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1. INTRODUCTION

The use of network flow models and methods is
widespread in operations research, with many applications
in a large variety of areas [1]. In recent years, researchers in
the field of electoral systems have turned their attention to
network flow techniques to deal with biproportional appor-
tionment and other electoral decision problems. We feel that
the time has come to give an account of this research direction.
For an optimization-oriented general introduction to electoral
systems, the reader may refer to Grilli di Cortona et al. [26].

A transportation procedure appears in Hess et al. [28],
the earliest operations research article in political districting.
Since then, network flow models have been proposed for the
design of certain components of electoral systems or for the
analysis of their behavior. In this survey, we address some
relevant problems in electoral systems, namely, the bipro-
portional apportionment problem (BAP), the computation
of vote transitions, the design of political districts and the
so-called “give-up problem”.

Biproportional seat apportionment, to which we devote
Sections 2–8, is perhaps the main area of electoral sys-
tems where network flow techniques are brought to bear.
The problem arises in situations where the entire electoral
region, usually the whole nation, is subdivided into elec-
toral districts. By constitutional or legal requirements, the
electoral districts are to receive a share of seats proportional
to their population counts. At the same time, political par-
ties are to be allocated a number of seats that mirrors their
nationwide electoral performance. Thus, BAP is a “matrix
problem” for which we provide a formal definition in Section
2. This problem currently arises in the electoral laws of
several countries, for example, Italy, Mexico, Switzerland,
Denmark, Faroe Islands, etc., but it may be of primary interest

                            

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



also in the European Parliament elections, where the districts
correspond to member states of the European Union.

In the field of statistical applications, some authors ana-
lyzed the very structure of BAP as a transportation problem.
For example, in Refs. [15] and [16], the authors study two cat-
egories of problems: “controlled selection problems,” that is,
controlling statistical disclosure in tables of frequency counts
(to prevent small counts in such tables to be easily inferred);
the more general statistical problem of replacing a table of
noninteger counts by an integer one, matching the prescribed
row- and column-sums, and minimizing a measure of the
total distortion to the original table. A procedure to solve
such problems that has a long standing already in statistics,
is “iterative proportional fitting” [17]. In computer science,
it is called “matrix scaling,” or the RAS method (after the
matrix names used by Bacharach in his earlier article [2]),
whose complexity was recently analyzed by Kalantari et al.
[33]. An empirical study on the runtime behavior of various
implementations of the algorithm can be found in [37]. The
reader may wish also to consult the classical monograph on
this method by Bacharach [3].

In 1989, Balinski and Demange [5,6] published two semi-
nal papers where they characterized proportionality between
integral matrices axiomatically, and proposed a procedure
to find apportionments X proportional to V in the above
axiomatic sense. Their procedure was implemented as the
“Tie and Transfer (TT)” algorithm in the public domain soft-
ware BAZI [36]. The results by Balinski and Demange are
surveyed in Sections 3 and 4.

Looking for a simple algorithm for BAP, in 2004,
Pukelsheim [43] proposed a RAS-like “discrete alternating
scaling (DAS)” procedure which was actually applied in the
elections of the Zurich, Aargau, and Schaffhausen Cantons
(see Section 5).

In 2008, Gaffke and Pukelsheim [20,21] formulated BAP
as a piecewise linear convex separable transportation model
and showed that the TT method of Balinski and Demange
may be viewed as an out-of-kilter algorithm for solving such
model, whereas the DAS method may be viewed as a cyclic
coordinate ascent algorithm for solving its (Fenchel) dual
(see Section 6).

These approaches are based on the idea of rounding certain
fractional numbers, that is, the “fair shares,” which would be
the ideal seat assignment, if fractional seats were allowed.
They focus more on how to round these quotas while keeping
satisfied the row and column sums than on the distance of the
final seat assignment to the quotas, taking for granted that
the approximation is good, because it can be obtained by
rounding up or down the fair shares.

A different approach consists of minimizing an error mea-
sure of the actual seats with respect to “ideal” quotas. The
quoted result (controlled rounding) by Cox and Ernst [16]
can be viewed as a polynomial procedure to minimize the
Lp-norm error with respect to ideal quotas, subject to the
constraint that such quotas are rounded only to the up and
down nearest integers. Network flow integrality is the basic
property allowing for polynomiality of controlled rounding.
It should be noted that this method does not minimize in

general the Lp-norm, because there are instances where the
minimum is obtained outside the above rounding interval.
However, exploiting a result by Minoux [38, 39], one can
refine the method into a polynomial algorithm for the general
case. This will be discussed in Section 7.

Looking for the minimization of the L∞-norm and follow-
ing a different approach, Serafini and Simeone [51] formulate
BAP as a minimax approximation of target shares, also
providing a strongly polynomial parametric maximum flow
algorithm to solve it (see Section 8).

In Section 9, we address a problem which is subject to
very careful analysis after each election, that is, understand-
ing if and how electors have changed their vote with respect
to the previous election. The votes migrating to different par-
ties are generally referred to as “electoral flows” or “vote
transitions,” and not surprisingly, transportation models arise
in this context.

In Section 10, we show that network flow techniques can
be applied also to the political districting problem. Besides
the early method proposed by Hess et al. [28], some variants
have been developed in the literature and actually applied to
solve real-life political districting problems: a first example
is related to the provincial electoral districts for the city of
Saskatoon, Canada, in 1996 [29] and a second one refers to
the definition of Parliamentary district boundaries in New
Zealand in 1997 [24].

The last section (Section 11) is devoted to the presentation
of the “give-up problem”, that is, the problem of assigning
seats to the winning candidates of a given party. The problem
arises when the electoral system has closed lists in the dis-
tricts, and multiple winners are possible. The attention paid
to this problem is motivated by the Italian case analysis and
justified by results that show that network flow techniques
are appropriate for the solution of this problem.

2. BIPROPORTIONAL SEAT APPORTIONMENT

A formal definition of BAP is as follows. Let H be the
“house size,” that is, the total number of seats, of a parlia-
ment. First, the H parliamentary seats are apportioned among
m electoral districts proportionally to population counts, allo-
cating ri seats to district i ∈ M = {1, . . . , m}. Second, the H
seats are apportioned among n lists of candidates of the con-
tending parties, proportionally to the number of votes each
party has received. Let cj be the nationwide seats of party j ∈
N = {1, . . . , n}. Clearly, one has

∑
i∈M ri = ∑

j∈N cj = H.
Both steps, of apportioning the H seats among the districts on
the one hand and among the parties on the other hand, form
the “super-apportionment.” We assume that both steps have
been carried out, so that the seats ri and the seats cj are known
and available. Balinski and Young [9] is the ultimate com-
prehensive reference on proportional seat apportionment, its
mathematical aspects, and its history.

Let vij be the number of votes in district i for party j. That
is to say, the vote counts are the input data and form an m ×n
matrix V . Let Z = {(i, j) : vij = 0} be the “zero-pattern” of
V , that is, the set of the structural zeros of V .
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The seat numbers xij form an integer nonnegative m ×
n matrix X, which is an “apportionment,” if it satisfies the
following constraints:

1.
∑
j∈N

xij = ri, i ∈ M (district sum);

2.
∑
i∈M

xij = cj, j ∈ N (party sum); (1)

3. xij = 0, (i, j) ∈ Z (zero-vote zero-seat).

We denote by A the set of apportionments and by Â the set
of “fractional apportionments,” that is, real matrices satisfy-
ing (1), (2), and (3). Constraints (1) and (2) mean that rows in
X must sum to the prespecified row marginals ri, i ∈ M, and
column sums must be equal to the given column marginals
cj, j ∈ N . Condition (3) guarantees that a party j that does
not receive votes in a district i is not awarded any seat in that
district.

BAP can be formulated as follows: given the vote matrix
V and the vectors r and c, find an apportionment X ∈ A “as
proportional as possible” to V .

It is not obvious, and more of a challenge, to turn the
proportionality requirement into an operational concept. The
difficulty is twofold. On the one hand, we have to find a def-
inition of “ideal” proportionality, and on the other hand, we
have to make a compromise between the ideal proportionality
and the integrality requirement for the seats.

The fact that the problem is not trivial is witnessed by the
presence in the electoral law of some countries of unsound
and self-contradictory procedures for solving BAP. For exam-
ple, Balinski and Ramírez [8] discovered that the Mexican
electoral law was not correct, with the result that the proce-
dure was modified. However, in other countries — like Italy
—- this problem still persists.

In some countries, like Italy and Belgium, “regional quo-
tas” are used as a template of ideal proportionality. For each
region i and party j, they are given by

qij = ri
vij∑

h∈N vih
, i ∈ M, j ∈ N .

