 4 now shows that this ccndition is necessary as 
Wetll. 

r that an iy~for~atio 



Pro&f. With the conventions isg(O) = --do and k&-t-~) = +a, the assertion may be 
rephrased with IogojoJ(M) in place of joJ(M), and -log jO(K’NK_) in place of 
l/jO(K’PK). On Iw kxk define the functions 

otherwise, 

g(A) = logo joJ(A) if A E ‘%(.K), 
z -30 otherwise. 

The primal problem then reads equivalently: Maximize g(A)-f(A) over Rkxk. 
For the first pzt of the proof assume that 8 in tersectls PD(k). Then the relative 

interior of the efiective domain of f is CL . . l Nn+ained in PD(k), by Lemma 2 in 
LaMotte (1977), and thus meets the relative interior of the &ective doanain of g. 
Eense Fenchel‘s Duality Theorem applies (Rockafeltar 1970, Theorem 31.1) and 
states that 

sup{g(A)-f(A)}=min(fYA(B)-g*(E3)}, 
a B 

where f” and g* are the functions conjugate to f cad g, respectively. We now 
verify that the right minimization problem is nothing but a disguised version of 
the dual problem (D). By definition, 

K*(B) = inf ((A, B)--logoj4A)). 
Ac:YI(Kb 

In particular, g* has the same value at B and $B + #I’, so that R may be taken to 
be symmetric. Steps t -4 will show that g*(B) = I + log j”(K’BK L 

STRIP 1. If B$ NND(k), then g*(B) - --m. For choose a R’+ector u with 
li’B[f a< 0. Along the path Ik + MU’ monotonicity of logo j4 gives 

Srep 2. If B E NND(k) ard K’BK = 0, then g*(B) = -00. For along the path 
cuKK’ one has 

g*(B) Z5 inf (- log cy - logo joJ(KK’)} T= --00. 
CY -50 

Step 3. If BE NND(lr) and K’BK# 0, then g*(B)% 1 +log j”(K’RK). For when 
C“ E PDLs). then (KCK’, R) = (C, K’BK) > 0, and J(KCK’) = C. Define A<: =: 
KCK’/(C, K I?K>, then A,- E%(K), and 

= inf{ I- log( j(C)f<C, K&K))} 
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Step 4. If B ENND(~), then g*(B) 1-t log j”(K’BK). EC this is trivially true
if j’(K’BK) := 0. Qtherwise use (A, B)2: joJ(A) l j”(K’BK) from ihe proof of
TheorGan 3 to obtain

g*(B) z inf (joJ(A) . j”(K’BK) - logo joJ(A)}
A&i(K)

iiti iarf{~j”(K’BK)-log af} = 1 Hog j’(K’BK).
Q 30

By definition, p(B) = su~,,~(M, B), so that p(B) is positive for B E W(k),
B # 0. For fixed B, consider the function

Md = fbm - ;;*(cuB) = (yf*(B) - 1 -log (Y -log j”(K’BK), for Q > 0.

Unless g*(B) = -00, the unique minimum of h occurs at 1 /f*(B) and is equal to
logfYP(B)-log j”(KBK)= -log j*(K’NK), with N = B/f*(B)e %. This completes
the first part of the proof.

The second part merely uses the fact that !I%? intersects B(K). Choose a matrix
A4 e n which has maximal rank m, say, and choose a matric UEIF!~~~ which has
the same range as 1M and which satisfies U’U = I,,,. Then A = UU’AUU’, for
every A EW, and UU’K = K. Verify (UU’AUU’)* = U( U’AU)” U’, so that
J(A) = (K’A-K)- 1 ‘z (K’UE-UK)“’ = H(E), say, with E = U’AU. Thus problem
(P) is ‘equivalent’ with the problem

m Maximize j+(E),
subject to E E U’%tU.

The first part of this proof applies to (‘P’) and the problem

(D’J Minimize l/j*(K’UF’LJ’K),
subject to FE { U’BU}” n NND( m).

It is not hard to see that {U’%@U}“nNND(m) = U’%U. Replacing F by U’NU
and using UU’K = K establishes the relation between (D’) and (D) which conn-
pletes the proof.

Traditionally convex analysis prefers minimization of convex functions ‘I.(I
maximization of concave functions. However, the Qp-criteria of Kiefer (1974) ;iJI
happen to be, not only convex, but even logsonvex. In the present settirlg
log-convexity no longer appears to be accidental but finds a natural explanation,
namely, any function Qr given by @(A) = l/joJ(A) is log-convex since -log z
logo joJ certainly is concave.

Theorems 3 and 4 colntain sufficient information to fomulatc yet another
optimality characterization which does not explicitly refer to the dual problem
(D). As a motivation for Theorem 5 postmultiply both sides of Condition (2) first
by N’12+ and then by thleir respective transposes. Replacing thlis
yields the equation

c 1*
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If an optimal information matrix 1M is non-singular it follows that
N- ‘KCDCK’W’ must be a member of 8, it is for singular matrices that the
notion of contracting g-invelxes is now introduced.

De&&ion 4. A g-inverse G of an information matrix IHEW is said to be
contiacting if there exists an optimal solution N of the dual problem (D) such that

u’,Vu = u’G’mMGu, for all u E I@‘.

If G is a contracting g-inverse of M then the projection MG of Rk is a
contraction of the cylinder 2 = {u ERR 1 u’Nu S l}, i.e., A&(Z) c 2. Moreover,
the projection (MG@kfG)(A) = MGAG’M of Rkxk is a contraction of the polar
set {ZV}“={A ‘zRkxk 1 (A, N) s 1). The construction of contracting g-inverses of M
is geometric in nature, based on complementary subspaces of the range of M as
sought and discussed by Silvey (1978, p. 557).

