
                                                                    

Mult i l inear  E s t i m a t i o n  o f  Skewness  a n d  Kur tos i s  in L inear  Mode l s

By F. Pukelsheim, Freiburg im Breisgau and Stanford I )

Summary: Estimation of the coefficients of skewness and kurtosis in a classical linear model situa-
tion is presented as an application of multilinear algebra and standard theory of mean estimation.
The resulting estimators have optimality properties among all estimators that are invariant under
mean translations, polynomials of degree three (skewness) or four (kurtosis) in the observations,
and unbiased.

1 .  I n t r o d u c t i o n

Consider a classical linear model

Y ~ (X3; a2In ) (1.1)

in whose definition we include the assumptions that the components of  the random
R n-vector Y are independent, and have common coefficients 3'1 of  skewness and 72 of
kurtosis. In other words, Y has independent components, and E Y = X/3,/9 Y = O2In ,
and for all i = 1 . . . . .  n,

4

- -  3 = 72. (1.2)

A distinguished case satisfying these requirements, and hence possibly underlying mod-
el (1.1), is the normal law, i.e., Y ~ N  n (X/3; O2In).

The purpose of  this paper is to present polynomial estimators for skewness (Section
3) and kurtosis (Section 4) which are unbiased under every distribution that fulf'dls
the assumptions of  model (1.1), and which are of  minimum variance under normality.
The concept of  unbiased estimation with minimum variance at a distinguished param-
eter value is of  particular interest in linear model theory. For a more general context
see the textbook of  Schmetterer [1974, p. 273]. It seems to me that there are three
major grounds to justify this interest: (i) In a theoretical exposition, investigation of
unbiased estimators with local minimum variance properties provides a possible ap-
proach to uniform minimum variance unbiased estimation procedures. (ii) In cases
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when uniformly best procedures do not exist unbiased estimation with local minimum
variance properties may be an applicable procedure, possibly iterative. (iii) For testing
hypotheses, special interest is directed toward the distribution of the test statistic under
the nullhypothesis, i.e., under one (or more) distinguished parameter values: local
minimum variance properties of an estimator provide information in this direction.

When estimating second and higher moments, a natural requirement is that of loca-
tion invariance, or equivalently, that the estimates depend on the observations Y only
through the residual statistic

z :=MY, M:=I. - X X  +, 0.3)

where M projects orthogonally onto the orthogonal complement of the range ofX. Z
is the vector of residuals obtained from a simple least squares fit for ~/, and this statis-
tic is also maximal invariant with respect to the translation group fy  - ~ y  + X b  [b ERP) ,
where the matrix X is assumed to be of order n X p. Estimating the third moment coef-
ficient 71, we shall restrict attention to the class

- F1 of all homogeneous polynomials of degree three in the residuals Z1 . . . . .  Z n,
and to its subclass

- G1 with pure cubes Zx 3 . . . . .  Zn 3 only. As for the fourth moment coefficient 7 : ,  we
analogously investigate the class

- V2 of all constants plus homogeneous polynomials of degree four in Z1 . . . . .  Z n ,
and its subclass

- G2 of constants plus polynomials with pure fourth powers Z~ . . . . .  Z4n only.

In Section 2 the Kronecker and Hadamard third and fourth powers of the residual
vector Z yield derived models  in which (i) the unknown coefficient 7i appears as a
mean parameter, and (ii) F i and G i turn out to be the classes of all linear estimators;
i = 1, 2. Standard theory of mean estimation, then, is all that is needed for finding
unbiased estimators of skewness (Section 3) and kurtosis (Section 4) which, under
normality, are of minimum variance. The technical difficulties reduce to appropriately
displaying the moments of the residual statistic Z. We shall use two tools to facilitate
this task, the minor one of which is the use of the vec operator: this allows to avoid

n

summation signs through expressions like ~ e i ~ e i = vecI  n. A major tool is the se-
i=1

cond one, the symmetr i zer  lrs. For example, if U is N n (0; l n )  - distributed and the
sixth moments are to be computed, then Uo* (1) Ud(2) has expectation 3 regardless of
the particular permutation a of the components U1 . . . . .  U n; and this suggests a two-
stage approach: In the first step expectations of U~I, U~ U 22, U~ U~ U] are computed,
and in the second step the symmetrizer rr s is employed in order to generate the neces-
sary permutations. It is found that these means greatly simplify the representation of
the covariance operators in the derived models.