Equivalently, qij is the (usually fractional) number of seats
party j would receive in region i under the assumption of per-
fect proportionality between votes and seats in that region.
Notice that regional quotas depend only on data associated
with the given region. It is conceivable also to use party-wise
(i.e., column-wise) quotas. However, both in the Belgian and
in theh Italian legislation, districts and parties are not dealt
with in a symmetric fashion, and proportionality within dis-
tricts is felt to be more important than proportionality within
parties. This asymmetry is confirmed by the fact that in the
Italian system seats are assigned to parties by an ordinary law
and to districts by the very Constitution.

Regional quotas reflect proportionality within districts.
As they are usually not integers, one way to obtain an
apportionment is to find a “suitable” rounding of the regional
quotas that satisfies constraints (1). The Italian biproportional

allocation procedure relies on the underlying assumption that
one can always get an apportionment by rounding up or
down the regional quotas. Unfortunately, realistic examples
can be exhibited in which no up- or down-rounding of the
regional quotas satisfies both the district- and the party-sum
constraints. The Italian procedure tries to solve the BAP in
the wrong way [41]: the matrix of seats produced by such
procedure may fail to satisfy the district-sum constraints, the
party-sum constraints, or both. The result is that in the five
last political elections for the Chamber of Deputies this has
indeed happened three times (precisely in 1996, 2006, 2008).
The unavoidable consequence is that “citizens living in differ-
ent districts of the same country have different voting power.”
For instance, in the 2006 political elections, the Trentino-
Alto Adige district got 11 seats instead of the 10 granted
by the Constitutional Law, whereas the Molise district got
2 seats instead of 3. As a consequence, in Trentino-Alto
Adige 85,456 votes were necessary to get one seat, whereas
in Molise one needed 160,300 votes per seat. Therefore, it is
legitimate to state that in the 2006 elections for Molise’s citi-
zens the motto “one-man-half-vote” applied! Similar results
were obtained in the more recent Italian political elections of
2008 [42].

Actually, correct procedures for BAP do exist, as demon-
strated by the many papers in the literature on this topic.
In 1989, Michel Balinski and Gabrielle Demange [5, 6]
published two seminal papers where they characterized pro-
portionality between real and integral matrices axiomatically.
Their results are surveyed in the next two sections.

3. PROPORTIONALITY BETWEEN TWO REAL
MATRICES

In Ref. [5] Balinski and Demange characterize propor-
tionality between two real matrices axiomatically. They
introduce axioms of “exactness,” “relevance,” “uniformity,”
“monotonicity,” and “homogeneity,” describing reasonable
properties that an apportionment should satisfy. The authors
prove that, given V , r, c, there exists, under some neces-
sary assumptions, a unique matrix F, called the “fair share
matrix,” proportional to V (in the above axiomatic sense) with
the same zero-pattern Z as V and fitting the row- and column-
sums r and c. To find such a matrix Balinski and Demange
follow the continuous approach of RAS. Thus, matrix F has
the form [fij] = [λi vij µj] for suitable positive row multipliers
λi and column multipliers µj.

The RAS algorithm can be briefly summarized in the fol-
lowing main steps. Starting from V , all rows are scaled to
fit their prespecified row-sums, thus generating a row-wise
rescaled matrix V(1). In V(1), all columns are scaled to
fit their prespecified column-sums, giving rise to a column-
wise rescaled matrix V(2). Continue by alternately scaling
all rows at each odd step, then all columns at the subsequent
even step. The procedure yields rescaled matrices V(t) that
are usually convergent to the fair share matrix sought for,
limt→∞ V(t) = F.

Unfortunately, F is a fractional apportionment, although
BAP requires an integral one. Thus, a suitable rounding of
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FIG. 1. A non-negative 3 × 4 matrix V and the corresponding bipartite
graph.

F must be performed to get a solution for BAP. Balinski and
Demange observe that from the Integrality Theorem of Flows
[1] the following fundamental “rounding property” holds:
one can always obtain an apportionment by rounding either
up or down the entries of the fair share matrix F.

It is well known (see, e.g., Ref. [46]) that a non-negative
m × n matrix A can be represented by a bipartite graph
(M, N ; E), where the node sets M and N correspond to the set
of rows and the set of columns of A, respectively, and there
exists an edge in E, if and only if aij > 0 (Fig. 1). Furthermore,
one may direct each edge in E from M to N and assign source
values ri to the nodes in M and sink values cj to the nodes
in N . Let us denote this network by G. Thus, the problem of
finding a non-negative integer matrix satisfying constraints
1, 2, and 3 of the equation system (1) can always be formu-
lated as finding a feasible solution to a transportation problem
on G, where constraints (1) and (2) correspond to supply and
demand constraints, whereas constraint (3) defines forbidden
routes in G.

The following theorem summarizes some equivalent
conditions for the existence of a fair share matrix (see,
[4, 33, 44, 47, 51]), where N(S) denotes the neighborhood of
S ⊂ M, that is, N(S) = {j ∈ N : (i, j) ∈ E for some i ∈ S}.

Theorem 1. For a non-negative m × n matrix V and
non-negative vectors r and c, the following statements are
equivalent:

(i) there exists a fair share matrix for (V , r, c);
(ii) there exists a matrix X satisfying the following system of

linear constraints:∑
j:(i,j)∈E

xij = ri i ∈ M

∑
i:(i,j)∈E

xij = cj j ∈ N (2)

xij ≥ 1

|E| (i, j) ∈ E

(iii)
∑

i∈S ri ≤ ∑
j∈N(S) cj for each ∅ �= S ⊂ M.

Condition (ii) can be checked via the solution of a max-
flow problem on a suitably modified network. Condition (iii)
follows from the well-known Marriage Theorem [32], if the
transportation problem on (M, N ; E) is suitably reformulated
on a bipartite graph with all supplies and all demands equal
to 1 .

To network optimization people, interest in the above the-
orem is twofold. On the one hand, one can check condition
(ii) by solving a suitable feasible flow problem which, in turn,
is well known to be reducible to a maximum flow one. So,
one gets yet another application of maximum flows, namely,
checking the convergence of the RAS algorithm. On the other
hand, things work also in the reverse way. Given a transporta-
tion problem with supplies r, demands c, and with forbidden
routes, one can find a feasible transportation plan, if any, as
follows: start from an arbitrary non-negative m × n matrix V
such that vij = 0 for any pair i, j corresponding to a forbidden
route. Run RAS on V : if the algorithm converges, then the
unique limit matrix provides a feasible solution; otherwise,
no such solution may exist.

Actually, this result provides an alternative method, com-
putationally effective in practice, for finding a feasible
solution to a transportation problem. The result looks quite
surprising if one considers that the above procedure works
no matter what the starting matrix V is: V can be chosen
arbitrarily, provided that its zero entries correspond to the
forbidden routes in the transportation problem. It must be
understood that this invariance result is related to the exis-
tence of a feasible solution and not to the feasible solution
itself (if any). Indeed, starting from different matrices V , one
obtains different limit matrices.

4. PROPORTIONALITY BETWEEN TWO
INTEGRAL MATRICES: THE TT METHOD

The Tie and Transfer (TT) method of Balinski and
Demange is a divisor-based algorithm to find an apportion-
ment X ∈ A. To understand divisor-based methods for BAP,
we refer to the simpler case of “vector apportionment,” that is,
apportionment in one dimension. Given a non-negative real
n-vector v = (v1, . . . , vn) and a positive integer H, one wants
to find a non-negative integral n-vector x = (x1, . . . , xn) (the
apportionment) with sum of components equal to H and such
that the xi’s are “as proportional as possible” to the vi’s.

Any divisor method is characterized by a “signpost
sequence” given by a signpost function s(z) mapping each
integer z into a real number in the interval [z − 1, z]; that is,

z − 1 ≤ s(z) ≤ z, z = 1, 2, . . .

Let [[t]] denote the rounding of t ∈ [z − 1, z]. Then, if
z − 1 ≤ t ≤ s(z), we have [[t]] = z − 1, whereas we
have [[t]] = z if s(z) ≤ t ≤ z. When t = s(z) one has
either [[t]] = z − 1 or [[t]] = z. For example, standard round-
ing, that is, rounding to the closest integer, is defined by the
signposts s(z) = z − 1/2 (see Fig. 2). The divisor method
corresponding to a signpost sequence {s(z)} consists of the
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FIG. 2. Signpost function in divisor-based methods.

choice of a multiplier λ such that, letting xj = [[λ vj]] for each
j (or, equivalently, s(xj) ≤ λ vj ≤ s(xj + 1)), the resulting
vector x has the sum of components equal to H.

