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Abstract

Although image understanding and natural language processing constitute
twomajor areas of AI, they have mostly been studied independentlyof each other.
Only a few attempts have been concerned with the integration of computer vision
and the generation of natural language expressions for the description of image
sequences.

The aim of our joint efforts at combining a vision system and a natural lan-
guage access system is the automatic simultaneous description of dynamic im-
agery, i.e., we are interested in image interpretation and language processing on
an incremental basis. In this contribution1 we sketch an approach towards the in-
tegration of the Karlsruhe vision system called Actions and the natural language
component Vitra developed in Saarbrücken. The steps toward realization, based

1The work described here was partly supported by the Sonderforschungsbereich 314 der Deutschen
Forschungsgemeinschaft, “Künstliche Intelligenz und wissensbasierte Systeme”, projects V1 (IITB,
Karlsruhe) and N2: VITRA (Universität des Saarlandes).
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on available components, are outlined and the capabilities of the current system
are demonstrated.
Zusammenfassung

Obwohl das Bildverstehen und die Verarbeitung natürlicher Sprache zwei der
Kerngebiete im Bereich der KI darstellen, wurden sie bisher nahezu unabhängig
voneinander untersucht. Nur sehr wenige Ansätze haben sich mit der Intergration
von maschinellem Sehen und der Generierung natürlichsprachlicher Äußerungen
zur Beschreibung von Bildfolgen beschäftigt.

Das Ziel unserer Zusammenarbeit bei der Kopplung eines bildverstehenden
Systems und eines natürlichsprachlichen Zugangssystems ist die automatische
simultane Beschreibung zeitveränderlicher Szenen, d.h. wir sind interessiert an
Bildfolgeninterpretation und Sprachverarbeitung auf inkrementeller Basis. In
diesem Beitrag beschreibenwir einen Ansatz zur Integration des Karlsruher Bild-
folgenanalysesystems Actions und der natürlichsprachlichen Komponente Vitra,
die in Saarbrücken entwickelt wird. Die Schritte hin zur Realisierung, basierend
auf bereits verfügbaren Komponenten, werden dargestellt und die Fähigkeiten
des derzeit vorhandenen Systems demonstriert.

This paper appeared in: In: C. Freksa and W. Brauer (eds.), Wissensbasierte
Systeme. 3. Int. GI-Kongreß, pp. 153–162. Berlin, Heidelberg: Springer, 1989.
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1 Introduction
Image understanding and natural language processing are two major areas of research
within AI that have generally been studied independently of one another. Advances
in both technical fields during the last 10 years form a promising basis for the de-
sign and construction of integrated knowledge-based systems capable of translating
visual information into natural language descriptions. From the point of view of cog-
nitive science, anchoring meaning in a referential semantics is of theoretical as well as
practical interest. From the engineering perspective, the systems envisaged here could
serve such practical purposes as handling the vast amount of visual data accumulating,
for example, in medical technology, remote sensing, and traffic control.

The goal of our joint efforts at combining a vision system and a natural language
access system is the automatic simultaneous description of dynamic imagery, i.e., we
are interested in image interpretation and language processing on an incremental basis.
The conversational setting is this: the system provides a running report of the scene it
is watching for a listener who cannot see the scene her/himself, but who is assumed to
have prior knowledge about its static properties. In this paper we describe the integra-
tion of the Karlsruhe vision system Actions and the natural language component Vitra
developed in Saarbrücken.2 The steps toward realization, based on available compo-
nents, are outlined, and results already obtained in the investigation of traffic scenes
and short sequences from soccer matches will be discussed.

2 Relations to Previous Research
Following Kanade (see Kanade [1980]), it is advantageous for a discussion of machine
vision to distinguish between the 2-D picture domain and the 3-D scene domain. So
far, most machine vision approaches have been concerned (i) with the detection and
localization of significant grey value variations (corners, edges, regions) in the picture
domain, and in the scene domain (ii) with the estimation of 3-D shape descriptions,
as well as—more recently—(iii) with the evaluation of image sequences for object
tracking and automatic navigation. Among the latter approaches, the estimation of
relative motion between camera(s) and scene components as well as the estimation
of spatial structures, i.e., surfaces and objects, are focal points of activity (see Ay-
ache and Faugeras [1987], Faugeras [1988], Nagel [1988b]). Few research results
have been published about attempts to associate picture domain cues extracted from
image sequences with conceptual descriptions that could be linked directly to efforts
at algorithmic processing of natural language expressions and sentences. In this con-
text, computer-based generic descriptions for complex movements become important.
Those accessible in the image understanding literature have been surveyed in Nagel
[1988a]. Two even more recent investigations in this direction have been published

