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HETEROGENEOUS MULTISCALE METHOD FOR THE MAXWELL
EQUATIONS WITH HIGH CONTRAST

Barbara Verfürth1,∗

Abstract. In this paper, we suggest a new Heterogeneous Multiscale Method (HMM) for the (time-
harmonic) Maxwell scattering problem with high contrast. The method is constructed for a setting
as in Bouchitté, Bourel and Felbacq [C.R. Math. Acad. Sci. Paris 347 (2009) 571–576], where the
high contrast in the parameter leads to unusual effective parameters in the homogenized equation. We
present a new homogenization result for this special setting, compare it to existing homogenization
approaches and analyze the stability of the two-scale solution with respect to the wavenumber and
the data. This includes a new stability result for solutions to time-harmonic Maxwell’s equations with
matrix-valued, spatially dependent coefficients. The HMM is defined as direct discretization of the
two-scale limit equation. With this approach we are able to show quasi-optimality and a priori error
estimates in energy and dual norms under a resolution condition that inherits its dependence on the
wavenumber from the stability constant for the analytical problem. This is the first wavenumber-
explicit resolution condition for time-harmonic Maxwell’s equations. Numerical experiments confirm
our theoretical convergence results.
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1. Introduction

The interest in (locally) periodic media, such as photonic crystals, has grown in the last years as they
exhibit astonishing properties such as band gaps or negative refraction, see [24,42,54]. In this paper, we extend
the study of artificial magnetism from the two-dimensional case in [51] to the full three-dimensional case.
Artificial magnetism describes the occurrence of an (effective) permeability µ 6= 1 in an originally non-magnetic
material, i.e., µ = 1. The study of the two-dimensional reduction, the Helmholtz equation, in [8] has shown
that such a material must exhibit a high contrast structure (see below) to allow this significant change of
behavior. The homogenization analysis has been extended to the full three-dimensional Maxwell equations
in [6, 7] to obtain a wavenumber-dependent effective permeability, which can even have a negative real part.
The frequencies where the real part of the permeability is negative are of particular interest as they form the
band gap: Wave propagation is forbidden in these cases. Although producing the same qualitative results, we
emphasize that there are significant differences from the two- to the three-dimensional case, for instance that
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Figure 1. Left: Scatterer Ω with the high contrast inclusions Σδ (in gray); Right: Zoom into
unit cell Y and scaling of ε−1

δ .

the effective permeability also depends on the solution outside the inclusions (see below). The setting of [6] can
be complemented with long and thin wires as in [40] to obtain a negative effective ε as well and thus a negative
refractive index.

The setting of [7] is the following (see Fig. 1): A periodic structure of three-dimensional bulk inclusions with
high permittivity (depicted in gray in Fig. 1) is embedded in a lossless dielectric material. Denoting by the
small parameter δ the periodicity, the high permittivity in the inclusions is modeled by setting ε−1 = δ2ε−1

1 , see
(2.1) for an exact definition. The consideration of small inclusions with high permittivity has become a popular
modeling to tune unusual effective material properties, see [6, 9, 14,40].

The overall setting in this paper is as follows (cf. [6,7]): We consider a scatterer Ω ⊂ R3 bounded and smooth
(with C2-boundary). The structure is non-magnetic, i.e., µ = 1, and has a (relative) permittivity ε, which equals
1 outside Ω. The magnetic field H now solves the following curl-curl-problem

curl ε−1 curl H = k2H, (1.1)

where k = ω/c is the (fixed) wavenumber. Originally, this problem is studied on the whole space R3, comple-
mented with Silver-Müller radiation conditions at infinity, see e.g. [7]. Here, we artificially truncate the com-
putational domain, by introducing a large and smooth domain G ⊃ Ω and imposing the following impedance
boundary condition

curl H× n− ik(n×H)× n = g on ∂G (1.2)

with a tangential vector field g coming from the incident wave. The permittivity ε−1 = ε−1
δ inside the scatterer

models the described setting of periodic inclusions with high permittivity and is defined in (2.1). Through-
out this article, we assume that there is k0 > 0 such that k ≥ k0, which corresponds to medium and high
frequencies.