It transpires that the multiplier λ plays a crucial role.
Given λ, we easily calculate the seat numbers from the for-
mula xj = [[λ vj]]. Conversely, assume that we are given seat
numbers xj that sum up to the desired house size H. Then,
the apportionment (x1, . . . , xn) originates from the divisor
method with signpost sequence s(z) if and only if

max
j:vj>0

s(xj)

vj
≤ min

j:vj>0

s(xj + 1)

vj

and in this case, every number λ in the “multiplier interval”
[21]

[λ−, λ+] =
[

max
j:vj>0

s(xj)

vj
, min

j:vj>0

s(xj + 1)

vj

]

may serve as a viable multiplier for the apportionment under
consideration.

As in the fractional case, Balinski and Demange show
in Ref. [5] that divisor-based matrix apportionment methods
satisfy some theoretical properties that guarantee propor-
tionality of the resulting apportionment from an axiomatic
viewpoint. They characterize proportionality between two
integral matrices by a system of six axioms, five of which
are the integer counterparts of the previous ones, while the
additional one is an axiom of “Completeness” [5]. Then, they
introduce the TT algorithm, a procedure whose basic strat-
egy is “Scale and Round.” Given a matrix V , vectors r, c, and
a divisor method with signpost sequence {s(z)} (s(1) > 0),
there exists, under the same assumptions as in the real case,
an apportionment X proportional to V with respect to the
introduced axioms.

To obtain the seat numbers xij, the TT algorithm computes
row multipliers λi > 0 and column multipliers µj > 0 such
that

xij = [[λi vij µj]]
and the multipliers satisfy the following “rounding
inequalities”

s(xij) ≤ λi vij µj ≤ s(xij + 1). (3)

When λi vij µj = s(	λi vij µj
) occurs, λi vij µj cannot
be rounded unequivocally. In this case, we have a “tie.” If
we resolve the tie by assigning xij = �λi vij µj� we refer

to an “upper tie,” whereas we refer to a “lower tie,” if we
set xij = 	λi vij µj
. We observe that sometimes the other
constraints allow for only one way to resolve the tie to obtain
a feasible apportionment [53].

It must be noticed that any apportionment X ′, obtained
from X after replacement of xij by x′

ij = xij + 1, for some
upper ties (i, j), and by x′

ij = xij −1, for some lower ties (i, j),
also satisfies the rounding inequalities relative to the same
multipliers.

In [7] it is proved that divisor-based methods provide an
apportionment X (if it exists) unique up to ties.

The TT algorithm searches for X ∈ A that minimizes the
following L1-error:

1

2

∑
i∈M

|xiN − ri| + 1

2

∑
j∈N

|xMj − cj| (4)

where xiN = ∑
j∈N xij and xMj = ∑

i∈M xij.
The objective function (4) is iteratively minimized by a

procedure relying on “transfer” operations. Without loss of
generality, initially all the row multipliers are set to 1. The col-
umn multipliers µj, j ∈ N , are then computed such that vij µj

satisfies the column-sum cj, that is, µj = cj/
∑

i∈M vij, j ∈ N .
Starting from V , for each column j the vector apportionment
is solved with respect to v1j, . . . , vmj and cj, thus obtaining
an integer matrix X(0) (current solution) where column-sums
match c, but row-sums are generally not satisfied. Hence, the
error in expression (4) reduces to

1

2

∑
i∈M

|xiN − ri|. (5)

Starting from X(0), the algorithm proceeds by decreas-
ing the error while maintaining the column-sums constraints
satisfied. As in X(0) column-sums are satisfied, and we also
have

∑
j∈N cj = ∑

i∈M ri = H, then, if the row-sums are not
satisfied, there must exist at least one “underbalanced” row i
for which

∑
j∈N xij < ri, and at least one “overbalanced” row

k for which
∑

j∈N xkj > rk . To decrease the error, one can
“transfer” seats from overbalanced rows to underbalanced
ones, leaving the balanced rows unchanged. The only condi-
tion that must be satisfied is that only the cells corresponding
to ties can be modified. In other words, if xij corresponds to
an upper tie in a underbalanced row it can be increased by 1,
and if xij corresponds to lower tie in an overbalanced row it
can be decreased by 1, while all other cells must remain the
same (see Fig. 3 where the gray cells corresponds to ties, and
a +1 denotes an upper tie, whereas −1 stands for a lower tie).

It is easy to recognize that at each iteration t a directed
bipartite graph can always be associated with each matrix
X(t) [53] with the set of nodes corresponding to those rows
and columns in X(t) that are involved in some ties (some-
times this graph is referred to as the “row/column graph”).
For i ∈ M and j ∈ N and xij = [[λi vij µj]], an arc (i, j) exists
if λi vij µj = s(xij +1) (upper tie), whereas an arc (j, i) exists
if λivijµj = s(xij) (lower tie). Then, the transfer of a seat from
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FIG. 3. The structure of the current matrix X(t) in the TT algorithm.

an overbalanced row (district) to an underbalanced one cor-
responds to a flow along a simple (even) path P connecting
such rows in the row/column graph. Assume that X(t) is the
current matrix, then, if path P can be found, the correspond-
ing transfer can be performed producing a decrease of 1 in the
error (5) (“primal step” of the TT algorithm). Suppose that
P = {(i1, j1), (j1, i2), . . . , (jg−1, ig)}. Then, the transfer along

P corresponds to rounding up x(t)
i1j1

, rounding down x(t)
i2j1

and

so on, up to rounding down the last element x(t)
igjg−1

. The global
result will be that the i1th row-sum is increased by 1, the igth
row-sum is decreased by 1, whereas the other row-sums and
all the column-sums are not affected by the transfer. Conse-
quently, the error (5) decreases by 1. To perform a transfer, for
a given L ⊂ M ∪N , TT applies a breadth-first-search to iden-
tify all vertices that are reachable from a vertex in L through
a simple path in the row/column graph. At the beginning of
iteration t, L corresponds to the indices of the underbalanced
rows in X(t); then, all the reachable vertices are added to L.
If one of the overbalanced rows is reached, path P has been
found; otherwise, matrix X(t) must be updated to produce
additional ties that may help in reaching an overbalanced
row in a following (primal) step.

The updating of X(t) is performed during a “dual step”
in which row and column multipliers are suitably modified.
At this stage of the algorithm, the current set L may include
indices from both rows and columns of X(t), which are consid-
ered as “labeled,” that is, L = ML ∪NL, where ML and NL are
subsets of labeled rows’ and column’s indices, respectively.

The multipliers are updated through a factor δ > 0, such
that when multiplying all rows i ∈ ML by δ and all columns
j ∈ NL by 1/δ, the current solution remains feasible. Thus, δ

is computed as a bottleneck value, that is, it is the maximum
value that guarantees that all the rounding inequalities are still
valid, but at least one is satisfied with equality. This produces
at least one additional tie in the new feasible apportionment
X(t+1) (see, [5, 53]).

The underlying idea is that the addition of new ties
may help in finding a path P from an overbalanced row
to an underbalanced one in the updated row/column graph
corresponding to X(t+1) (that means performing an additional
transfer).

The TT procedure either produces an apportionment X ∈
A or halts (after a dual step) reporting that no solution exists.
A detailed description (a pseudocode) of the algorithm can be
found in Refs. [35] and [53], where the author also provides
a polynomial time implementation of it.

5. DAS PROCEDURE

For the sake of completeness, we briefly recall the Discrete
Alternating Scaling (DAS) procedure for BAP proposed in
Ref. [43]. The procedure is very simple and performs the
following basic steps: starting from V , alternately scale each
row i of the current (unrounded) matrix so that the sum of its
rounded entries matches ri, and then scale each column j of
the current (unrounded) matrix so that the sum of its rounded
entries matches cj.

To do this, each row multiplier λi must be chosen in a fea-
sible interval [λ−

i , λ+
i ] defined as before, similarly for column

multipliers.
Usually, the algorithm enjoys finite termination, providing

the required apportionment. However, there are rare cases
when, the algorithm stalls at a nonoptimal pair of row and
column multipliers (see Ref. [21]).

DAS was implemented in BAZI (see Maier and
Pukelsheim [36]), with the provision that, if stalling is
produced the algorithm automatically switches to the TT
algorithm for which termination is guaranteed. In the fol-
lowing, we report the pseudocode of DAS where we set
vij(0) = vij, t = 1 and increase t by one after each step,
until x does not change from one step to the other.

Odd Step: Find row multipliers λi(t), i ∈ M, such that
vij(t) = [λi(t) vij(t − 1)], and xij(t) = [[λi(t) vij(t − 1)]]
satisfy the conditions xiN (t) = ri, i ∈ M.

Even Step: Find column multipliers µj(t), j ∈ N , such
that vij(t) = [vij(t − 1) µj(t)], and xij(t) = [[vij(t − 1) µj(t)]]
satisfy the conditions xMj(t) = cj, j ∈ N .

