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ABSTRACT

For two pdimensional random vectors X and Y with dispersion matrices 8,, and
8,, respectively, we determine that covariance matrix \k, of X and Y that minimizes
the L,distance between X and Y. There is a dual to this problem that is of interest in
another context.

1. INTRODUCTION

Consider two pvariate normal distributions with zero means and positive
definite dispersion matrices Z,, and Z,,. In the theory of strong approxima-
tions it is of interest to construct pdimensional random vectors X and Y
distributed according to N(0, Z,,) and N(0, Z,), respectively, such that the
L,-distance between X and Y is minimal.

Let
I:

2 = ;;
i i

$
22

LINEAR ALGEBRA AND ITS APPLICATIONS 48:257-263 (1982) 257

                                             
                                                                 



258                           

denote the dispersion matrix of (X, Y). Then the problem is to minimize
Etr(X - Y)‘(X -Y)= tr(Zr, + Z,, - 2q). The restriction that Z be non-
negative definite is equivalent to requiring that the Schur complement
Z,, - \kZ&‘\k’ be nonnegative definite. Consequently, under the assumption
that Z,, > 0, Z,, > 0, the extremal problem becomes

where the Loewner ordering A > B (A > B) means that A - B is nonnegative
(positive) definite.

As a consequence of Theorem 3 we show that the problem (1) has a
unique solution

(2)
where AlI2 denotes the unique positive definite square root of the positive
definite matrix A.

Whenp=l, ‘k,=\iio,,azz, so that the correlation between X and Y is 1.

When Z,, and Z, are diagonal, q. is diagonal, so that (X,, Y,), . . . , (X,, Y,)
are independent bivariate random vectors that are perfectly correlated.

When Xi,. . . ,X, and Yi,. . . , YP are equicorrelated with correlations p and
9, respectively, then *a is a matrix with equal diagonal elements Gii = a(p, q),
i=l ,..., p, and equal off-diagonal elements $ij=b(p,n), i * j= l,..., p. The
constants a(p, 7) and b(p, r~) are rather complicated functions of p and 7.

We actually obtain a stronger result by assuming only nonnegative
definiteness of Z,, and Z,,. This permits a comparison of random vectors X
and Y of different lengths by appropriately including random variables
degenerate at zero.

2. A DUALITY THEOREM

In another context Anderson and Olkin [l] consider the extremal problem

?I; tr( Z,,S + Z2aS-‘), z,, > 0, z,, > 0. (lb)

It is interesting to note that the problems (la) and (lb) are dual to each other.
As a consequence we have a particularly simple way to investigate the
optimal solutions. Since the set of matrices satisfying Z,, - *Z;a’*‘>, 0
forms a convex set (see [2, p. 468]), the problem can also be considered from
the more general programming theory as outlined in [3]. However, we need
not use this route, since a direct argument establishes the duality.
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Our first theorem shows the interplay of the problems (la) and (lb).
However, we first require the following lemma.

LEMMA 1. Let Z,, > 0, Z,, > 0. Then

if and only if q E 62, where

!2 = { \k : z,,z,w = \I/‘, z,, - 92,s’ 2 O},

and 2, is any generalized inverse of Z,.

(3)

Proof. For the direct part, assume Z > 0 and suppose the vector y is in
the nullspace of Z,,. Then letting h * 0 tend to zero in

0 i (Xx’, A-ly)X(Xx, Py)‘= X%‘Z,,x +2xYy

proves that \k y = 0. Thus, nullspace( 2,) c nullspace( \k), or equivalently,
range( 9’) c range( Z,,), which in turn is equivalent to Z,,Z&\II’ = W.

The second property is implied by

The converse part follows from

As a consequence of Lemma 1, under the weaker assumption Z, > 0,
Z,, > 0, the problem (la) generalizes to

max tr2\k.
*=!J.

THEOREM 2 (Matrix inequality). For 9 E C? and for an arbitrary
matrix R with generalized inverse R- ,

(la’>

PXP

(4)
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with equality if and only if

R’(Z,, - W,W)R = 0,

R’\Tr = R-Z,,.

Pa>
(5b)

Proof Let G denote any generalized inverse of R. The inequality (4)
follows from the nonnegative definiteness of

(R’> -G)( 2: ;2)( _;,).
To show the case of equality, let

Then equality in (4) holds if and only if equality holds in

R’Z,,R + GZ,G’> R’Z,,R + GZ,,G’- TT’

= R’PG’+ GWR + R’(Z,, - \EZ,P’)R

> R’\kG’+ G\k’R.