A numerical treatment of (1.1) with boundary condition (1.2) and permittivity with high contrast is very
challenging. The main challenge is to well approximate the heterogeneities in the material and the oscillations
induced by the incoming wave. It is important to relate the scales of these oscillations: We basically have a three-
scale structure here with δ � λ ∼ k−1 < 1, i.e., the periodicity of the material (and the size of the inclusions) is
much smaller than the wavelength of the incoming wave. A direct discretization requires a grid with mesh size
h < δ � 1 to approximate the solution faithfully. This can easily exceed today’s computational resources when
using a standard approach. In order to make a numerical simulation feasible, so called multiscale methods can be
applied. The family of Heterogeneous Multiscale Methods (HMM) [21,22] is a class of multiscale methods that
has been proved to be very efficient for scale-separated locally periodic problems. The HMM can exploit local
periodicity in the coefficients to solve local sample problems that allow to extract effective macroscopic features
and to approximate solutions with a complexity independent of the (small) periodicity δ. First analytical results
concerning the approximation properties of the HMM for elliptic problems have been derived in [1, 23, 49] and
then extended to other problems, such as time-harmonic Maxwell’s equations [34] and the Helmholtz equation
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with high contrast [51]. The HMM itself can also be applied to nonperiodic settings, see [32,33]. However, it is
by no means clear whether the (analytical) setting considered in this article has a meaningful extension beyond
the (locally) periodic case. In particular, the resonances achieved for certain wavenumbers and the connected
effect of artificial magnetism may highly depend on this periodic pattern. Related works are the multiscale
asymptotic expansion for Maxwell’s equations [13] and the sparse multiscale finite element method for Maxwell
equations [15].

The new contribution of this article is the first formulation of a Heterogeneous Multiscale Method for the
Maxwell scattering problen with high contrast in the setting of [7], its comprehensive numerical analysis and
its implementation. The HMM can be used to approximate the true solution to (1.1) with a much coarser mesh
and hence less computational effort. From the theoretical point of view, the main result is that the energy error
converges with rate kq+1(H + h) + kq+1/2H1/2 if the resolution condition kq+2(H + h) + kq+3/2H1/2 = O(1)
is fulfilled. Here, H and h denote the δ-independent mesh sizes used for the HMM and we assume that the
analytical two-scale solution has a stability constant of order kq with q ∈ N0. This is also – to the author’s best
knowledge – first k-explicit resolution condition result for indefinite time-harmonic Maxwell’s equations. The
existing literature [31, 35, 36, 48] so far has only shown well-posedness and quasi-optimality for sufficiently fine
meshes, without specifying the dependence of this threshold on k. This stands in sharp contrast to the vast
literature on the resolution condition for the Helmholtz equation, see e.g. [44,55]. A major issue for the analysis
is the large kernel of the curl-operator implying that the L2-identity term is no compact perturbation of the
curl-term and that we cannot expect macroscopic functions to be good approximations in L2, see [29].

To complement our numerical analysis, we also show an explicit stability estimate for the solution to the two-
scale limit equation, so that we have an explicit (though maybe sub-optimal) result for the stability exponent,
namely q = 3. This includes a second contribution, which may be of own interest: a new stability result for a
certain class of time-harmonic Maxwell’s equations, namely with matrix-valued spatially dependent coefficients.
Stability results for Maxwell’s equations with impedance boundary conditions have so far been only shown in
the case of constant coefficients in [28,37,47].

The paper is organized as follows: In Section 2, we detail the (geometric) setting of the problem to be
considered and introduce basic notation used throughout this article. In Section 3, we give the homogenization
results obtained for this problem in form of a two-scale and an effective macroscopic equation. These homogenized
systems are analyzed with respect to stability and regularity in Section 4. In Section 5, we introduce the
Heterogeneous Multiscale Method and perform a rigorous a priori error analysis. The main proofs are given in
Section 6. A numerical experiment is presented in Section 7.