If the procedure terminates successfully at step t̄, it outputs
an apportionment X given by xij = [[λi vij µj]], where λi =
λi(1) λi(2) · · · λi(t̄) and µj = µj(1) µj(2) · · · µj(t̄).

6. CONVEX SEPARABLE FORMULATION OF THE
BIPROPORTIONAL APPORTIONMENT PROBLEM

It is tempting, of course, to try to embed the Balinski
and Demange procedure into an optimization approach. Fol-
lowing Carnal [14] and Helgason et al. [27], Gaffke and
Pukelsheim [20, 21] propose a problem formulation that is
not restricted to standard rounding but admits more gen-
eral rounding rules. Any such rule equips an integer interval
[z−1, z] with a signpost s(z). Gaffke and Pukelsheim analyze
both the vector and the matrix apportionment problems.

Generalizing the notion of proportionality in vector appor-
tionment, the authors provide a definition of proportionality
between a feasible apportionment matrix X and the cor-
responding vote matrix V that is based on some “critical
inequalities.” Let Ā denote the set of m × n integer matri-
ces X inheriting all zeros that appear in the vote matrix V ,
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and let supp(V) = {(i, j)| vij �= 0} be the support set of the
vote matrix V . Note that supp(V) coincides with the set E
of the edges in the graph G defined in Section 3. A “cycle”
on supp(V) is a sequence of positive entries of V where two
consecutive entries sharing the same row and two consecu-
tive entries sharing the same column alternate, and the first
entry in the sequence equals the last one.

Example 1. (Ref. [21]). Consider the following 3 × 3
matrix V 

 0 v12 v13

v21 0 v23

v31 v32 0




A cycle is given by the following succession of positive
entries: v12, v13, v23, v21, v31, v32, and v12.

Given a matrix of votes V and a cycle on supp(V), the
corresponding “critical inequality” is given by

∏
f ≤g

s(xif jg)

vif jg

≤
∏
f ≤g

s(xif j∗g + 1)

vif j∗g
(6)

where the cycle is determined by the vectors of row
and column indices i(g) = (i1, i2, . . . , ig−1, ig), j(g) =
(j1, j2, . . . , jg−1, jg), g ≥ 2, and the vector j∗(g) =
(j2, . . . , jg−1, jg, j1), i.e., the cyclic permutation of vector j(g).

The following theorem in Ref. [21] provides necessary
and sufficient conditions for the existence of row and column
multipliers for BAP.

Theorem 2. Let X ∈ A be a feasible apportionment for V,
r, and c. Then X obeys the set of critical inequalities (6) for
all cycles on supp(V) if and only if there exist row multipli-
ers λ1, . . . , λm > 0 and column multipliers µ1, . . . , µn > 0
satisfying

s(xij)

vij
≤ λi µj ≤ s(xij + 1)

vij
(i, j) ∈ supp(V). (7)

Then, the formulation of BAP as a convex integer mini-
mization problem with linear constraints follows:

min




∏
(i,j):vij>0

∏
z≤xij :s(z)>0

s(z)

vij
: x ∈ A


 (8)

The authors also provide the following optimality results.

Theorem 3. Let X ∈ A be an apportionment for V, r, and
c. Then, the following three statements are equivalent:

1. for all rows i and for all columns j there exist multipliers
λi and µj such that xij ∈ [[λi aij µj]];

2. X satisfies the critical inequalities for all cycles on
supp(V);

3. X is an optimal solution of problem (8).

Corollary 1. (Multiple solutions). For every optimal appor-
tionment matrix of problem (8), X ∈ A, the following
statements are equivalent:

1. there exists a matrix Y ∈ A such that Y �= X;
2. there exists a cycle on supp(V) for which the critical

inequality holds with equality.

Corollary 2. (Uniqueness). For every optimal apportion-
ment matrix of problem (8), X ∈ A, the following statements
are equivalent:

1. the set A is a singleton, that is, A = {X};
2. for every cycle on supp(V) the critical inequality is strict.

In Ref. [20] Gaffke and Pukelsheim take the logarithm of
the objective function (8)

min




∑
(i,j):vij>0

∑
z≤xij :s(z)>0

log
s(z)

vij
: x ∈ A


 (9)

and then they treat the problem as a piecewise linear separable
transportation model.

Actually, the last formulation corresponds to a minimum
cost flow problem defined over the bipartite graph G modified
to have a set of parallel arcs (i, j)z, z = 1, 2, . . . , H, replacing
the single arc (i, j). The capacity of each new arc is 1, and the
cost coefficients are cz

ij = log (z/vij) (see, e.g., [46]).
Alternatively, the problem can be formulated as a stan-

dard minimum cost flow (without parallel arcs) on a suitably
modified graph G′. To get G′ from G, it suffices to introduce
H copies of each node i ∈ M and assign to each arc (�, j)
capacity 1 and cost cz

ij = log (z/vij), where � is the zth copy
of node i in G′. With reference to the previous model, in this
formulation, the number of variables increases to H ·|M|·|N |.
In any case, the problem can be efficiently solved by standard
min-cost flow algorithms, such as the successive path or cycle
canceling algorithms [1, 46].

In Ref. [20] problem (9) is analyzed in the more general
framework of separable convex integer minimization prob-
lems under a set of linear equality restrictions with a totally
unimodular matrix of coefficients [49].

Let x = [xe]e∈E be a vector whose components are labeled
by the elements e of a finite set E, and let fe(·), e ∈ E, be real
functions. Let A be a totally unimodular matrix with α rows
and β = |E| columns, b ∈ Z

α , and ρ ∈ Z
β a positive vector.

Each function fe(·), e ∈ E, is assumed to be convex in the
interval 0 ≤ xe ≤ ρe. Then, the following separable convex
integer minimization problem is formulated as follows:

min F(x) =
∑
e∈E

fe(xe)

A x = b (10)

0 ≤ x ≤ ρ

x ∈ Z
β

The authors assume that fe(·), e ∈ E, are piecewise linear.

                            79

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



It is easy to check that BAP formulation given by problem
(9) is a particular case of problem (10) where one has α =
m + n and β = m × n.

Under the above assumptions, if the linear system

A x = b, 0 ≤ x ≤ ρ

has a solution x ∈ R
β , then it also has a solution x ∈ Z

β .
Hence, the authors observe that Fenchel duality can be
applied to problem (10) despite the integer restrictions on
the variables.

The authors provide a primal augmentation algorithm for
problem (10) and also a dual algorithm. They show that the
Balinski and Demange TT algorithm corresponds to such a
dual algorithm when one has to solve problem (9). Actu-
ally TT may be viewed as an out-of-kilter algorithm [19, 40]
for solving problem (9). Moreover, Gaffke and Pukelsheim
formulate the (Fenchel) dual problem of problem (9) and
discuss how the DAS procedure can be viewed as a cyclic
coordinate ascent algorithm for solving this dual formula-
tion. The dual variables of such a problem correspond to the
row and column multipliers with respect to BAP. However,
because the objective function of the dual problem is nondif-
ferentiable, DAS might not converge to a maximizer and may
stall at a nonoptimal solution. This situation is illustrated by
the authors who provide some small examples to analyze the
structure of stalling instances.

Practical instances point toward a peculiarity of the solu-
tion matrix X, which may feature “discordant seat assign-
ments,” when held against the input vote matrix V . When
comparing two cells (i, j) and (k, �), that is, party j in district
i and party � in district k, it may happen that fewer votes go
along with more seats, that is, vij < vk� and xij > xk�. Dis-
cordant seat assignments represent local adjustments that are
unavoidable to achieve global biproportionality, as already
observed by Gassner [23].

A particular irritation occurs when a single-seat district is
struck by a discordant seat assignment, so that the one and
only seat does not go to the district candidate who performed
best, but to someone else who did less well. To overcome this
obstacle, Maier [35] proposes a Winner-Take-One (WTO)
amendment stipulating that in each district the strongest party
is allocated at least one seat. The BAP formulations presented
above are clearly powerful enough to support the additional
district-wise WTO amendment.

7. CONTROLLED ROUNDING PROCEDURE

If one adopts the point of view that the fair share matrix
would be the ideal seat assignment if only seats were allowed
to be fractional, then it is natural to consider the actual integral
seat assignment as an “error” with respect to the ideal frac-
tional assignment. Then, it makes sense to find an assignment
that minimizes a certain measure of the error. This section and
the next one describe approaches to BAP which explicitly
exploit the idea of minimizing some given error.

The procedure devised by Cox and Ernst [16] is meant to
round a matrix of rational numbers so that the row sums

and the column sums of the rounded matrix are equal to
prespecified integer numbers. Although the authors inves-
tigate statistical problems, the rounding problem has some
of the features of a BAP, as observed by Gassner [22]. The
matrix to be rounded can be viewed as a matrix of quotas, like
the fair share matrix or the regional quotas. We notice that
in this case, it is taken for granted that the seats are obtained
only by rounding up or down the quotas.