L~BBDMB 2. For every information matrix ME 2.R which lies in B(K) there exists a
positive definite contracting g-inverse G of M.

Prosf. For N E NND(k) define NK = NK(K’NK)‘K’N. Since the nullspace of
K’N, =z K’N is contained in the nulkpace of NK it follows that nullspace K’n
range Ar, = (0). so that Rk = range PI + nullspace I&. If N lies in % so does &,
since

t 2 (M, N) = I(N”“M”‘1[* 2 I)N”2K(K’NK)+ K’N”2N1f2M1’2112 c (n/i, NK).

And if N is optimal then SC) is NK, since K’&K = K’NK. Fix one such optimal
solution I\&.

The assumption M E VI(K) implies Rk = range -44 + nullspace NK. Let r be the
rank of 34, and choose some k x (k - r) matrix H such that its columns span a
subspace of the null$pace of N1( which is complemen,tary to the range of M, define
G = t:&/;+ HH’)-‘. Then G is a positive definite g-inverse of IW, see Rao (1973,
p. 34). From Ik = MG + HH’G and N,H = 0 one gets u’N~u = u’G’MN,MGu,
whence G is also contracting.

5 (Equivalence). Let ME 2X be an infor.mation matrix which lies in
VW,, and let C be the matrix J(M) = (KM-K)? Then M has ~-maximal
j-injormation for K’@ if and only if there exist a g-inverse G of M and a matrix
D E fWD(s) with the properties that

and that G and D jointly satisfy the system of inequalities

trace for all AE~?.



                                  349

g-inverse G of M there exists a matrix D ENND(s) such that G and D have the
stated pqerties. And if G and D haoe the stated properties, then actually
trace KGAG’KCDC = 1 whenever A has %-maximal j-information for K/S.

PRUM&. For the direct pitut assume M to be optimal. Let G be a contracting
g-inverse of M, with asslcxiated optimal solution N of the iiua! problem, define
D = KWK. Conditions (I)-(3) yield j(C) j”(D) = trace CD = trace MN = 1, Equa-
tion [*I before Definitio;t? 4 leads to G’MNMG = C’KCDCK’G. The contraction
argument shows that (A, G’KCDCK’G) = (MGAG’M, N) = (A, N}S 1, as de-
sired.

For the converse part assume that G and D have the stated properties. Define
N = G’KCDCK’G, then NE%, and j’(K’NK) = j”(D) = l/j(C). Hence both M
and N are optimal solutions of their respective programs, and trace AN = 1
whenever A is optimal as well, by Condition ( 1).

Theorem 5 splits the characterization of optimal solutions of the desi,u,n
problem (P) into two parts, according to the fact that the objective function is a
composition of the functions j and .K The first part is in terms of the s x s matrices
C and D ; in many cases the solutions D of the equations i(C) l j”(D) =’

trace CD = 1 can be described explicitly. The second part main!y concerns the
k x k matrices G and A ; inversions are required only of the matrix RJ! which

’ poses as a candidate for optimality, whereas the kesualities are lineul in the
competing information matrices . 4. As expected, the matrices C and I) disappear
completely in case of c-optimality.

Colr~llky 51 (c-optimality). Let ME!@! be an information matrix which, lies in
a(c), c E Rk. Then M has Y!&maximat information for c’/3 if and only if there exists
a g-inverse G of M such that c’GAG’c Sc’M k, for all A E ftxTE.

If the rank of M is maximal then the expression c’GAG’c is invaliant to the
choice of the g-inverse G, and may be lA*ritten as c’M_AM-c. This, in conjunc-
tion with Theorem l(d), gives the following characterization of uniform
optimality.

(U-optimality). Let M G %R b e an information matrix with mclxtmal
en M is uniformly optimal for ‘p in m if and only if K’M- AM-K <

KM-K, for all A EN.

The design problem (P) need not have a uni
when j is strictly concave
possible: given one optimal i

&ear ~~atr~x equations.



Csmrdlary 5.3 (Multiplicity). Suppose the infomation functiond j is strictly con- 
C:CICVZ. Let ME ‘2X! be urt information matrix which hcu %-maximal j-information for 
M’& md let G be a cmtmcting g-inverse of M. Then my other informdim matrix 
A E S?l n ‘i%(K) ulscr has %bnaximcJE j-infonnatiora fm-K’@ if and only if AG’K = K. 

RooL For thle direct part assume A to be optimal. Strict concavity of j implies 
J(M) = J(A) = C, say. Let L) E NND(s) satisfy j(C’~j*(O) = trace CD, and suppose 
E)z = 0, z EW. It is easily seen that for cy > 0 

j(C+az~‘)j~(D)~(C+cxzt’, P)=(C, D):=j(C)jO(D)S j(C+azz’)j”(D). 

But since j is strictly isotone !a(cu) = j(C+ QZZ’) can be constant only if z = 0. 
Hence B must be positive definite. Apply Condition (2) to the optimal solutions 
A and G’KCLKK’G of (P) and (D), and ?ostmultiply by K. Cancel CD in the 
resulting equation AG’KCD = KCD. For the converse part premultiply AG’K = 
K by K’A-- to obtain J(M)=J(A). 