2The acronyms stand for `Automatic Cueing and Trajectory estimation in Imagery of Objects in
Natural Scenes' and `VIsual TRAnslator'.
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in Witkin et al. [1988] (in particular Section D) and Goddard [1988]. A few selected
approaches from the literature are outlined in the remainder of this section to provide
a background for the ideas presented here.

In Badler [1975], Badler studied the interpretation of simulated image sequences
with object motions in terms of natural language oriented concepts. His approach has
been improved by Tsotsos, who proposed a largely domain-independent hierarchy of
conceptual motion frames which is specialized further within the system Alven to ana-
lyze X-ray image sequences showing left ventricular wall motion (see Tsotsos [1985]).
Later, a similar system for the analysis of scintigraphic image sequences of the human
heart was developed by Niemann et al. (see Niemann et al. [1985]). Based on a study
of Japanese verbs, Okada developed a set of 20 semantic features to be used within the
system Supp to match those verb patterns, that are applicable to simple line drawings
(see Okada [1979]). Traffic scenes constitute one of the diverse domains of the dialog
system Ham-Ans (see Wahlster et al. [1983]). Based on a procedural referential se-
mantics for certain verbs of locomotion, the system answers questions concerning the
motions of vehicles and pedestrians. The system Naos (see Neumann [1984], Novak
[1986]) also allows for a retrospective natural language description. In Naos, event
recognition is based on a hierarchy of event models, i.e., declarative descriptions of
classes of events organized around verbs of locomotion. The more recent Epex system
(see Walter et al. [1988]) studies the handling of conceptual units of higher semantic
complexity, but still in an a posteriori way.

The natural language interfaces mentioned so far have not been connected to real
vision components, they use only simulated data. Apart from our previous results
(see André et al. [1986], Schirra et al. [1987]) the LandScan system (see Bajcsy et al.
[1985]) constitutes the only approach in which processing spans the entire distance be-
tween raw images and natural language utterances but it deals only with static scenes.

3 Simultaneous Evaluation and Natural Language De-
scription of Image Sequences

The main goal of our cooperation is the design and implementation of an integrated
system that performs a kind of simultaneous reporting, that is, evaluating an image
sequence and immediately generating a natural language description of the salient ac-
tivities corresponding to the most recent image subsequence. It is not (yet) real-time
evaluation, but our approach emphasizes concurrency of image sequence evaluation
and natural language generation.

In order to gain a realistic insight into the problems associated with such an en-
deavor, we decided to evaluate real-world image sequences withmultiple mobile agents
or objects, based on system components which are already partially available due to
previous research efforts in the laboratories involved. Since the analysis of complex
articulated movements still exceeds our capabilities given the computational resources
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available today, we concentrate initially on the picture domain in order to detect and
track projected object candidates, which are considered to be essentially rigid. The
crucial links between the picture domain results and the natural language process-
ing steps are provided by complex events, i.e., higher conceptual units capturing the
spatio-temporal aspects of object motions. A complex event should be understood as an
`event' in its broadest sense, comprising also notions like `episode' and `history' (see
Nagel [1988a]). The recognition of intentions and plans (see Retz-Schmidt [1988]) is,
however, outside the scope of this paper. In what follows, the term `event' will be used
to refer to complex events.

3.1 Overall Structure of the Approach
The task of generating natural language descriptions based on visual data can roughly
be subdivided into three parts: (1) constructing an abstract propositional description of
the scene, the so-called Geometrical Scene Description (GSD, see Neumann [1984]),
(2) further interpretation of this intermediate geometrical representation by recogniz-
ing complex events, and (3) selection and verbalization of appropriate propositions
derived in step 2 to describe the scene under discussion. Because of the simultaneity
of the description in our case, the three steps have to be carried out incrementally.