Cox and Ernst formulate the following “Controlled
Rounding Problem.” Given a real m × n matrix A such that

∑
j∈N

aij = r̃i, i ∈ M,
∑
i∈M

aij = c̃j, j ∈ N

where r̃i and c̃j are not necessarily integers, a controlled
rounding of A is a matrix X satisfying the following con-
ditions:

(1) either xij = �aij� or xij = �aij� + 1 i ∈ M, j ∈ N

(2)
∑
j∈N

xij ∈ {�r̃i�, �r̃i� + 1} i ∈ M (11)

∑
i∈M

xij ∈ {�c̃j�, �c̃j� + 1} j ∈ N

The authors show that the above problem can be equivalently
formulated as a nonlinear transportation problem even if n +
m + 1 additional variables must be introduced. To describe
how the transformation works, we may consider without loss
of generality the simplified version of the optimal controlled
rounding problem under the condition

0 ≤ aij < 1, i ∈ M, j ∈ N . (12)

Consider the constraints (11-2) which can be rewritten as:

n∑
j=1

xij = �r̃i� + yi, i ∈ M,
m∑

i=1

xij = �c̃j� + zj, j ∈ N ,

where yi and zj are binary variables. The above system of
linear equations can be rewritten as the set of constraints of
a (balanced) capacitated transportation problem with m + 1
origins and n + 1 destinations, where xi,n+1 := 1 − yi and
xm+1,j := 1 − zj:

n+1∑
j=1

xij = �r̃i� + 1, i = 1, . . . , m

n+1∑
j=1

xm+1,j =
n∑

j=1

(�c̃j� + 1) −
⌊∑

j
c̃j

⌋

m+1∑
i=1

xij = �c̃j� + 1, j = 1, . . . , n (13)

m+1∑
i=1

xi,n+1 =
m∑

i=1

(�r̃i� + 1) −
⌊∑

i
r̃)i

⌋

0 ≤ xij ≤ 1, i = 1, . . . , m + 1; j = 1, . . . , n + 1.
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The authors show that a feasible solution always exists, and
in view of the Integrality Theorem of Network Flows, also
a binary feasible solution always exists. Furthermore, they
extend their results to the case where some entries of the
matrix X must have a fixed integer value. This is particularly
relevant for BAP, because of the presence of the zero vote set
Z for which the corresponding element in X must be 0.

Since the solution of (13) is not unique in general, one
can search for an “optimal” controlled rounding of A by
minimizing either the Lp-norm

∑
i∈M

∑
j∈N

(|xij − aij|p)
1
p , 1 ≤ p < ∞,

or the L∞-norm

max {|xij − aij| : i ∈ M, j ∈ N}.

For the Lp norm they adopt a standard device for functions of
binary variables, which consists of linearly interpolating the
function values at 0 and at 1, thus obtaining a linear function
on [0,1]. Again, the Integrality Theorem of Network Flows
guarantees integrality of the linear optimum. For the L∞ norm
a more complex linearization is suggested.

It is important to remark that limiting the seat values
to either rounding down or rounding up the fair shares
introduces a constraint which may cut off the true solution
minimizing either the L1-norm or the L2-norm over all pos-
sible apportionments. Consider the following example with
A an (n + 2) × (n + 2) matrix of fair share quotas

A =




n−1
n

1
n · · · 1

n
1
n

1
n

n−1
n · · · 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
1
n 0 · · · n−1

n 0
1
n 0 · · · 0 n−1

n


 ,

r = (2 1 · · · 1), p = (2 1 · · · 1).

There are essentially three apportionments up to permutation
of the indices {2, . . . , n + 2}, namely,

X1 =




2 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 · · · 1




,

X2 =




1 1 0 0 · · · 0
1 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 · · · 1




,

X3 =




0 1 1 0 · · · 0
1 0 0 0 · · · 0
1 0 0 0 · · · 0
0 0 0 1 · · · 0
. . . . . . . . . . . . . . . . . .

0 0 0 0 · · · 1




for which we have

‖X1 − A‖1 = 4 + 4

n
, ‖X2 − A‖1 = 6 − 2

n
,

‖X3 − A‖1 = 10 − 10

n

and

‖X1 − A‖2
2 = 1 + 5

n
+ 4

n2
, ‖X2 − A‖2

2 = 3 − 3

n
+ 4

n2
,

‖X3 − A‖2
2 = 7 − 11

n
+ 4

n2

Hence, for n > 4 the optimal apportionment (for both the
L1 and the L2-norm) is X1, with x1

11 outside the range {0, 1}.
If we restrict the apportionments to {0, 1}, then the optimal
apportionment is X2.

We may therefore wonder whether it is possible to solve
efficiently the L1 and L2 minimization without the restriction
of finding seats within {�aij�, 	aij
}. The answer is affirmative
thanks to the properties of network flows. As for the mini-
mization of the L2 norm we direct the reader to a result by
Minoux [38].

For the L1 minimization we sketch here a simple proce-
dure. The main idea is to replace (if aij is not integral) each
function fij(x) := |x − aij| , which is convex piecewise lin-
ear but has a breakpoint at the fractional value aij, with the
convex piecewise linear function

f ′
ij(x) =




aij − x if x ≤ �aij�
(1 − 2 〈aij〉) (x − �aij�)

+ 〈aij〉 if �aij� ≤ x ≤ 	aij

x − aij if x ≥ 	aij


where 〈a〉 := a−�a� is the fractional part of a. The functions
f (x) and f ′(x) coincide at all integral points x, and therefore,
we may replace f (x) with f ′(x), because we are interested
only in integral values of x. However, now f ′(x) has break-
points at integral values and network flow techniques can be
easily applied to produce integral values.

The same technique might be applied to any convex objec-
tive function, by sampling the function at the integral points
and building an equivalent (on the integral points) convex
piecewise linear function. However, a question arises. The
number of breakpoints might grow in a nonpolynomial way
(different from the L1 case). The trick devised by Minoux
[38] just overcomes this difficulty.

8. MINIMAX APPROXIMATION OF TARGET
QUOTAS

Serafini and Simeone [51] approach BAP by focusing on
the minimization of the maximum error. They do not make
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any assumption on the quotas qij to which the apportionment
should be as proportional as possible, apart from the obvious
requirement that

∑
ij qij = H and vij = 0 implies qij = 0.

These “target” quotas could be the fair shares or the regional
quotas or any other type of quotas defined by the electoral
system.

They define the error with respect to the target quotas
in assigning the actual seats in two alternative ways. The
“absolute error” τ and the “relative error” σ are defined as

τ : = max
ij

|xij − qij|,

σ : = max

{
max
(ij)/∈Z

xij − qij

qij
; max

(ij)/∈Z ,qij≥1

qij − xij

qij

}

The approach proposed in Ref. [51] calls for finding a
feasible apportionment minimizing either the absolute error
or the relative error. If the absolute error is minimized, the
best approximation problem is formulated as follows:

min τ

qij − τ ≤ xij ≤ qij + τ i ∈ M, j ∈ N , (ij) /∈ Z

x ∈ A (14)

while, when the relative error is considered, the formula-
tion is:

min σ

0 ≤ xij ≤ (1 + σ) qij

i ∈ M, j ∈ N : qij < 1, (ij) /∈ Z

(1 − σ) qij ≤ xij ≤ (1 + σ) qij (15)

i ∈ M, j ∈ N : qij ≥ 1, (ij) /∈ Z

x ∈ A
With respect to formulations (14) and (15), the authors

note that, given a bound τ > 0 on the absolute error or a
bound σ > 0 on the relative error, both problems can be
modeled as a feasible flow problem with lower and upper arc
capacities on the network G. If the absolute error is adopted,
each arc (i, j) has a capacity interval given by

[
c−

ij , c+
ij

]
:= [	qij − τ
+, �qij + τ�],

where by definition a+ := max{a, 0}. If one measures the
relative error, each arc (i, j), i ∈ M, j ∈ N , has a capacity
interval

[
c−

ij , c+
ij

]
:=

{[	(1 − σ) qij
+, �(1 + σ) qij�] if qij ≥ 1
[0, �(1 + σ) qij�] if qij < 1.

A feasible flow xij satisfies c−
ij ≤ xij ≤ c+

ij and, by flow
properties, if there is a feasible flow x there is also an integral
flow since the capacity values are integers. Hence, one wants
to find the minimum value for τ or for σ such that a feasible
flow exists. The existence of a feasible flow can be easily
established through a max-flow problem.

TABLE 1. An example of a matrix q of regional quotas.