Theorem 5 comes closest to the classical Kiefer-Wolfowitz type equivalence 
theorems, see Kiefer and Wolfowitz (1960) and Kiefer (1974). It should be clear, 
however, that Theorem 5 is no substitute for Theorems 3 and 4 on duality, the 
latter also allow to determine the optimal value u, to identify optimizing se- 
quences j ‘J(M,) -+ o, and to establish non-existence of optimal designs. Examples 
will be given in Section 6. 

The system of inequalities in Theorem 5 involves one inequality for each matrix 
A E ‘n. In many cases fewer inequalities will do, namely, when S is a subset of 
information matrices whose convex hull is $8 then only the inequalities for A e S 
need be considered. Furthermore, if an optimal information matrix h/l’ is written 
as a convex combination of A,,.. . , Al E S, then necessarily trace 
K’GA,G’KCDC = 1, for all i = I, . n . , 1. More can be said if more is known of the 
structure of S, as in the following section. 

4. lhigm measures 

The statistical assumptions underlying the design problem typically go further 
than outlined at the beginning of Section 2. Usually the expectation of the ith 
observation Yi is taken to be of the form f(xi)‘@, so that the @-vectors 
1(x,), * . . , f(r,) appear as the rows of the matrix X. In such a linear regression 
rnadei an experimental design for a sample size n simply consists of some n-tupel 
(x,. . *. , qtj where every level xi lies in a specified experimental domain X, telling 
the experimenter to draw the ith observation Y; at level 4. Since the numbering 
of the observations is immaterial one may as well quote of the n-tuple 
(x,,..., G) only its distinct levels x,, . . . , xi and their associated st 
f tics n&z, . . . , n&z. Accoxfingly a design cf size n is a probability measure 
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5, on 3E which to a finite number of support points assigns weights that are 
multiples of l/n. For such a design S, the matrix X’X attains the form 

Large sample considerations suggest the following definition, see Elfving (1952, 
p. 256), Kiefer (1959, p. 281). The assumptions on f pertain to its range rather 
than to its domain of definition, see Kiefer and Wolfowitz (1960, p. 363), Silvey 
and Titterington ( 

DeIinMon 5. Let f be a Rk-valued function defined on a set x such that its image 
f(3) is compact. The set 8 is defined to consist of ah probability measures 5 on (the 
a-algebra of all subsets of) 3& which have a finite support, any such 4 is called a 
design measure. The information matrix of 5 is defined to be M(t) = 5.x f( x If(x) d& 
and the set of all these matrices is denoted by M(g). 

Obviously M(g) is the convex hull of the set S when S consists of all rank 1 
information matrices f(x)f(x)‘, with x E J, herlce M(Z) is also compact, see 
Rockafellar (1970, Theorem 17.2). It is customary to assume that the image f(x) 
spans all of IWk, then there exist positive definite matrices in M(E); this property 
is not fullfilled in a%1 modeIs of interest. In the sequel we merely assume that 
M(s) meets B(K), when K’@ is the parameter under investigation. With these 
assumptions the set M(g) is a feasible choice for the set sm which enters into khe 
design problem (P). However, since all results in SeCtions 2 and 3 are given in 
terms of information matrices M(t) rather khan design measures 6, the fohowing 
questions suggest themselves: Given an information matrix M E M(g) . possibly 
optimal, how carr one recover the number of support points, the support points 
themselves, and she weights of those design measures which have information 
matrix M? 

The following bound on the number of support points is due to Fellman (1’1V& 
Theorem 4.1.4) and generalizes earlier results of Elfving (3952, p. 260) :and 
Chernoff (1953, p. 590). However, it does not depend on any opkimahty criterion 
as the proof of those authors sugges !, but simply is a property of the s x s 
information matrices J for K’p. 

Th~~rerrm 6 (Support pGinkS). For every informatkn matrix A E M(E) which lies in 
Yl(K) there exists a Resign measure $E Z with not wore than 
s(s + 1)/2 + s(rank A - s) support points slash that d(A) = .J(M(~H for some (x Z 1. 

* Let r be the rank of 2~. Choose a g-inverse G of A, a k x r matrix U 
has the same rtinge as A and which satisfies U’U = Irt and define 0 = 

I, - U’GK( U’G )+. Then A E%(K) entails 
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when the linear operator 7’ on the space Sym(k) is definr5 by ‘l’(B) = U’BU-
QU’BUQ~ The range of 7’ has dimension s(s + 1)/2 + s(r - s) = d, say, since it is
spanned by T( I_![: ][irU’) = ,6$ “,W’] whew Q is in its simplest form g lVyd.
choose a design measure q E g such that A = M(q), and define C to be the
convex hull of all matridces ftx)f(x,’ with x being a support point of r). Hence the
ima& T(C) is a compact convex set which contains the matrix 7’(A), let ar be the
largest number Z 1 wnth crT(A)e T(C). Than cu7’(A) lies on the boundary of
T(C), and by Caratheodory’zi Theorem there exist d points x1,. . . , xd in the
support of q such that with new weights {(xi) one has OX(A) = 7’(M(e)). Thus
range M(t) c r,ange A, and UU’M(~)UU’ = M(e). ‘This entails

M(~)GK = C.JT(M(~))?J’GK = aUT(A)U’GK = OX,

implying M(&l E B(K), K’A-K = aK’M(&)-K, and cwJ(A) = J(M(5)).

For the present approach it seems naturai that a design measure 6 inherit its
optimality properties from its information matrix M(S). By Theorem 2, then,
there exists a design measure which has M(E)-maximal j-information for K’#3
provided j vanishes outside PD(s). In fact, the tc?pological arguments of Theorem
” carry over to designs of size n, since the associated set M(&) of information
matrices is the continuous image of the n-fold Qrtesian product of f(X) and
hence compact. This clearly illustrates that the sets M(m and M(&,) are
distinguished, not by compactness, but by convexity.