Our approach is a natural extension of the dispersion mean correspondence that
reduces the estimation of variance covariance components to standard mean estima-
tion [Pukelsheim]. When estimating skewness and kurtosis, it would appear natural to
also insist on scale invariance. This, however, excludes the use of estimators which are
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mere polynomials of  the observations, and hence surpasses means and methods of  mul-
tilinear algebra. Hence we sacrifice scale invariance to theoretical elegance, and neglec-
ted scale invariance does, indeed, secure a manageable theory. But it also results in esti-
mators that depend on the unknown value of  o 2 . There are, of course, possibilities of
various degrees of arbitrariness of  how to replace o 2 by an estimate ~2, and some
courses of  action will be discussed in the examples. This discussion will show that while
the proposed multilinear approach yields procedures of  direct applicability only for
the genuine third and fourth central moments,  it nevertheless motivates a guideline
of  how estimators for the coefficients of  skewness and kurtosis may be obtained as
well.

The examples are taken from A n s c o m b e ' s  paper [1961] who used estimates of
skewness and kurtosis to study departure from normality.

2. The Derived Models

Extensive use will be made of  the Kronecker product  A ~ B := HAil  B]] for two
matrices A and B of  arbitrary order, and of  the Hadamard product  A * B := ((Aii  Bi /))
for matrices A and B of  the same order, see R a o  [ 1973, pp. 2 9 - 3 0 ] ,  S t y a n  [ 1973 ].
Powers are written asA ~2 : = A  | A .2 : = A  * A ,  etc.; recall the fundamental rule
(14 | B)  (C | D )  = A C  | BD.

The components of  the third Kronecker power Z | furnish the n 3 mixed third pow-
ers of  Z~ . . . .  , Zn ,  whence any homogeneous polynomial of  degree three may be writ-
ten as a linear form w ' Z  ~3. The fewer number of  components of  the third Hadamard
power Z*3 suffice for investigation whenever the polynomial involves pure cubes
Z~ . . . . .  Zn 3 , only:

1-'a = { w ' Z  ~3 [ w E R n 3 }, G1 = {W tZ*3 J W ~ R n ). (2.1)

Hence we study the derived mode l s  generated by Z .3 and Z*3. Computat ions are facil-
itated by the fact that Z*a = H3 Z*3 is a linear transformation of  Z ' a ,  where

n
H3 := E e i (e~3) ' (2.2)

i=1

is a n X n 3 matrix;  e i is the i-th Euclidean basis vector in R n , with i-th component
equal to one and zeroes elsewhere. Analogously, define the n • n 4 mat r ix / /4  =

n
= Z e i (e~4) '. We shall also use I n := ~ e i = ( 1 , . . . ,  1)'. The following lemma shows

i=1
that both Z ~3 and Z .3 give rise to models whose expection is linear in a 3 % .

L e m m a  2.1 : For  every classical linear model:
n

a) EZ ~ 3 =  ~ (Mei)'~a �9 oS3q.
i= 1

b) EZ .3 = M  *a 1 n oaTl .
I t M ,  3 1c) There exists an unbiased estimator for T, in l~a or in Gl if and only if -n- ' -  "n > 0.
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Proof: The independent components of  U := o -1 (Y -- EY) have mean zero, variance
one, and coefficient of  skewness 3'1. Hence the expected value vanishes for powers like
UI U2 U3 and UI U~2, and equals 3'1 for UP. a) then follows from EZ | = oaM e3 EU | ;
and applying Ha in a) yields b). As for c), PI -estimability is ensured whenever
~, (Mei) | 4: 0, i.e., 11 Z (Mei)| = Z (e~ M2 e/) a = Z e~ M*a e/ > O. GI-estimability
requires M* 3 in 4: 0. The assertion then follows from the nonnegative-definiteness of
M .3 [Styan, p. 221]. []

Before proceeding to higher powers we introduce the symmetrizer lrs [Greub,
pp.90f.]. As an endomorphism of a iv-fold Kronecker power | n, it suffices to have
7r s defined on the spanning set of all iv-fold Kronecker powers x l  |  | Xp o f p  R n-
vectors x l  . . . .  , xp by