Figure 1: The architecture of the integrated system
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Fig. 1 gives an overview of the architecture of our integrated system. An image
sequence, i.e., a sequence of digitized video frames, forms the input for the system.
Based on these incoming visual raw data, the image analysis component constructs
a geometrical representation of the scene, stating the locations of the visible objects
at consecutive points in time. The contents of the GSD, which is constructed incre-
mentally, as new visual data arrive, are further interpreted by the event recognition
component. Information about recognized and partly recognized events is stored in
the event proposition buffer and updated continuously as the scene progresses. The
language generation component selects relevant propositions from this buffer, orders
them and finally transforms the non-verbal information into an ordered sequence of
either written or spoken German words.

In order to guarantee that current events can immediately influence language gen-
eration, image analysis and event recognition must continue during the course of lan-
guage generation. Thus, the different processes need to be implemented at least partly
in parallel.

3.2 Incremental Picture Domain Analysis of Image Sequences
Image sequences of thousands of frames have to be analysed in order to provide input
for the generation of non-trivial natural language descriptions. In order to limit the
required computations, a very robust method for the estimation of displacement vector
fields (see Kories and Zimmermann [1986]) has been applied in the Actions system.
The digitized TV-frame is subjected to a bandpass filter. Blobs representing local
maxima and minima are then determined as features and tracked through subsequent
frames, resulting in displacement vectors. The method has been successfully applied
to several ten thousands of images taken from various sources without any change of
parameters. Its first steps are now implemented in a VLSI-chip working at video rate.

The displacement vectors are clustered in order to incrementally create `candidate'
moving objects in the picture domain. Tracking such object candidates through ex-
tended image subsequences allows us to incrementally build up (projected) trajectories
which—together with additional attributes like size, speed, orientation, and internal
blob structure of object candidates—provide the input data for the natural language
generation steps (see Sung and Zimmermann [1986], Schirra et al. [1987]).

3.3 Incremental Event Recognition
In order to be able to talk about incomplete events while they are happening, we have
to recognize them `stepwise', as they progress; event instances must be made available
for further processing from the moment they are first noticed. The different approaches
mentioned in Section 2, as well as formalisms like Allen's temporal logic (see Allen
[1984]), only distinguish between events that have occurred and those that have not,
thus our specific requirements for the modeling of events are not met. To clarify this,
consider the short image sequence shown in Fig. 2.
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Figure 2: A `passing' event in a traffic scene

It is only after the final image that all necessary subevents have been detected and
the `passing' event can be recognized. For an incremental description, however, vari-
ous phases of an event must be distinguished. After the first image one could already
say that a `passing' event seems to be starting, i.e., the `passing' event is triggered
by the `swing-out' event. In the second image there is a `drive-beside' event and
the `passing' event proceeds. Finally the `passing' event stops because the expected
`swing-into-line' event is recognized.

In the Vitra system the additional event predicates trigger, proceed, and stop can be
used to characterize the progression of such a `passing' event with greater precision.
In order to model durative events like `move', a further predicate called succeed was
introduced to express the continuation of an event. By means of an incremental recog-
nition strategy based on these predicates, events can be recognized simultaneously as
they occur in the scene and additional information concerning partly-recognized events
can be provided.

3.4 Incremental Natural Language Generation
Automatic generation of simultaneous descriptions for dynamic imagery reveals a
problem that has not heretofore been dealt with within generation systems. On the
one hand, temporal aspects such as the time required for text generation and decoding
time of the listener or reader have to be considered for the coordination of perception
and language production. On the other hand, automatic generation of simultaneous
descriptions has consequences for the planning and realization of natural language ut-
terances. Since a scene is not described a posteriori but rather as it progresses, the
entire scene itself would only be known after it is complete. Thus, planning is re-
stricted to a limited section of the scene. Since the description should concentrate on
what is currently happening, it is necessary to start talking about events while they are
still progressing and not yet completely recognized. In this case encoding has to start
before the contents of an utterance have been planned in full detail. Other character-
istics of simultaneous reporting besides incremental generation of utterances need to
be dealt with. The description often lags behind with respect to the events in the scene
and unexpected topic shifts occur very frequently.