The constraints in the dual problem (D) now lend themselves to an appealing
:nterpretation. When a matrix NE NND(k) is identified with the cylinder (includ-
ing ellipsoids) that it defines in Rk, i.e., with the set {w E Rk 1 u’Nu S l}, then 5X
consis& precisely of all f(X) couering cylinders.

N E M(Z)” H f( .x)‘PJf(x) Z5 1, for all x E 8.

This idea dates back to Ellfving (1952, p. 260) and is adopted expressis verbis by
SiIvey (Wynn 1972, p. 174), Sibson (1974, p. 684) and Silvey and Titterington
(1973, p. 25). In fact, further geometric considerations lead to a direct proof of
duality of (P) and (D) in case of c-optimality, see Pukelsheim (1979), and also
yield the following bound on the optimal value o of problem (P). Define the
regression ball % to be the convex hull of the image f(X) and its reflection --f(z)
and assume that f(J) sp;~ns all of Rk, then !R is a compact convex set which
contains 0 in its interior. The bound will be given in terms of an in-ball radius
f = lldll of %, i.e., d is a boundary point of % and d has minimal Euclidean norm r
among all other boundary points of %. In other words, the hyperplane (UCZ
Rk 1 if’u = r2} supports @ in (1. Therefore I -‘%d’ is a f(Z) covering cylinder, and
c S r4/j”(K’dd’K). Equality holds if s = 1 (op. cit.); if s > 1 the matrix K’dd’K is
singular and the proof cVf Corollary 5.3 shows that equality cannot hold if j is
strictly isotone. Identification of possible support points is part of the following
f.C:fOr la~i~~~ of ondition (1) in Theorem 3.



‘&WIVBIUI 7. Let @=be a design measwe f or whi ch M( e)  l i es i n B( K) ,  and let C 
be the rrtatrJx (K’M(e)“K)-? Then 5 has M(8)-maximal j-information for K’@ if 
and only if there exist a g-inverse G of M(sj and Q matrix D E NND(s) such thrat 
j(C) l j”(D) = trace CD = 1, and 

f(sj%3’KG’CK’Gf(xjS 1, for ail n E%. * 

If dj is optimal then actually f(x)‘G’KCDCK’Gf(x) E= 1 for all support points x of 
ewry design measure which has M(E)-maximal j-information for K’s; more 
general, such points x must satisfy f(x)‘Nf(x) = 1 whenever N is an optimal f(X, 
covering cylinder. 

For instance, Theorem 7 provides proof of the following statement in Wald 
(1943, p. 636): NO design measure is uniformly optimal for K’P in M(S), unless 
s = 1, For assume that e is uniformly optimal for K’P, and let x be one of its 
support points. Then for every vector c in the range of K the design measure 6 is 
optimal for c’& by Theorem l(d), aqd for all choices of M(t)- one has 
c’M(@-f(x)f(x)‘M(E)-c = c’M([)-c, by Theorem 7 or Corollary 5.1; comparing 
ranks in the resulting equation K’M(t)-f(x)f(x)‘M(&K = K’M(&K proves 
s = 1. Theorem 7 also leads to a rather strong statement concerning the weight! of 
optimal design measures. Its proof is based on the same idea as in Sibson ;ind 
Kenny (1975, p. 290), namely, to expand the quadratic form in the inequalitie: of 
Theorem 7 until the matrix M(S) appears in the middle. 

CordUmy 7.1 (Weights). Let ME M(B) be an inforrnatiorl matrix which ttas 
M(S)-maximal j-information for K’P, and let C, D, G be us in Th~orez 7. 
Suppose M is obtained as the informalion matrix of a design measure which ass&s 
weights wi to I supporf pints x, E .T, and choose Q root E of C, i.e., C = EE ‘. ‘The 
weight uector w = (w,, . . . , w, )’ then solues the equation A w = 1 l, where 1 I = 

(1 , l l l , 1)’ E R’ and where the entries of the matrix A e NNDW 

ahi = (g(~,,)‘(E’I)E)l’~g(x,))*, g(X) = E’K’Gf(x). 

A sin& weight w6 is botrnded by l/aii, and no weight is large? 

are given by 

r/tan A,,,,( CD). 

Proof. Theorem 7 gives g(.~,, YE’DEg(x,,) - 1. Expand LI’DE inlto 

(E’DE)*‘2E’K’GMG’KE(E’DE)“’ and use M = Ci Wif(Xi)f(Xi )’ to Ohtail 

si cl,,iwi z 1, for all 11. This proves A w z 11, and U,iW, Z 1. Ht;t 

1 ~{~(X~)‘E’DE~(X~))‘S{~(X;)‘(E’DE~”*~(X~~A,,,,,,!~~i’DE~“‘~)’ 

Hence aii >O, and wi = ~2 l/aii ~5 Amax( Since A is the Hadamard <corn 
wise) square of ki Gramian atrix, A is non-negative definite. 
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The function g(x) defined in corollary Xl plays a particular role: in the. funrttkm
space l&), for special cases this is discussed in Kiefer and W&owi&~ (1960,
p. 364), Kiefer (1962, p. 593, Karlin and Studden (1966, Theorem 6.2).

Proof. For the direct part choose C, a, G as in Theorem 7, and define
7’~ G’KC’” and F=D’n For the converse part notice first that (a) is equivalent
to ‘T’M(~)T = Is, and that ;b) is the same as M(e)T = K(K’K) -‘%‘M(~)~~ There-
fore

K’T = #‘M(e)-‘&f(()T= K'M(5,--K(K'K)-'K'M(g)T

and

I, = T'M(@T:= T’K(K’K)-‘K’M(cIT:= T’KCK’?‘.