1
n s (xl | �9 �9 | Xp) := ~ Y~OESp (xo(1) | �9 " | Xo(p)) (2.3)

where Sp is the symmetric group (permutation group) of  order iv. A point in @. P R n
is called symmetric if it lies in the range of  n s. A mapping L defined on | R n is called
symmetric if L = L o 7r s. 1

For example, consider the case iv = 2. Then rr s (x |  = -~ (x 9 y  + y  ,~x). Using

the isomorphism vec: R nxn --> R n 2 , x y  ' -~ x | y ,  the result ofTr s on the space R nxn  of
n • n matrices is exactly that it projects a square matrix A into its symmetric part

F . / ' /(A + A );further properties of  the vec operator are i~l ei | ei = vec l  n, and vecABC =

= A | C'-  vec B [Pukelsheim, p. 326]. - Notice that z | is symmetric; hence in a
linear form w'z | we may assume w to be symmetric, too. Symmetric mappings are
those given by H3, or Z (e~ M) | .

The classes F2 and G2 of  estimators are now represented by using the fourth
Kronecker and Hadamard powers Z | and Z*4"

1`2 ={  w'Z| + c  P I w E R  n 4 , c  I, E R } ,

G2 = {w'Z *a + cGI w E R n, cGE R}.

Analogously to Lemma 2.1 we next investigate the expectations of  Z "4 and Z .4 . To
this end, define

m := ( M .  . . . . .  M, ,n) ' .  (2.4)

Lemma 2.2: For every classical linear model:
n

a) EZ |  ~ (Mei) ~ 4 .  0472 + 3o 4 rr s (vecM) 02.
i=1

b) EZ .4 =M*41n  0472 + 304m .2.
c) There exists an unbiased estimator for 3'2 in I'2 or in G2 if and only if the rank of

X is smaller than n.
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Proof: Again use the standardized U as in the proof of  Lemma 2.1 The expected values
of U~ U2 U3 U4, U1Uz U], U~ U 3 vanish, leaving the cases U12 U~, and U~. From (1.2),
the latter has expectation EU~ = 3'2 + 3. The former has expectation 1 and may arise
from U1UI U2Uz, UI U2U1U2, or UI UEU2U1. This gives EU | = ~ e~ 4" (72 + 3) +

|
+ ~ i 4 q ( e i  | | 1 7 4  i | 1 7 4  i |  i | 1 7 4 1 7 4  i "72 +
+ ~'i,j (el | ei | el" | ej + e i | ej | e i | e 1. + e i | e i | e/| ei). The last term equals
37rs " ~i,j ei ~ ei | e~ | ej, and this proves a). b) results when applying the transforma-
tion H4 in a). In c) we first get Z M]/4:  0; but this is the same as M 4= 0, i.e., range
X 4: R n. []

A classical linear model tacitly assumes that the rank of X is less than n, hence 72
is "always" unbiasedly estimable. Lemma 2.2 also provides the values for the constants
c r and CG:

Corollary 2.3: For the classes I'2 and G2, unbiasedness of  w'Z | 4 + cp (w E R n' , c r ~ R)
for 72 implies

4 tcr = - - 3 o  wrr s �9 (vecm) .2,

and unbiasedness o f w ' Z  .4  + c G (w E R n, c O E R) for 72 implies

c G = - 3 o  4 w ' m  .2. []

This section is concluded with some upper and lower bounds associated with the projec-
torM. Let m be as in (2.4); define p to be rank of  X, and u to be the rank of M, so that
p + v = n .

Lemma 2.4:
n m ka) For every k = 1, 2 . . . . .  one has 0 ~< m'M*km <- u and v k / n k-1 <~ ~ u "

n i=1
b) One has ~ 342/~ v (u 2 -- n p ) /  n 2 , and u 2 -- np is positive if and only if

i,]=1
n > ( 3  + x / ~ ) p  / 2.