A B C D E F

1 0.992 0.870 0.170 0.994 0.988 0.986
2 0.460 0.580 0.991 0.993 0.989 0.987
3 0.001 0.001 0.001 0.986 0.001 0.010
4 0.001 0.001 0.001 0.440 0.001 0.556
5 0.001 0.001 0.001 0.140 0.856 0.001

By the integrality of the xij’s only a finite number of
values for τ are relevant to the solution, namely, those for
which either qij − τ or qij + τ is integral for some (i, j).
Similarly, one can define the relevant values for the relative
error minimization. The number of relevant values is at most
(H + |M|) · |N |.

For the absolute and relative errors, the authors provide
some useful error bounds, some of which are exploited in
the design of algorithms for the minimization of the absolute
error.

Clearly if the target quotas are the fair shares, the optimal
absolute error τ ∗ is bounded above by 1. In this case, the
number of relevant errors to be checked is at most |M| · |N |,
that is, a polynomial bound. However, if other quotas are
used, like the regional quotas, there are no “natural” bounds.
The authors show that if the seats cj are assigned by the rule
of Largest Remainders applied to the vector

∑
i vij (like in

the Italian system) and vij > 0 for all i, j, then τ ∗ < 2. The
authors also provide the following example that shows that
there are instances with τ ∗ > 1 under the same assumptions.

Consider the matrix q given in Table 1 (parties A–F,
regions 1–5) with r = (5 5 1 1 1) and c = (1 1 1 4 3 3).
Computing the column-wise sums of qij, one has
∑
i∈M

qij = (1.455 1.453 1.164 3.553 2.835 2.540)

thus implying c = (1 1 1 4 3 3) by the method of Largest
Remainders.

Rounding down the regional quotas in the above matrix,
one always gets 0 and rounding them up one always gets 1.
One can check that there is no way to assign 0 or 1 seats to each
pair (i, j). Indeed, the parties D, E, and F would receive at most
six seats altogether in the regions 1 and 2. Hence, the parties
A, B, and C would receive at least 10−6 = 4 seats in the same
regions 1 and 2. But these parties are allotted three seats in
total! So at least one party among D, E, and F should receive
two seats in region either 1 or 2. For a minimax solution, this
has to be for party D in region 1 with optimal error equal to
1.006. The seat assignment in Table 2 corresponds to one of
these solutions.

Serafini and Simeone design three algorithms to find a
solution minimizing the maximum absolute error taking into
account both the computational complexity and the simplicity
of implementation. Noting that the size of problems to be
solved is never large, they point out that speed of computation
can be reasonably exchanged in favor of simplicity of the
description in the law and implementation itself.

82                             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



TABLE 2. A minimax solution to the best approximation of matrix q of
Table 1.

A B C D E F

1 1 0 0 2 1 1
2 0 1 1 1 1 1
3 0 0 0 1 0 0
4 0 0 0 0 0 1
5 0 0 0 0 1 0

As already pointed out, only a finite number of errors
are relevant to the solution, and this number is at most
(H + |M|) · |N |. At first sight, it might seem that it is enough
to carry out a binary search over this set to find the small-
est relevant error such that the network flow problem admits
a solution. However, a naive implementation of the binary
search requiring the sheer calculation (without taking into
account sorting) of all relevant errors calls for an execution
time linearly dependent on H and thus pseudopolynomial.
Therefore, binary search can be used but with some caution.

We refer the reader to Ref. [51] for details on the three
algorithms. We limit ourselves here to say that the first algo-
rithm is simple but runs in pseudopolynomial time; the second
algorithm is more complex but runs in polynomial time and
the third algorithm is strongly polynomial at the expense of
being a complex three-stage algorithm. The authors also pro-
vide a (weakly) polynomial algorithm for the minimization
of the maximum relative error. They avoid the trap of the
pseudopolynomial number of relevant errors by using binary
search on the relevant errors without the need of computing
all of them. See Ref. [51] for details.

The authors are also concerned with two other practical
and important issues: uniqueness of the optimal apportion-
ment and possibility of providing the layman with a certificate
of optimality.

As for the first problem, it is clear that any sound seat
assignment method that takes as input the votes, must out-
put a unique apportionment. On the other hand, optimization
problems usually admit multiple optimal solutions. There-
fore, it is crucial to develop a method that outputs a unique
apportionment.

One way to overcome the difficulty of nonunique solutions
consists of finding unordered lexicominima, as defined in
Schrage [48]. For details, the reader is referred to Ref. [51].
In this case, the vectors to be ordered consist of the absolute
errors for all pairs (ij). To find unordered lexicominima, once
a minimax solution has been found with relevant error τk for
the “blocking pair” (ij)k (k is the index of the ordered relevant
τ ’s), a solution minimizing

max
(ij)�=(ij)k

|xij − qij|

is found. This can be done as before with the only difference
that the capacity for the pair (ij)k is no longer changed. Once
a second solution with error τh (h < k) and blocking pair
(ij)h has been found, one proceeds recursively by fixing the

capacities of the blocking pairs one at a time. If for the current
relevant τ , τ < 1/2 holds, one simply fixes the capacity
interval for the arc (i, j) to [q̄ij, q̄ij] with q̄ij equal to qij rounded
to the nearest integer and the computation is finished, because
there cannot be any better error.

As for the second problem, it can be argued that sound
assignment procedures available in the literature are gener-
ally too complex to be fully understood by the general public.
A voting system cannot be based on the simple trust that the
persons involved in the computations are honest and do not
make mistakes. Therefore, a way to check the election out-
come which does not call for difficult mathematical concepts
should be provided. Serafini and Simeone [50, 51] point out
that it is possible to exploit the Max Flow-Min Cut Theorem
[1] to get a certificate of optimality whereby anybody can
check through simple elementary calculations that no solu-
tion can be better than the given one. As a hint of how such a
certificate can work we refer to the previous discussion show-
ing the impossibility of rounding down or up the quotas in
Table 1.

At the end of the sections devoted to BAP, it may be useful
to compare the different approaches to BAP. In particular,
we compare (i) Balinski and Demange’s Tie-and-Transfer
with rounding to the closest integer (TT), (ii) Pukelsheim’s
DAS, (iii) Gaffke and Pukelsheim’s algorithm, in the Rote and
Zachariasen’s minimum cost flow implementation (GFRZ),
(iv) Cox and Ernst’s Controlled Rounding (CR), and finally,
(v) Serafini and Simeone’s minimax approximation of target
shares (MM). Note that the first three algorithms yield, for a
given rounding method, the same apportionment, namely, the
unique one that satisfies all the six proportionality axioms.

We have taken into consideration the following criteria.

1. Finiteness (the algorithm stops after a finite number of
steps): there are rare pathological instances where DAS
does not converge;

2. Feasibility (the output seat assignment always yields an
apportionment): CR does not guarantee feasibility for
general quotas;

3. Soundness (satisfaction of Balinski and Demange’s six
integral proportionality axioms): only TT, DAS and
GFRZ satisfy the axioms;

4. Uniqueness (uniqueness of the seat assignment output
by the method): the optimal solution of CR may not
be unique; MM exhibits a unique solution with the
lexicomin refinement;

5. Theoretical complexity (worst-case rate of growth of
the number of elementary operations as the instance
size increases): TT is pseudopolynomial in general and
weakly polynomial in Zachariasen’s [53] implementa-
tion; the complexity of DAS is unknown; GFRZ is
weakly polynomial; MM and CR are strongly poly-
nomial;

6. Generality (range of applications besides Biproportional
Apportionment): MM can be applied to other problems
(see [51]);

7. Flexibility (dependence on other parameters besides
input data): the freedom of choice of the rounding
method in TT, DAS, and PGRZ is counter-balanced by
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the freedom of choice of the target quotas in CR and
MM;

8. Ease of implementation (no need to write sophisticated
ad hoc computer codes): DAS has perhaps the simplest
implementation and TT the most sophisticated;

9. Transparency (possibility of translating the procedure
into a simple, easy-to-understand, electoral law): the
simplest version of MM can be stated very easily;

10. Certifiability (easy verifiability by a layman, through
simple elementary operations, that the seat assignment
output by the method satisfies the claimed requirements,
like feasibility, optimality): MM seems to be the only
method with this feature (see [50]).