Hence TX i; non-singular and satisfies CK”Z7”K = I,. Define N :=
‘~KCFFCK:‘7T’. Then N is in %, K’NK =FF’, and j(C)= l/j’(K’NK) proves
that both h?(@ and N are optimal !;oMions of their respective problems.

Next we turn to particular choices of the information functional j.

5. special criteria

Our investigations apply in particular to the family (i, 1 p E [-00, +1]} introduced
in Section 2. It is readily verified that j[, vanishes outside PD(s) if and only if
p E c--x, o] or s = 1. whence in these cases j,,-optimal information matrices exist,
according to Theorem 2. For s = 1 existence follows much simpler from Elfving’s
(1952) geometric argument, see Chernoff (1972, p. 12), Pukelsheim (1979); for
p = - 1 existence of optimal solutions is established by Fellman (r1974, Theorem
4.13, for p=--1,-Q,.. , by PGzman (1980, Propositions 2,4). In case p = 0
(D-optimality) existence poses no problem when s = k, nor has it been doubted
when s < k, see Kiefer (1961, p. 306), Atwood (1973, p. 343). However, compact-
ness of M(%) alone does not suffice, and in Section 6 examples are given where
~JQ j, -optimaA design measure exists. In particular, the proposed proof of Theorem

in plete achy if one assumes the existence of an
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optimal er or closedness of the Qbjective function 4. Precisely this closedness is
destroyed by Gribik and Kortanek (1977 , p. 243) by setting the objective function
equal to a for ull singular information matrices. Qptimality will be chayactcrized
using the following lemma.-,.

is sjq, prozrided
then Q matrix
if and only if

D = CB”“Etrace Cp in case p s -. 00, or Amin l DC conv S in case p = -9 Here
cow $ denote37 the conoex huli of dl s X s matrices of the form zz’ such that z ,is LZU
eigenuemr Of C corresponding to hmj*( C) with Euclidean norm 1.

tif. Since polar functions are closed it suffices to compute CjP )“C i3j =
inf C’aPD(s) (C, D)ljJC) only for c) E PD(s). In case p$ {-a~, 0, +l} Theorem 5. !!I in
Caffke and KrafR (1979) gives (C, I3)hj,(C)sj,(.D). Hence

sjJD)~inf(C, D)/jp(C) s(Dqfp, D)/i,(Dq’p) =s si,(D),c

the&ox sjq = ci,,“. Given C, the solution to jJC)(jJ’(D) = (C, D) then is D =
&I?‘49 and at is determined from a(C, Cp’q) = 1. In case p = 0 the same argument
lea& to the familiar arithmetic-geometric-mean inequality as in Karlin and
Studden (1966, p. 795). In case 1) = 1 one certainly has (C, D) 2 (trace C)A,,,(D)*
Hence

sj_,(D) S inf(C, D)/jl(O S inf skzz’ + E&, D)/trace( 22’ + &I,)
c flzIl= 1 .E 30

= s inf z’Dz = sj_,(D).
llzll==1

Given C, the desired solution is D = cul, with atrace C = 1. In case p = --00 one
similarly has (C, D) Z Ami,( C)(trace D). Hence sjl (D) s inf&C, D)/j-m( C))s
(&, D)/j-&&) = sj,(I)). Given c”, let Al > l . . > A, > 0 be its distinct eigenvalues,
with associated projectors E(Ai). Write D as A,‘& OliZjZi, with R”-vectors zj of
Euclidean norm 1 and with coefficients aj 20. Then

(C, D) = C C AiA,'~~Z~'E(h,)Zj 2 C aj = h,,-JC)(trare D),
i i i

with equality if and only if for ail i==l,...,v-1 and j=l,...,s one has
adZ;B(Ai)Zj = 0, i.e., q = 0 or zi lies in the range of &A,). This completes the
proof.

With Lemma 3 the previous results simplify considerably and completely
resolve the two classical problems of ~~-optimality of singular informAticr, rnat-
rices, and of optimal&y with respect to the non-di ntiable -, i.e., j__oD-
criterion.
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‘E’kore~ 8 (i,-optimality). Let ME% be an information motix which lies in B(K).
If p > --mcl then M has b~-maxirmd j,,-information for K’fl if and only if there ec&
cc It- inoerse G of M such thnt

Pwoof. For finite p Theorem S and Lemma 3 give cDc =
(K’WK) p -‘/trace(K’MX)-P, for p = --OQ one obtains CDC’= Efh,,,(K’MX).

When the set !I8 of information matrices is induced by the set of all design
F-S YWC”S, i.e.. % = M(S), Theorem 8 allows an obvious modification in order to
P k1 Theorem 7. The resulting version is intimately related to the Theorem in
Si .<y (1978, p. SSS) who proves the sufficiency part, and conjectures the
nwxity part. Fedorw and Malyutov ( 1972, p. 286) seem to imply that G may be
~hoscn to be the Moore-Penrose inverse M”, Bandemcr et al. (1977, Section
5.63 claim that an arbitrary g-inverse M“ may replace G and only the
inc:quillitics of those x E 3 with ME range M need b#e considered. Either of these
versions allows countcrcxamples. see Pukclsheitn ( 1979, Exatnples 1, 2). Kiefer
( 1%@74. Theorem 61 has a partial result on j..,-optimality cf>vering the least
complicated situation: when the cigenvalue A ,,,,,( K’M Kb is simple there is al

urriquc matrix E=‘ which satisfies the conditions of Theorem 8. Of course, Theorem
ts HISO incluctos the diffcrantiablc cases, such as formula (4.19) of Kiefer (OP. cit.),
or th!; original Equivalence Theorem of Kiefer and Wolfowitz (1960, p. 364).