Proof: a) Since M is a projector, it follows from Theorem 3.1 and Corollary 3.2 in
Styan ! 1973] that the eigenvalues o f M  *k lie in the unit interval [0, 1 ], whence,
0 <~ m M * k m  -.~ m m. But

n
= z M,.=,. (2.5)Mii 1= 1 I

as well, so that m m -.,. ZMii u. The second part is Jensen'simplies Mii E [0, 1 ] ' -< =
Inequality: u k / n k = (~ mii / n) k ~ Y~ M~i i / n.
b) Certainly, Z M. a./> ~ M.. a -- Zi~ / I Mi/[ M z~.. But (2.5) implies Mq ~< I Mi/ l ,  and
-- Y~i~/tMii [" =Mi~' --Mii" This gives F~M~. ~> ~ M ~  + ~ M  2 -- ~Mii.  Now use a)
to obtain the first assertion.
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For timed p,  the zeros o f x  2 _ 3xp + p2 are (3 + X/~) p / 2. Noting that n ~> p
finishes the proof. []

The lower bound v (v 2 -- n p ) /  n 2 for Y. M~ is rather crude since it is not  always
nonnegative. Yet for the estimability criterion in Lemma 2.1 c), one obtains the suf-
ficient condition n ~> 3p. The case of  two observations with a homogeneous mean prov-
ides an example for n = 2p and Z M~ = 0.

Next we compute the sixth and eighth moments under normality,  and then turn to
minimum variance estimation.

3. Skewness

In the sequel we speak of  a quasinorrnal model whenever the assumption of  nor-
mali ty is used only to compute the moments involved.

In order to display higher moments we shall use the ( i , / )- th Euclidean basis matrix
Eij := eie / that carries a one on place (i, j)  and zeros elsewhere, and the diagonal matrix
Diag M whose diagonal is copied from M.

Lemma 3.1: For every quasinormal classical linear model the dispersion matrices of
Z .3  and Z .3 are given by o6rrs S r rr s and o 6 S G, respectively, where

S r := 6 M  *a + 9 M ~ ( v e c M  �9 vec'M)

S G := 6 M  .3 + 9 ( D i a g M ) M  (DiagM).
n

Proof: Define S := 6 I~  3 + 9 E 1Eft | | Ejk.  It suffices to show that for a
i,j,k=

N n (0; In)-distributed U one has / )U ~ 3 = rrsSns" Since M | and rr s commute,  this
impl ies / )Z .3 = o 6 M ~3 (DU| .3 = O"671"8 ~ M~3SM ~3 �9 lrs. Using
vec ABC = A | C' �9 vec B one obtains
M | M | [6In  .3 + 9 I  n | (vec I  n �9 vec' In ) ]M | ~2 = S r. EmployingH3,  one also
gets DZ .3 = 06 Ha S r H] = 06 S G, as asserted.

Note that EU * 3 = 0. The equality E (U ~ 3) (U,3) ,  = rr s STrs is now verified element-
wise. Let a,/3, 7 = 1 , . . . ,  n be pairwise different. The only nonvanishing sixth moments

4 2 2 2arise from U 6 with expectation 15, and U_ U~ with expectation 3, and U U_ U 2 with
, /J 7| |  _expectation 1. In the first case, (e ,~)  lrs Sir s ~ ) - 15. For the second case use

lrs(ee~ | e# | ea) = (e  |  + e ~ |  ~ea + e a |  ) / 3 ,  andobtain
(e~3) ' rrsSrr s ( e  | e~ | e~) = 3 and ( e  | e a ~ e~) rr s Sir s (e,, | e r eo) = 3. Along the

| ' | e r) = 1, and, finally,same lines it is found that ( e  | e a e#) ~rsSrr s (ea| e r
( e  eo ~ e )  rroSrro ( e  | e~ | e~) = 1. For vamshmg moments of  order six the cor-
responding entry of  rr sSn  s vanishes, too. []

Note that S G is also given by equation (15) inAnscombe [1961].
In case o 2 is known, we are now in a position to exhibit  various estimators of  the

coefficient of  skewness 7~, and discuss their relationship.
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Theorem 1: Assume a classical linear model Y ~ (X/3; O2In) such that l n M  .31 n > 0.
a) The Aitken estimate for 71 in the derived model

n

Z~ 3 ~ ( i~= l (Me i)~ a �9 o3 7 t ;o  6 u s S r rt s)

is given by

A n n
: E e ' :  3 7rs) + Z .3~1 = ( ~ ('/Tg S r ~ ) + e ; 3 )  - 1i,j=l ' i~=l ei ~a (rt s S r