9. VOTE TRANSITIONS

Published election data include the marginal distributions
of votes cast at two successive elections. There is a strong
political interest in the estimation, on the basis of these data
and possibly of local surveys or exit polls, of vote transitions
between parties at the two elections. To this purpose, a large
variety of statistical methods are available: among them, what
is known as Goodman’s ecological regression [25, 34]; the
compound multinomial model of Brown and Payne [13] and
its reformulation as a multivariate generalized linear model
in Ref. [18]; the quadratic programming estimation model of
Ref. [52]; entropy maximization models [30, 31]. Here, for
the purposes of this survey and for the sake of illustration,
we restrict ourselves to present the nonlinear transportation
model for vote transition estimation discussed in Ref. [10].
Let I be the set of parties in the first election and J the set
of parties in the subsequent election. The sets I and J do not
necessarily coincide. Moreover, one can keep track of new
voters, lost voters, and abstentionism by the introduction of
dummy parties in I or in J . Let ai be the number of votes
received by party i ∈ I in the first election at national level
and bj the number of votes received by party j ∈ J in the
second election, again at the national level. The unknown
data to be inferred are the values xij, defined as the number of
voters who in the first election voted for party i and in the next
election voted for party j. Clearly, these values must satisfy
the following transportation constraints:

∑
i∈I

xij = bj, j ∈ J ,

∑
j∈J

xij = ai, i ∈ I , (16)

xij ≥ 0, i ∈ I , j ∈ J

Let yij be the probability that somebody votes for party i in
the first election and for party j in the next election. Such prob-
abilities are estimated through a loglinear regression model
from a sample of empirical frequencies yk

ij in each electoral
district k ∈ K — where K is the set of all electoral districts —
along with the values z1k , . . . , zdk of certain socioeconomic
variables observed in district k.

Then one obtains the desired vote transitions xij by running
the RAS algorithm (see Section 3) on the starting matrix yij,
so as to fit the marginals ai and bj. According to a well-known
result of Ref. [12], the matrix xij is the unique optimal solution
to the entropy maximization problem

max −
∑
i∈I

∑
j∈J

xij log
xij

yij
, (17)

subject to constraints (16).
Hence, xij is the optimal solution to a transportation

problem with concave separable objective function, to be
maximized.

The choice of the objective function (17) has the effect that
the optimal solution is the “most likely” vote transition matrix
fitting the marginals ai and bj, conditional on the probabilities
yij.

Johnston and Hay ([30], see also [31]) argue that, for
the purposes of postelectoral analysis, the estimate of the
vote transition matrix xij at the national level should be sup-
plemented by detailed information about the disaggregated
matrices xk

ij, similarly defined for each district k. For the

actual computation of the three-dimensional array xk
ij they

propose, as a natural extension of objective function (17) with
constraints (16), a three-dimensional transportation model
whose objective function, to be maximized, has again the
meaning of an entropy. Out of the three marginals bik , ajk ,
and xij (corresponding to summations over the index i, j,
and k, respectively) the first two are typically known from
election records, while the third one, xij, must be estimated,
for example, through the solution of objective function (17)
with constraints (16). Although such model brings us out-
side the realm of network flows, it is worth pointing out that
one can still find an optimal solution via a straightforward
three-dimensional generalization of the RAS algorithm (see
Ref. [11]).

10. POLITICAL DISTRICTING

A transportation procedure appears in Hess et al. [28],
the earliest operations research paper in political districting.
First, the districting problem is formalized as a discrete loca-
tion problem. Each territorial unit must be assigned to exactly
one center and all units assigned to the same center form a
district. Let n be the total number of territorial units and k be
the number of districts. The political districting model is the
following:

min
n∑

i=1

n∑
j=1

d2
ij pi xij

n∑
j=1

xij = 1 i = 1, . . . , n

n∑
j=1

xjj = k
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a P̄ xjj ≤
n∑

i=1

pi xij ≤ b P̄ xjj j = 1, . . . , n

xij ∈ {0, 1}, i, j = 1, . . . , n

where xij is a binary variable equal to 1 when unit i is assigned
to center j, pi is the population of unit i, dij is the distance
between unit i and center j, and a and b are the minimum
and the maximum allowable district population fractions,
respectively, calculated as a percentage of the average dis-
trict population P̄ (total population divided by k). Moreover,
the variable xjj takes the value 1, whenever unit j is chosen as
one of the centers. The first n constraints mean that each unit
must belong exactly to one district. The next one imposes
that the total number of districts is exactly k. The other two
groups of n constraints represent the conditions on the max-
imum and the minimum allowable district population, with
respect to chosen parameters a < 1 and b > 1 (population
equality). Finally, the objective function (total inertia) is a
measure of compactness.

Due to the computational difficulty in the solution of the
above model, in Ref. [28] an iterative heuristic procedure is
proposed as an alternative solution approach. Essentially, the
generic iteration of the algorithm consists of five steps: (1)
guess the district centers; (2) solve a transportation problem
to assign population equally to these centers at minimum cost
(defined in terms of distances between units and centers of the
districts); (3) adjust the solution of the transportation problem
so that each territorial unit is entirely within one district; (4)
compute centroids of the current districts and use them to
update the district centers; (5) repeat from step (1) until the
procedure converges (i.e., the centers do not change in two
successive iterations).

The main step of the above procedure is step (2) in which
a transportation problem must be formulated and solved. The
formulation of the problem is the following. The set of origins
in the transportation graph represents the current centers, all
with supplies equal to P̄. The set of destinations represents
the territorial units, with demands equal to their population.
Each edge (i, j) of the graph has a weight equal to d2

ij.
In the above iterative procedure, it may happen that in the

solution of the transportation problem a territorial unit i is
split between two or more districts; in this case, in step (3) i is
entirely assigned to the district to which the largest quota of its
population was assigned. The convergence of the procedure
is not guaranteed in theory. However, the authors report that
in real-life applications, the heuristic converges to a local
minimum in fewer than ten iterations (i.e., 10 transportation
problems must be solved).

Following the approach of Hess et al., other authors devel-
oped political districting methods related to network flows.
The procedure proposed in Ref. [29] differs from the previ-
ous one in the first and in the third step. Instead of adopting
an iterative strategy based on successive adjustments of the
centers, Hojati locates them only once at the beginning of
the procedure and this choice is permanent. To solve this
problem, the author introduces a (mixed integer) warehouse

location model, similar to the one in Ref. [28], but based on
two different sets of variables, namely, xij, i, j = 1, . . . , n,
representing the proportion of population of unit i assigned
to district j, and indicator variables yj, j = 1, . . . , n, such
that yj = 1 if unit j is chosen as the center of a district and
yj = 0 otherwise. A Lagrangian relaxation of the resulting
model is derived and is solved by a subgradient optimization
algorithm.

After step (2), when in the solution of the transportation
problem there are split territorial units (i.e., units fraction-
ally assigned to more than one center) Hojati introduces the
“Split Resolution Problem (SRP)” which is formulated as a
graph-theoretic model. Actually, he takes into consideration
the subgraph of the transportation graph whose vertices are
given, on the one hand, by the split units and on the other
hand, by those centers to which some split units have been
(partially) assigned. The author shows that SRP can be solved
by a sequence of capacitated transportation problems defined
over a suitable modified network (see Ref. [29]).

The procedure proposed in Ref. [24] basically follows
the iterative location/allocation approach pioneered by Hess
et al., but with the main difference that a new method for
assigning territorial units to districts is adopted. For this step,
the authors introduce a minimum cost network flow problem
defined on the following network. The nodes of the network
are the territorial units, the district centers and an additional
sink node t. Each unit-node i has a supply equal to pi,
whereas the sink-node has a demand equal to P = ∑n

i=1 pi.
Besides the arcs (i, j) corresponding to all the unit-center
pairs, i = 1, . . . , n, j = 1, . . . , n, there exists an arc (j, t) in
the network for each district center j.

The authors introduce different cost functions to define
the costs associated with the arcs of the network (see Ref.
[24], page 20, Table 1) with the aim of modeling additional
political districting issues that were not taken into account
in the original model of Hess et al. Their iterative procedure
stops when the difference between the optimal value of two
successive solutions of the minimum cost flow problem is
sufficiently small. The authors notice that split units can still
arise and for this problem they suggest following the same
rule adopted by Hess et al. [28].

11. THE GIVE-UP PROBLEM

Ricca, Scozzari and Simeone [45] discuss network flow
techniques for the decision problem related to seat “give-ups”
by multiple winners in a system with closed (blocked) lists.
This problem is of particular interest in Italy where multiple
winners may arise in the election both of the Chamber of
Deputies and of the Senate. In fact, the current Italian elec-
toral law requires that each party presents, in each district, an
“ordered” list of candidates. It also allows for the same can-
didate to be present in more than one list. Voters can cast their
ballots for parties but not for candidates. If a party receives
w seats in a district, the winners of that party will be exactly
the first w of its list in that district, but if a candidate is a
winner in more than one district, he or she must give up all
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the seats won but one. The decisions about give-ups are usu-
ally centralized. Clearly, central decisions must be based on
interdistrict comparisons of preferences.