Language generation in Vitra includes processes that handle the selection, lin-
earization and verbalization of event propositions (see André et al. [1987]). After
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relevant propositions are selected and ordered, they are passed on to the encoding pro-
cess. Additional selection processes are used to determine deep cases and to choose
descriptions for objects, locations, and time; in these choices the contents of the text
memory and the partner model must also be considered. Encoding includes lexicaliza-
tion, the determination of morphosyntactic information, and surface transformations.
Lexicalization is based on the conceptual lexicon, which constitutes the connection
between non-linguistic and linguistic concepts.

4 Details of Realization
Using an example from the soccer domain, the present section elaborates in more detail
the various steps in transforming the results of the picture domain analysis of an image
sequence into a simultaneous natural language description.

4.1 Event Models and Event Recognition
Events are described conceptually by means of event models. In addition to a spec-
ification of roles denoting participating objects, which must be members of specified
object classes, an event model includes a course diagram, used to model the proto-
typical progression of an event. We have defined course diagrams as labeled directed
graphs with typed edges (see André et al. [1988]). Fig. 3 shows a simplified course di-
agram for the concept `ball-transfer'. It describes a situation in which a player passes
the ball to a teammate. The event is triggered if a `have-ball' event is stopped and the
ball is free. The event proceeds as long as the ball is moving free and stops when the
recipient has gained possession of the ball. The recognition of an occurrence can be
thought of as traversing the course diagram, where the edge types (:trigger, :proceed,
etc.) are used for the definition of our basic event predicates (see Section 3.3). Fig. 4
shows how an interval-based representation of an event can easily be translated into a
course diagram.

Figure 3: Course diagram for `ball-transfer'

Using course diagrams guarantees that primitive motion concepts as well as com-
plex activities can be defined in an uniform and declarative way. Course diagrams
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Figure 4: Corresponding interval-based representation

allow for incremental event recognition, since exactly one edge per unit of time is
traversed. As soon as new input data are provided by the vision system, the recog-
nition component continues traversing the course diagrams that are already activated
and tries to trigger new ones. In order to allow for a uniform data-driven recognition
strategy, each class of events has at all times one additional instance, the demon event,
whose task is to wait for the trigger-condition to become true so that a new instance
of the event can be created. Each recognition cycle starts at the lowest level of the
event hierarchy: first, the traversal of course diagrams corresponding to basic events is
attempted; later, more complex event instances can look at those lower levels to verify
the existence of their necessary subevents.

4.2 Selection and Linearization of Propositions
Because of the strong temporal restrictions the system cannot talk about all recognized
events, thus it has to decide which events should be verbalized in order to enable
the listener to follow the scene. According to the conversational maxims of Grice (see
Grice [1975]), the listener should be informed about all relevant events and redundancy
should be avoided. The relevance of an event depends on factors like: (i) salience,
which is determined by the frequency of occurrence and the complexity of the generic
event model, (ii) topicality, and (iii) current state, i.e., events with state succeed or
stop are preferred. As the scene progresses topicality decreases for stopped events and
events enter different states, thus relevance changes continually. To avoid redundancy,
an event will not be mentioned if it is implied by some other event already verbalized,
e.g., a `have-ball' event following a pass will not be selected for verbalization.

The linearization process determines the order in which the selected propositions
should be mentioned in the text. The temporal ordering of the corresponding events
is the primary consideration for linearization; secondarily, focusing criteria are used
to maintain discourse coherence. The need to change this preliminary text plan arises
when an outstanding event (e.g., a goal kick) occurs, or because the topicality of events
already selected has fallen below a certain threshold.

4.3 Verbalization of Event Propositions
In the process of transforming symbolic event descriptions into natural language ut-
terances, first a verb is selected by accessing the concept lexicon, and the case-roles
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associated with the verb are instantiated. Control passes back to the selection com-
ponent, which decides which information concerning the case-role fillers should be
conveyed. The selected information is transformed into natural-language expressions
referring to time, space or objects. Time is indicated by the verb tense and by tem-
poral adverbs; spatial prepositions and appropriate objects of reference are selected to
refer to spatial relations. Internal object identifiers are transformed into noun phrases
by the selection of attributes that enable the listener to uniquely identify the intended
referent. If an object cannot be characterized by attributes stored a priori in the partner
model, it will be described by means of spatial relations, such as `the left goal', or by
means of events already mentioned in which it was (is) involved, e.g., `the player who
was attacked'. Anaphoric expressions are generated if the referent is in focus and no
ambiguity is possible.