A
3'~ is a homogeneous polynomial of degree three in ZI . . . . .  Zn, unbiased for 3'1,
and, under normality, of  minimal variance among all these estimators.

b) The Aitken estimate for 7~ in the derived model

Z*3 ~ (M .3 1 n o33q ; 06 SG)

is given by

A 3 , j ~ * 3 o  + a , t * 3 1  ~ - 1  , M . 3gl : = ( o  l n m  OG~Vl ln~ 1 n S+GZ .3.

A
gl is a homogeneous polynomial of  degree three involving pure cubes Z 3 . . . . .  Zn3
only, unbiased for 7 t ,  and, under normality, of  minimal variance among all these
estimators.

c) The Least Squares Estimator in the model generated by Z ~ is

m

' .44*3 ' Z*3.gl := ( ~ 1 n In )-1 1 n

g-~ is a homogeneous polynomial of  degree three involving pure cubes Z 3 . . . . .  Z 3
only, unbiased for 71, and of  minimal norm among all unbiased homogeneous poly-
nomials of  degree three in Z1 . . . . .  Z n �9

Under normality, these estimates are related as stated in d) - g):

d) VarTl ~ V a r g l  ~<Varg-~{~< [6(v2/n 2 - p / n )  -1 + 9(v2/n  2 - p / n ) -  2l, where
v = n - p  = rank M.
A

e) gl is of  minimal variance in l~z if and only if
n

t t ' +  I , r  1n s S r H a o G m  ln=Pi~=l(Mei)~3 , p E R .

f) ~ is of  mimmal variance in G1 if and only if

t P . 3( D i a g M ) M m = p M * a l n  , P = m M m / l n M  1 n.
n

g) ~-1 is of  minimal variance in 1-'1 if and only if rr s �9 (Mm) | M) = p N (Mei)~3 ,
i=1

t t * 3
P = m M m / l n M  1 n.
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Proof: In a general linear model Y - (X/3; 02 V), the Aitken estimate ( x ' W X )  § X ' W Y
for t3 is of  mimimun variance iff  range X c range V [Zyskind, p. 658]. Since for non-
negative-definite matrices the range of  a sum equals the sum of  the ranges, this con-
dition is easily verified for a) and b). c) uses the representation X+Y of the Least
Squares Estimator. The first two inequalities in d) are immediate, the last one uses
Lemma 2.4. e) - g) follow since, in general, ~ 'Y is Blue of its expectation iff V~ lies in
the range o f X  [Zyskind, p. 653]. For case g), e.g., this gives 7r s S r ~ e~ 3 = O y~ (Mei) na
for some real number O. Its essential term is ns " ~ (Mei) | vecM �9 Mii = ns "

�9 (Mm) ~ vec M. In each of the assertions e) - g), the particular value of  P can be
computed by suitable premultiplication. []

Examples." A nscombe [ 1961, pp. 14f.] contents himself with estimating the third mo-
ment/a3 = o371 for which problem Theorem 1 holds true using the estimates

A
o 3 ~ ,  o3g~, and o3g~-~, respectively; the classes Pl and Gt remain the same. Anscombe's
o s gl coincides with our least squares version a 3 ~-i.

125
Firstly, for Y ~ ((0, 1, 2)'/a; O213), Theorem 1 yields 03~-~ = 1 ~ -  (Z~ + Z23 + Z ] ) ;

this is of  minimum variance in GI,  but not in Pl [Anscombe, p. 14].
P 2Secondly, for Y - ((0, 1, 2, 3)/a; o 14), the variance of 03 ~ -  is not minimal in G1.

A A
For ~r 3 g~, one obtains o3gl = 0.365 Z~ + 0.573 Z 3 + 1.015 Z 3 + 2.404 Z~, and

A
Vargl  = 5.48 < 6.59 = Vargl  [Anscombe, p. 15].