Du::lity a?,-rproaches to thu optimal design problem are first mentioned in the
efisc:u:si<:l*l of Wynn (1972?, a duality theorem on j,,-optimality is presented by
Sib~on (1974. p. 6is.5). For s out of k parameters a dual problem different from
OUTS is chosen by Silvey and Titterington ( 1973, p. 251, their dual variable consists
of 3 pair (D, B)E PD(s)XUP’” “: the f<r!!owing corollary extends their results
i op. cit. 1 10 al1 p E [ - -w. -t I].
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jl,-infomtation for (&, . . . , &)’ if and only if them exists a matrix E cE cohv S
which satisfies

Pm& Set K: = [I,, : 07, and choose an optimal solution N of the dual problem,
Then I&= NK(K’NK)“K’N is optimal as well, see the proof of Lemma 2, and
suitable choices of D E NND(s) and B E(FB~~(~“) give IV” = [I;, : S]lD[[’ : SJ. Thus
M is optimal if and only if j,(C) * (i,)‘(D) = trace CD = 1, by Theorems 3 and 4.
By Lemma 3, then, B = CP”/trace Cp if p > -00, and D E { l/A,,,(C)} conv S if
P = --a~. In case of optimal@ Condition (2) implies MNK = #‘CD, and BMz2:=
-Ml2 and EZ3Mz2 = - EMlz , respectively.

A prominent application pertains to jO-, i.e., I& ,tmality for s out of k
parameters, see Kiefer (1961, Theorem 2). Karlin anc’l %Jden ( 1966, Theorem
6.1) Atwood (1969, Theorem 3.2). While the candiixte3 tar the matrix B are
restricted to be solutions of SM2, = -Ml, the multip?city * bich % possible when
M is singular has caused a great many difficulties, see Atwt:& ( 1969, p. 1579). In
the present context it is easy to see that the matrices G of ‘neorem 8, and B of
Corollary 8.1 are connected through (K’MX)-‘K’G = [I, : Bj.

Since jP is strictly concave for p E ] -00, +l[ multiplicity of j,-optimal informa-
tion matrices is discussed in Corollary 5.3. When p = --OCI the proof of Corollary
5.3, in conjunction with Lemma 3, still yields ahe ntzcessary condition that
AG’KE = KE must hold in order that both M and A be j_,-optimal. Notice th,at
Theorem 3 of Kiefer (1961.) is close in spirit to our Corollary 5.3.

In Corollary 7 1 the matrix A determining the weights of a j,-optimal design
measure turns out to have entries, for p >-a,

ahi =’ {f(Xh)‘G’KC1fpt2 K’Gf(Xi )}2/trace Cp i

the uniform bound A,,,,(C?D) becc,r’nes A,,, (C”)/trace Cp. This generalizes the
bound l/s for j,-optimality for K’m, due to Atwood (1973, Theorem 4j. For
P = --OO use the matrix E of Theorem 8 to obtain

ahi = {h,,“(C) l f(X~)‘G’~~“2K’Gf(Xi)}2,

and uniform bound A,,,(CD) == A.,,,,$?I. Notice that A,,,(E) < B unless rank E
= 1, the latter necessarily being the case when &,,(K’M-M) is a simple
eigenvalue.

The discussion clearly illustrates $h:3t in the &-family the member jO, though
best known is !esst representat
tween p and
for optimal weights depend:,, redetermined information matrix.



Another typical instance is encountered in Corollary 7.2, where for j,, property (c) 
simply requires g itself to take its values in the closed Euclidean unit ball of IRS. 

Up to this point no use has been made of the fact that the jV-criteria are 
orthogonally invariant. However, if i,(C) is redefined to be ahe generalized mean 
of order p of the positirx eipenvalues of C’ we may replace (k”AX)-l in 
Definition 2 by (K’AX)‘, and thus dispense with the hypothesis that the k x s 
Imatrix K must have full column rank s. While the set s(K) remains unchanged, 
saDme provision is needed in order to circumvent negative powers of the now 
possibly singular matrix K’MX 

Gor~Ilary 8.2 (Arbitrary K). Supp;c! K is Q [ton-zero k X t matrix of rank s S t; kt 
.&I d@ be an iflfomation matrix which lies in 2%(K), and let C be the matrix 
iK’M-K)‘. If p> -m. t?zen M has 2%maximal j,-information for K’P if and only if 
here exists 41 g-inverse G 0JE !W such that 
. 

trace K’G,?SG’KC(K’MXi’-PC~ trace C(K’MX)‘-p, for all A E sn. 

lf p = --x md conv S derzofes the coIzuex huil 0-f all t X t rrlatrices of the form 22’ 
sucl! that z lies in the range of K’ and is an eigenwctor r\lf K’MX corresponding to 
A,,,,! K’M- JQ wit/z Euclidean SZO~MI 1, ken Tkeorecn 8 izofds uerbutim. 

Proof. Dccomposc K into NV’ with some k x s mafrix H and some t r: ,‘: matrix V 
which; sa:isfies V’V = [,. Then ?I( X) = 8(H), and W’MX is positive c;&nite 
knvirlg the same positive eigenvalue:l and multiplicities as AC’M-K. Thus Theorem 
8 holds with lf replacing K. Since V(H’MW)- V’ = (KM-K)‘, the assertion 
follows. 