To meet the requirements of simultaneous scene description, information concern-
ing partly-recognized events is also provided. Consequently, language generation can-
not start from completely worked-out conceptual contents; i.e., the need for an incre-
mental generation strategy arises (see, e.g., Kempen and Hoenkamp [1987]). Consider
Fig. 5: at the moment t1 it has been detected that player 5 is transferring the ball, but
the target of the pass has not yet been identified. The system starts to verbalize the
proposition, but then the encoding process has to wait until the missing case role is
filled. At the moment t5 the event is completely recognized and the utterance can be
continued.

5 Capabilities of our Current System
Since the first results described in Schirra et al. [1987], more than 3000 frames (120
seconds) of image sequences recorded from a major traffic intersection in Karlsruhe
have been evaluated by the Actions system. Sung [1988] demonstrates with several
examples that the results obtained from this image sequence make it possible to recog-
nize complex activities such as driving towards and stopping in front of a traffic light
until it changes to green, the length of various traffic light periods as well as turning
and passing maneuvers. The calibration of the camera allows for the transformation of
trajectories from the image plane into, for example, the street plane and thus a direct
comparison of trajectories with a high resolution street map.

Since radio reports of soccer games are a good example of simultaneous descrip-
tions, the method just described has been applied, with only minor changes, to more
than 1000 frames of an image sequence recorded from a soccer game. Fig. 1 (see Sec-
tion 3.1) includes a frame from the soccer sequence and Fig. 6 shows the projected
trajectories of various players as they were automatically detected. The trajectories—
shown from a bird's eye view in front of a goal—are printed over a map of the soccer
field. This scene demonstrates the ability of Actions to deal with even non-rigid objects
in a very different domain with remarkable results.

The as yet partial trajectories delivered by Actions are currently used to synthesize
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interactively a realistic GSD, with object candidates assigned to previously known
players and the ball. Together with an instantiated model of the static background, this
information forms the input for the Vitra system. Event recognition in Vitra is based
on the approach described in Section 4.1. So far the role-fillers of events are restricted
to being single objects; coordinated motions of groups of objects (e.g., an attack by a
team) cannot be recognized yet. The language generation component of Vitra incorpo-
rates all the different processing modules sketched in Sections 4.2 and 4.3, especially
an experimental module for the incremental generation of surface structures, which
utilizes morphological processes of the system Sutra (see Busemann [1984]). Thus,
the Vitra system can be regarded as a framework that may be used for further inves-
tigation of effects occurring in simultaneous reporting. The output window in Fig. 6
shows part of a typical description. The German text might be translated as: `Munk,
the midfieldman, has the ball. He passes the ball to Brandt, the sweeper. The sweeper
cross kicks into the penalty area. Now Binkelmann, the goalie, has the ball.'

6 Conclusion
We have presented an architecture and the currently available components for an in-
tegrated knowledge-based system capable of translating dynamic visual information
into a simultaneous natural language description of the scene. We have shown that
the various processing steps from raw images to natural language utterances, i.e., pic-
ture domain analysis of the image sequence, event recognition, and natural language
generation, must be carried out on an incremental basis. Our approach emphasizes
concurrent image sequence evaluation and natural language processing, an important
prerequisite for real-time performance, which is the long-term goal of this work.

7 Technical Notes
Image processing has been done with a VTE Digital Video Disk and a VAX-11/780,
programmed in Pascal. The current version of Vitra was implemented in Commonlisp
and Flavors on Symbolics 3600 and 3640 Lisp-machines running Release 7.1. TCP/IP
is used to connect the Symbolics machines to a Siemens 7.570 mainframe that serves
as a gateway to the German Research Net (DFN) and the VAX in Karlsruhe.
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PROCEED(t1 (ball-transfer player5 ball ?recipient))
SYSTEM:Müller passes the ball

STOP (t5 (ball-transfer player5 ball player3))
SYSTEM: ... to the striker.

Figure 5: Incremental language generation
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Figure 6: The basic windows of Vitra-Soccer
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