Thirdly, consider A nscombe's design-condition I [ 1961, p, 3 ] of  a common over-all
mean component:  1 n E range X, and design-condition 1I of equal variances of  the
residuals Z I , . . . ,  Z n : MH . . . . .  Mnn. Under these conditions Mm = 0, and Theo-
rem 1 g) ensures that o 3 ~-~ is of  minimal variance in the big class F I ,  and not only in
its subclass G1, as found byAnscombe  [1961, p. 15]. []

4. Kurtosis

The following discussion parallels that of  Section 3. First the dispersion matrix of
Z .4 is computed.

Lemma 4.1" For every quasinormal classical linear model the dispersion matrices of
Z ~ 4 and Z*4 are given by o a n s A r lrs and oaA G, respectively, where

A r := 24M e4 + 7 2 M *  M e  (vecM �9 vec 'M).

A@ := 2 4 M  .4 + 72 (D iagM)M .2 (DiagM).

Proof: Define A := 2 4 ~ *  + 721n 2 | ( v e c I  n �9 vec' In)  + 9 ( v e c I  n �9 vec ' In )  .2 . As in
Lemma 3.1 first prove EU .4 (U | = n s Ans;  using EU ~4 = 3 (vec In) | one then
finds t)U -e4,/)Z ~4 , and / )Z  .4 as asserted. []

Note that one may now obtain equation (33) in Anscombe [1961].
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Theorem 2 is our main result on estimating the coefficient of  kurtosis 72. As in
Theorem 1, it is assumed that cr 2 is known.

Theorem 2: Assume a classical linear model Y ~ (X/3; 02In).
a) The Aitken estimate for 72 in the derived model

n
Z | - -  3 o4rr s �9 (vec M) ~2 ~ (i~1 (Mei)~4 " 0*72; oS~r s A r lr s)

is given by
n n

0 - 4  Z ,.4 7rs)*Z * ~ 4 - 3 "  Z '~4 A i=1 ei OrsAr i=l ei (lrs A r  lrs)* (vecM)~2
3'2 :=

n

i,i=l r ns) e]

A
")'2 is a constant plus a homogeneous polynomial of  degree four in Z~ . . . . .  Z n ,
unbiased for 72, and, under normality, of  minimal variance among all these esti-
mators.

b) The Aitken estimate for 3'2 in the derived model

Z .4 - 3 o 4 m  . 2  ~ (M .4 1 n 04 ")'2 ; o a A G)

is given by

A o-4  in, M . 4 A ~ Z . 4  - -3  . in M ,  .4 A ~  m .2
g 2  : =

' M * 4  A~M .4 I n 1n
A
g2 is a constant plus a homogeneous polynomial of  degree four involving pure
fourth powers Z~ . . . . .  Z4n only, unbiased for 72, and, under normality, of minimal
variance among all these estimators.

c) The Least Squares Estimator in the model as in a) is

~-2 := (1' n M*4 In f~ (o-4 l'nZ*4 -- 3" m'm).

g~- is a constant plus a homogeneous polynomial of  degree four involving pure fourth
powers Z~ . . . .  , Z4n only, unbiased for 3'2, and of  minimal norm among all unbiased
constants plus homogeneous polynomials of  degree four in Z~ . . . . .  Z n .

Under normality, these estimates are related as stated in d) - g):

A A 1 [24 (n3/v 3) + 72 (n6/p6)], where v = rank M.d) Var 72 ~< Var g2 ~< Var ~-2 ~< v

A
e) g2 is of  minimal variance in I~2 if and only if

n

7rsArH'4 A G M ' 4 1 n  =P,~I'= (Mei)~4' p E R .



112              

f) ~ is of  minimal variance in G2 if and only if

( D i a g M ) M  .2 m = p M*41n , p = m 'M .2m/1 n' M .41 n.

g) ~-2 is of  minimal variance in I"2 if and only if
n

�9 = ~ (Mei)64, p as in (f). []rt s (vec M) ~ (vec M (Diag M) M) P i--- 1

Examples: For the first example of  Section 3, g-~- = o -4 625 9q-  (z   3150
914 "

This is of  minimal variance in G2, but  not in 1"2. A
In the second case, ~-2 does not  minimize the variance in G2. For  g2 we obtained

A
g2 = ~  (0.4843 Z 4 + 0.4841 Z 4 + 0.5956 Z 4 --  0.3997 Z 4) --  3.4639, and

A
Var g2 = 46.49 < 47.17 = Var g2.