The matrix C = (k”M XI” is often called the &matrix associated with M, see 
e.g., Kraft ( 1978, p. 200). For block design models. Kiefer (1958, Lemma 2.2; 
1975, Proposition 1’) investigate:< simultaneous optimality with respect to a large 
class of criteria, the present situation allows the following analogue. 

~oclf. The &cc?uaIities in Corollary 8.2 simplify to trace K’GAG’K ~5 s/p; for 
lp = - x choose E = .i( c Q’F. 

Another application of rank deficknr matrices K pertains to optimality criteria 
which1 are linear in the sense of Fedorov (1972, Section 2.9). When a matrix 
L E NND( k 1 is fixed, then an inform~~iow matrix M e M(8) is said to be L-optimd 
if it miIii:G:a.es trace M-L, among all information matrices in M(sl\ whose range 
crontaIrrs the rang c :jf 1,. Thus M is L-optimal if arid only if hhas M( &maximal 
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j_,-information for K’@ and KK’ = L. Hence there exists an L-optimal informa-
tion matrix, by Theorem 2, and 1M E-~W(LT f? %(L) is L-optimal if and only if there
exists a g-inverse Is of bf which satisfies f(rc)‘G’LGf(x) 5 trace M-L, for all x E X,
by Corollary 8.2. This improves Theorem 8.2 of Karlin and Studden (1966), and
Theorem 2.9.2 of Fedorov (1972). If I, is replaced by KK’ then j_,-optimality for
K’13; is characterized; since R = CYK solves MR = K this rederives Theorem 4.3.1
of Fellman (19’74). Moreover, Theorem 7.l(ii) of Karlin and Studden (3 966) may
be extended and connected with Theorem 4,.3.2 of Fellman (1974) in the
following way. Recall that an information matrix A&E YD! is called admissible if no
other information matrix A E !l%! satisfies A > M.

CO~WQ 8,(rl (Admissibility). Let MEW be un information matrix. If n/a is
admissible, then (i) M has %-maximal j__- -information fur P/3, whenever KM’ =I
M, (ii) there exists o matrix NE m” n NND( k) st~ch that trace !WV = 1, and (iii) M
has 9%muximul j_ ,-ivlformution for K’p and M is L-optimal, Iwhenever L = KK’ =
MNM.

mf. Let A em have n-maximal j-,-information for K’1[3 with KK’ = ZV, and
let N be an optimal solution of the dual problem. Then Theorem 4 and lLemma 3
yield &#‘A-K) = l/j-a, G(A) = sj,(K’NK) - trace MN ~5 1. This entails
K’A-K 6 I*, and K’+K’AXK+< M+. Hence

M< (K”K’A-KK+)+= K(K’A-K,+K’< A,

the first inequality follows from Theorem 3.1 in Milliken and Akdeniz (WV), the
second equality is immediate, and the third inequality is the second step in the
proof of Theorem 3. with M replaced by A, and IV replaced by uu’; Since
admissibility forces M and A to coincide M is the unique j_,-optimal info? Ination
matrix for K’P, and trace MN = I. Assertion (iii) follo\Jtrs from j_ 1 *J(M) = s =

1/(sjI,2(K’NK)} and Theorem 4, since (K’NK)“2 = K’MX.

Notice that the j,-family is related to the j,-farnily, also introduced in Section
2, through sjl = ir,, and j_m = infilzllzl jzzt. The pollar furrctions (jJO furnish yet
another class of information fernctionals. For L E NND(s), L # 0, let ‘%(k) denote
the set of those mstrices L%NND(s) whose range contains the range of L.

The polar function of tdae information f~r2ctiond jL is given
(j,.) ‘(D) = ;/A,,(~-L) if D &?I(L. j, (jr.)“(D) = 0 otherwise. If dl matrix t’
is given, then the uniqlse maifk D E NNG<sj +vtGch so
trace CD = 1 is D = L/trace CL.

et Y be the ran , and the choose a K dF4”“’ such that
. In case D E%(L) the proofs of eorem 3 an
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((K’D-K)-‘, K’CK) Z k,“i,{(K’D-K)- ‘)i,( C). Hence

S inf Z’(K’D-K)-‘2 = Amin{(K’D-K)-‘),
il4= 1

and (jL)O(LN = l&&lUJ.
In case U@&(L) choose a vector z in the nullspace of II which is not in the
nullspace of L, then

Given L’E PD(s) and D&(L), equality holds in (C, D)L((K’D’K)“, K’CK) if
and only if D =t KEK’ for some matrix E E PD(t); for Condition (2) entails
D = K(K’D-K)-‘K’, while the converse follows upon choosing for KEK’ the
g-inverse K(K’K)-‘E-‘(K’K)-‘K’. Since (E, K’CK> = h,&)(trace K’CK)
necessitates E = aI,, the proof is complete.

The final section will illustrate some of the results above.