Then, for a given party, the Give-up Problem can be
formulated as finding a set of give-ups consistent with the
interdistrict system of preferences of that party. To this pur-
pose, the authors introduce two classes of models, that is,
“utility” and “ordinal” ones, and show that for both of them
some natural formulations of the above Give-up Problem can
be efficiently solved by network flow techniques.

A strict linear order � is defined over the set of candidates.
Ordinal models rely exclusively on order relations between
candidates with respect to �. In utility models for each district
k and each candidate i in the list of that district, a “disutility”
or cost cki of letting i win in district k is defined and the objec-
tive is the minimization of a cost function (or equivalently the
maximization of the total utility of a party).

An instance of the Give-up Problem refers to a single polit-
ical party and it is defined by three integers n, m, and S, with
S ≤ n, and by a four tuple (C, R, list, seat), where:

– C is a set of n candidates;
– R is a set of m regions;
– list = {L1, . . . , Lk , . . . , Lm} is a set of m regional ordered

lists of candidates, Lk ⊆ C, ∀k = 1, . . . , m, and |Lk | is the
length of the list Lk ;

– seat = (s1, . . . , sk , . . . , sm) is a vector of integers, where
for all k, sk (1 ≤ sk ≤ |Lk |) denotes the number of seats
obtained by the party in the kth region, with S = s1 + s2 +
· · · + sm.

The authors assume the following “hypothesis of consis-
tency”: if i � j then i precedes j in all the lists where both i
and j compete. Similarly, a cost matrix [cki], k ∈ R, i ∈ C
is said to be consistent if i � j implies cki < ckj, for all
k ∈ R.

A “feasible seat assignment” x is an assignment of seats to
candidates such that (i) each candidate gets at most one seat;
(ii) the number of candidates who win a seat in district k is
exactly sk . Then, a feasible seat assignment can be described
by a binary matrix [xki] such that (i)

∑
k∈R xki ≤ 1, i ∈ C;

(ii)
∑

i∈C xki = sk , k ∈ R.
In general, one would like the final set of winners to be

concentrated in the top part of the ranking given by � . This
broad goal can be formalized in several ways. The simplest
formulation is to find a feasible seat assignment whose win-
ners are precisely the first S candidates in the linear order �.
A feasible assignment satisfying this property will be called
“perfect.” However, such assignment may not exist as the
following example shows.

Example 2. Suppose that in a party there are six candidates,
C = {1, 2, 3, 4, 5, 6}, and that S = |R| = 3, sk = 1, for k =
1, 2, 3. The party presents the following three lists in three
districts: L1 = {1, 2, 3}, L2 = {1, 2, 6}, and L3 = {4, 5, 6}. It
is easy to check that no “perfect” set of winners exists. Here,
there is no way to assign the S = 3 seats to the first three
candidates, because all these candidates can only receive a
seat either in district k = 1 or in district k = 2.

The first result in Ref. [45] is the characterization of a per-
fect seat assignment as a feasible flow in a suitable network.

Consider the bipartite graph (R, C, E), where the two sides
correspond to the regions R and the complete set of candidates
C, respectively, and an arc (k, i) exists if and only if candidate
i is included in list Lk . The edge-set is denoted by E. Now
direct all the edges in E from R to C; add a source s and a sink
t; then connect the source s to each region-node k = 1, . . . , m,
and each candidate-node i = 1, . . . , n to the sink t. Let N =
(V , E′) be the resulting network, with V = {s} ∪ R ∪ C ∪ {t}
and E′ = E ∪{(s, k) : k ∈ R}∪{(i, t) : i ∈ C}. Assign to each
arc (s, k), k = 1, . . . , m, both an upper and a lower capacity
equal to sk ; assign to all the other arcs in N a lower capacity
and an upper capacity equal to 0 and 1, respectively.

Consider the subnetwork M of N induced by the subset
of nodes {s} ∪ R ∪ JS ∪ {t}, where JS is the set of the first S
candidates in C.

Proposition 1. A perfect seat assignment exists if and only
if there exists a feasible flow in the network M with the above
defined lower and upper capacities.

It is well known (see, e.g., [1]) that a feasible flow in a
network with lower and upper capacities can be found, if
it exists, through the solution of a maximum flow problem.
Indeed, this is the main technical difficulty in solving the
existence problem for a perfect assignment.

To manage the problem when a perfect assignment does
not exist, as a first possibility, the authors introduce the
formulation of an ordinal model.

For any given instance of the Give-up Problem, and for
a given ranking �, the “height” of a feasible assignment is
defined as the smallest positive integer h such that all the
candidates after the h-th in � get no seats. One then looks for
a feasible assignment minimizing the height.

Another option is to define a notion of “lexicographi-
cally best” assignment. For a given feasible assignment x, let
I(x) = {i1(x), . . . , in(x)} be a binary indicator vector such
that |I(x)| = n and for ν = 1, . . . , n, iν(x) = ∑

k∈R xkν . Let
x and y be two feasible assignments, x �= y, and let I(x) and
I(y) be the associated binary indicator vectors. One says that
x is “lexicographically better” than (or “dominates”) y if I(x)
is lexicographically greater than I(y). A feasible assignment
x is called “lexicographically best” if it is not dominated by
any other feasible assignment.

The authors show that one can find a feasible assignment
minimizingtheheightbysolvinga“bottlenecktransportation”
problem. As a consequence, one can solve the height mini-
mization problem in strongly polynomial time by O(log(n))

max-flow computations. They also show that a lexicographi-
cally best assignment is a minimum height assignment.

As an alternative, one can find an optimal solution to a
utility model. Let [cki] be a cost matrix, where cki ≥ 0 is the
cost of assigning a seat in region k to candidate i. Then, the
“cost” of a feasible seat assignment x is given by:

c(x) =
∑

k∈R,i∈C

ckixki (18)
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A cost matrix is defined to be “consistent” if i � j implies
cki < ckj, for all k ∈ R, and to be “uniform” if, for every
candidate i ∈ C, cki = cri for all k �= r ∈ R. A utility model
with consistent and uniform cost matrix is called a “score
function model.” In particular, the uniformity assumption on
the cost matrix implies that, for any given i ∈ C, one has
cki = γi for all k ∈ R. Let Z be the sum of the γi’s over the
first S candidates i ∈ C according to �.

To formulate a utility model, the authors consider the net-
work N = (V , E′), and introduce a nonnegative cost function
c : E′ → R+

0 that assigns a cost to each arc in E′. The costs
on the arcs {(s, k) : k ∈ R} ∪ {(i, t) : i ∈ C} are all equal to
zero, whereas, for all k ∈ R and i ∈ C, the cost on the arc
(k, i) is equal to the corresponding cki.

A best seat assignment with reference to a utility model
can be found by solving a minimum cost flow problem on the
network N [1].

The following proposition provides an alternative charac-
terization of a perfect seat assignment as an optimal solution
of a minimum cost flow problem on N .

Proposition 2. A perfect seat assignment exists if and only
if, for any score function model, there exists an optimal solu-
tion x∗ to the corresponding minimum cost flow problem on
N whose total cost is c(x∗) = Z.

The central result in Ref. [45] establishes strong relations
between the optimal solution of a score function model, a
minimum height assignment, and a lexicographically best
one. The result exploits the notion of “illegitimate path.”
Given an instance of the Give-up Problem and the corre-
sponding bipartite graph (R, C, E), for any given feasible
assignment x an “illegitimate” path with respect to x is an
even path from a non-winner candidate i to a winner candi-
date j, with i � j, and formed alternately by edges with flow
0 and flow 1 in x.

Theorem 4. Given an instance of the Give-up Problem and
a feasible seat assignment x, the following four statements
are equivalent:

1. x is an optimal assignment for every score function
model;

2. x is an optimal assignment for some score function
model;

3. there is no illegitimate path w.r.t. x;
4. x is lexicographically best.

The notion of illegitimate path can be also used to develop
an algorithm for finding a best assignment with respect to a
score function model. Actually, starting from a feasible flow
on N , at each step the algorithm either finds an illegitimate
path, or it stops with an optimal solution. Let y be any feasible
seat assignment. Then, since for a given nonwinner i in y, in
(R, C, E) there exist at most |E′| different illegitimate paths
starting from i, a best assignment with respect to a score
function model can be found in time O(|E′|n) by the above
algorithm.

The authors note that in many situations imposing a strict
linear order on the set of candidates might be too restrictive.
Thus, they also take into account the possibility that, given
any two candidates i and j, neither of them is better than
the other, since i and j could be regarded by the party as
“indifferent”. In this case, one has a “ranking with ties” of the
candidates: this concept is captured by the formal notion of
“weak order,” that is, a complete and transitive relation �. The
authors show that the main results already obtained for strict
linear orders can be generalized to weak orders, provided that
the basic definitions and constructions are suitably modified
(see Ref. [45]).
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