Thirdly, let us introduce design-condition III [cf., Anscombe,  pp. 6,20] of  up to
permutations equal covariances of the residuals, or precisely: the rows of  M are equal up
to permutations of their entries. Then design-conditions II and III force g2 to have mi-
nimal variance in G2 : in Theorem 2 f), (D iagM)M*2m =M121 M .2 1 n is a multiple of
In, and the same is true of  M .4 1 n . This is an example with a nontrivial p.

Fourthly,  we replace in g--~ the generally unknown o -4 by an estimate, and compare
our g~, obtained along these lines, with Anscombe's  g2. As before, define

n n

v :-- rank M -- n --  rank X; d := ~ Mi7. Estimate o 2 by s 2 = v- 1 ~ 2/2, as usual.
i,j=l i=1

Replacing o 2 by s z generates a bias even under normality:
v -I PEs -4 1 n Z .4 --  3 m'm = -- 6 (v + 2) m m. Correcting for this bias by changing the

constant yields

1 1 Pg2 : = ~ ( s - 4  Z Z  4 - 3 ( v + 2 ) -  v m m ) .

Anscombe [1961, p. 7] uses a different divisor:

g2 = ~ g 2 , D : = d - - 3 [ v ( v + 2 ) ]  -1 [Y. M//2] 2.
i=1

Since diD > 1, the variance of g2 always exceeds that of  g2. Under normality, both
estimators are unbiased for 3'2 = 0. The asymptotic properties are the same: if (*)
sup (rank X n I n = 1, 2 . . . .  ) ~<p, then

t0<~ 1 - D i d  = 3 (1 n m*2) 2 / [u(v + 2) Z M q ]

4<<. 3n Y.Mii / [ v  (v + 21 (~ M 4. + Zi,/M~I.)]

<~ 3n/[(n - -p )  (n - - p  + 2)] ~ 0
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as n ~ oo. For the model Y ~ (1 n ~t; O2[n), Anscombe's g2 specializes to Fisher's kur-
tosis statistic [cf., Crarn~r, eq. (29.3.8)], whereasg2 does not.

Finally note that under condition (*) all variances in Theorems 1 d) and 2 d) tend
to zero, whence the proposed estimators are consistent. []

We remark that for the estimation of the kurtosis one may utilize yet another deri-
ved model, namely,

n ( 0 4 7 2 1 ; 0 8
Z ~4 ~([i~=l(mei)~.4: 3ns(vecM)~2]  ~ 04 / ~rsArTrs)"

The approach chosen above reveals more clearly the analogy of estimating skewness
and kurtosis, and also conforms to a greater extent with Anscombe's paper [ 1961 ].

Acknowledgements

I would like to thank Professor H. Witting for valuable discussions throughout the
course of this work. I am also grateful to the referees for helpful comments. This work
originated with my doctoral thesis and was completed while I was on a postdoctoral
fellowship of the Deutsche Forschungsgemeinschaft, Bonn, with the Department of
Statistics, Stanford Univeristy. A preliminary version of this paper appeared as Techni-
cal Report No. 103 NSF Grant MPS74-21416 at Stanford.

References

Anscombe, F.J. : Examination of residuals. Proc. Fourth Berkeley Symp. Math. Statist. Prob. 1,
1961, 1-36.

Cramer, H. : Mathematical Methods of Statistics. Princeton 1946.
Greub, W.H. : Multilinear Algebra. Berlin 1967.
Pukelsheim, F.: On Hsu's model in regression analysis. Math. Operationsforsch. Statist. SeE Statist.

8, 1977, 323-331.
Rao, C.R.: Linear Statistical Inference and Its Applications. Second Edition. New York 1973.
Schmetterer, L.: Introduction to Mathematical Statistcs. New York 1974.
Styan, G.P.H. : Hadamard products and multivariate statistical analysis. Linear Algebra and Appl. 6,

1973, 217-240.
Zyskind, G. : Error structures, projections, and conditional inverses in linear model theory. A

Survey of Statistical Design and Linear Models. Ed. by J.N. Srivastava, Amsterdam 1975,
647-663.

                         
                                   