6. Examples

6,1. Trigonometric &sign

One of the smoothest examples is provided by the trigonometric regression
function f(x) = (1, cos x, . . . , cm kx, sin x, . . . , sin kx)’ on the ‘unit circle’ 3 =
[O, 2~[, see Fedsrov (1972, Sectis::. 2.4)p Mraft (1978, Section 19(c)). For
every sample size n > 2k + 1 every design measure which &signs weight l/n
to n equidistant points on the unit circle has (2k+ 1) x (2k + 1) information
matrix M = diag( 1, 1, . . . , $), with M(E)-maximal j&nformation for &I. Moreover,
any such design is j,-optimal for /3, for all p, E I--m, + i], by CoroUary 8.1. Hence
for simultaneous optimality the sufficient condition of Corollary 8.3 is not, in
general, necessary. It c’s necessary, though, in order that the optima! value
function u(p) be constant; in the present example 2’ varies from I.$=-~) =:$ to
I?(l)=” 2 -t l/W + 2). Also notice that every design measure with non-singular
krformation matrix is jl-optimal for p, demonstrating the particularly poor
performance of j,, and that many choices for E dre feasible to verify j-0~

eorem 8 or ~~~~~~~ry $.I.
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One of the simplest example; is provided by the quadratic regression function
ffrc) = (1, X, x2)’ over the symmetric interval X = [-I : +I]. Let & be the design
measure &JO) = of, &J--l) = i&(+1) = (1 - a)/2, with iLreormation matrix

(l/c: 0 -l/CY
M;l= 0 l/(1 --cr) 0

--l/cY 0 1 ll/Ml - (1y)I

6.2.1
There exists no j,-optimal design measure for p. For it follows from the

equation (3 j-.&/3)}-1 = 1 = Jim a10 j&W,) that 13/3 is an optimal solution of the
dual problem. The points *l, determined from Condition fl), cannot support a
design measure which has a non-singular information matrix.

6.2.2
The unique j--- optimal design measure for p is &, and I/ J5 = \\c\i, c = (-4, 0,

$)‘, is an in-ball radius of the regression ball 8. For one has $ = hmin(iM3/5)S
II S r*, where r* = r4/(j+Jo( dd’) is the bound derived before Theorem 7, On
the other hand r is connected to the regression norm p (Pukelsheim 1979,
equation (2.3), Theorem 1) through r* 5 I]cl]*/{p(c)}* s ]]cl]“/cWc == $, when the _f(J)
covering cylinder _N is chosen to be (-I,@, 2)‘( -1, 0 ,2 ). Hence I = l/,/5, and
p(c) = 1, so that c is a boundary point of %, and A& is j_,-optimal for p (Kiefer
1974, p. 868). Furz.herm .e, _A& is optimal for ~‘0, since c’M& = 1 - (p(c)}‘,
and c is an eigenvectsir of A& corresponding to the eigenvalue P” = 4. For
j-G optimality Core-!lary 8.2 with E = See’ determines -1, 0. + 1 as only possible
points of support; r’:orollary 5.3, then, proves uniqueness of A&,,.

6.2.3
The unique j,-optimal de& tgn measure for (PI, &)’ is &, by Theorem 8 and

Corollary 5.3. In fa!q:t, this dc sign is j,-optimal for (&, &Jr for all p E r-03, +l], by
Corollary 8.3.

6.2,4
If p E ]-00, +l[ th >n the uniriue j,-optimal design measure for (&, &J’ is 5, with

CY being defined in,plicitly by 01 2--Ep + 2ar = 1. For when Theorem 8 is applied to
any design & one &t&s the condition on CY, and the possible suppo~” t points - 31,

0, + 1; again Corollary 5.3 pmves Y
decreasing, with derivative ar’(p) = (log a)cr e



arguments ‘-w’, -1, 0, 2, 1 ‘+l’ the values of cu(p) are a, 42-1, 4 (Kiefer Ml, 
p= 3121, a, O, while the respective optimal jp-icf0rmation u(p) is 3, 2/(3+J8), 
2J J27, $$, 4. Note that $ also is the lower bound for ~(-00) derived before 
Theorem 7. In fact, the unique j_-- optimal design measure f3r (&, &)’ is &, 
with Jo infsrmation Q. 

6.25 
The j,-optimal value for (&, &)‘ is 4, but there exists no j,-optimal design 

measure for (& PJ. For the f(J) covering cylinder 

I1 

N= \ O 

0 -1 
1 

G -1 0 3 1 
satisfies {2j_.,(K’lVK)}--’ = i= lin&,o j,oJ(w), hence N is an optimal solution of 
the dual problem and determines the support points -l,O, +l. If a measure 5 
with this support is optimal then it must have information matrix MQS by 
comparing the first row of either side in Condition (2)) although A& does not lie in 
2W). 

6.3. A contraction example 

Consider a projection MG where G is a contracting g-inverse of ME M(,“). If 
k = 2 then MG is a contraction of the regression ball a; in this case there is no 
need to go through the construction of Lemma 2, but G may be visualized from 
the geometry of 8, see Pukelsheim (1979). If k > 2 then A&i need not be a 
contraction of %: Let !R be the regression ball generated by the identity function 
and 

x= {(!I, (-g (J, (-‘Tl); 0, (J ’ 

Then the cross-section of % with the (x, y)-plane is the unit sqmre, with vertices 
on the coordinate axes. Therefore the measure which assigns weight $ to the last 
two levels in .% is optimal for &II +&, by Theorem 1 in Pukelsheim (197’3). 
giowever, no projection onto the (x, y)-plane can be a contrii..ztion of 8 since two 
of the edges of % have been twisted out: of their ‘rxatural’ vertitzal positions. 

It is a, pleasure to acknowledge valuable and helpful. discussions with Professors .I. 
Kiefer, 0. Krafft, D.M. Titterington, W., Weil and H.. Witting. In particular it was 
Professor KrafFt who drew my atterrtion to the optimal design problem during the 

ecemher 1976 Oberwolfach conferenoe. Work on this paper begun while I was a 
~~~~~r~l~ f~i~ow of the r~~~hung~gelnejns~haft with the 
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