In the case of equality, (5a) holds and T = 0, which is equivalent to (5b). n

In order to connect Theorem 2 with the problem (lb), let S = RR’ satisfy
the condition range( Z,,) c range(S), that is,

ss- z,, = z 22’

where S is any generalized inverse of S. Accordingly, assuming merely
Z,, 2 0, Z,, > 0, we modify the problem (lb) to

where

sm;ly tr( C,,S + Z,S- ), (lb’)
c

s = (S: s > 0, ss- z, = Z,,}. (6)

COROLLARY 3 (Mutual boundedness). For all matrices \k E D and S E s,
the inequality

tr( Z,,S + C,,S- ) >, tr2* (7)
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holds, with equality if and only if

sz,,s = z, = w. (8)
Proof Fix S- and S = RR’. Then G = R’S is a generalized inverse of

R, and by (6),

Z,,G’G = Z,,S- RR’S- = Z,S-SS- = Z,S- .

Hence, from (4)

tr(Z,,S + Z,S ) = tr(X,,RR’+ Z,G’G)

> tr(\kG’R’+ RGW) = 2trRG+‘= 2trSS 9’.

But, because \k E Sz and (6) holds,

9’= z,z,w= ss- z,,z,w= ss- w. (9)

The condition (5b) implies that S\k = Z,,, which when inserted in (5a) yields
sz,,s = z,. Thus equality in (7) forces (8), whereas the converse is im-
mediate from (9). n

From (8) it follows that equality in (7> holds only if rank(Z,,) =
rank( SZ,,S) < rank( Xi,). Th e rank assumption can be made without loss of
generality; however, we require the slightly stronger assumption that
range(&) C range(E,,) in the following duality theorem.

THEOREM 4 (Duality). Zf range(&) c range(Z,,) then the problems
(la’) and (lb’) share the sam optimal value

max tr2\k = sm;l; tr(Xi,S + Z,,S-) = 2tr(JYZ,!&zZilX~z)1’2,
*Co

(10)

If range( X,) = range( Xi,), then *a is the unique solution of the problem
(la’), and S,, is the unique solution of problem (lb’) that satisfies range(S,) =
range@,,).
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Proof. Because of the assumption range( Z,, ) c range( Z,, ), the matrices
\k, and S, are invariant under the choice of the generalized inverse

[( 2;/a21J;~)1’2 -.
1

The matrices \k, and S, defined by (11) are clearly
feasible for the pro lems (la’) and (lb’) and satisfy (8), thus proving (10).

To establish uniqueness, an argument similar to that in the proof of
Lemma 1 shows that any \k E SJ satisfies range( \k) c range( Z,, ). Hence, if
range(Z,,) = range(Z,,) and S E S , then range(\k)c range(S), and SS \E=
\k. In particular, from (8), any two optimal solutions q,, and +a of problem (1’)
satisfy S,*a = Z 22 = $,%a, which yields

Finally, any two optimal solutions S, and S, of (lb’) satisfy S,\k, = Z,, = $,\k,.
Suppose, in addition, that range( S,,) = range( S,) = range( X2,). From the
above we have that range( 9) c range( Z,), whereas (8) implies that
rank( Z,,) G rank( \E). Thus, range( Z,,) = range( ‘I’,,), and

NOTE. If z I range( Z,,) = range(Z,,), then S, + zz’ also satisfies (8)
and hence is also optimal, which shows that the condition range(&) =
range(&) cannot be relaxed.

REMARK. When range( Z,,) = range(Z,,), the problem (la’) can also be
formulated with the Schur complement Z, - WX,\E. Accordingly, an alter-
native representation of its unique optimal solution is

9; = x,z:i”[ (2;{“x,x:i”)““] - zy.

If X,(A),..., hp( A) denote the characteristic roots of A, then the optimal
value (9) becomes

2tr( 2!ji22,,2kd2)1’2 = 25x, [ (2&8~2)i7
1

which provides a more symmetric expression in Z,, and Z,,.
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Note added in proof. During the proof stage the authors note the
appearance of a paper dealing with the same problem, though motivated from
a slightly different point of view. The reference is D. C. Dowson and B. V.
Landau, the Frkchet distance between multivariate normal distributions, J.
Multivariate Anal. 12:450-455 (1982).

We are grateful to E. Berger for calling this problem to our attention, and
to Kai-Tai Fang for his comments and suggestions.
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