2. Problem setting

For the remainder of this article, let Ω ⊂⊂ G ⊂ R3 be bounded, simply connected domains with C2-boundary,
G with outer unit normal n. Vector-valued functions are indicated by boldface letters and unless otherwise stated,
all functions are complex-valued. Throughout this paper, we use standard notation: For a domain D, p ∈ [1,∞)
and s ∈ R≥0, Lp(D) denotes the usual complex Lebesgue space with norm ‖ · ‖Lp(D). By W s,p(D) we denote
the space of functions on D with (fractional) weak derivatives up to order s belonging to Lp(D) and we write
Hs(D) := W s,2(D) for the scalar and Hs(D) := [Hs(D)]3 for the vector-valued case. The domain D is omitted
from the norms if no confusion can arise. The dot will denote a normal (real) scalar product, for a complex
scalar product we will explicitly conjugate the second component by using v as the conjugate complex of v.

Furthermore, we introduce the Hilbert spaces

H(curl, D) := {u ∈ L2(D; C3)| curl u ∈ L2(D; C3)} and
H(div, D) := {u ∈ L2(D; C3)| div u ∈ L2(D; C)}

with their standard scalar products (·, ·)H(curl,D) and (·, ·)H(div,D), respectively. In order to define a suitable
function space for the scattering problem, we introduce the following space of tangential L2 functions on the
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boundary
L2
T (∂G) := {v ∈ [L2(∂G)]3|v · n = 0}.

We denote by uT := (n×u)×n = u−(u ·n)n the tangential component of a vector function u on the boundary.
Now we define the space for the impedance boundary condition as

Himp(G) := {u ∈ H(curl, G)|uT ∈ L2
T (∂G)}

equipped with the graph norm, see [48]. We will frequently replace the standard norms of H(curl) and Himp by
the equivalent weighted norms

‖v‖curl;k;D := (‖ curl v‖2L2(D) + k2‖v‖2L2(D))
1/2

and ‖v‖imp;k;D := (‖ curl v‖2L2(D) + k2‖v‖2L2(D) + k‖vT ‖2L2(∂D))
1/2.

To quantify higher regularity, we define for s ∈ N0 the space

Hs(curl, D) := {u ∈ H(curl, D) | u ∈ Hs(D), curl u ∈ Hs(D)}.

Observe that H0(curl) = H(curl).
Let ej denote the j’th unit vector in R3. For the rest of the paper we write Y := [− 1

2 ,
1
2 )3 to denote the

3-dimensional unit cube and we say that a function v ∈ L2
loc(R3) is Y -periodic if it fulfills v(y) = v(y+ej) for all

j = 1, 2, 3 and almost every y ∈ R3. With that we denote L2
] (Y ) := {v ∈ L2

loc(R3)| v is Y -periodic}. Analogously
we indicate periodic function spaces by the subscript ]. For example, H1

] (Y ) is the space of periodic H1
loc(R3)-

functions and we furthermore define for s ∈ N

Hs
],0(Y ) :=

{
φ ∈ Hs

] (Y )
∣∣ ∫
Y

φ(y) dy = 0
}
.

For Σ∗ ⊂ Y , we denote by H1
],0(Σ∗) and H](curl,Σ∗) the restriction of functions in H1

],0(Y ) and H](curl, Y )
to Σ∗, respectively. By Lp(Ω;X) we denote Bochner–Lebesgue spaces over the Banach space X and we use the
short notation f(x, y) := f(x)(y) for f ∈ Lp(Ω;X).

Using the above notation we consider the following setting for the (inverse) relative permittivity ε−1, see
[7]: Ω is composed of δ-periodically disposed bulk inclusions, δ being a small parameter. Denoting by Σ ⊂⊂ Y
a connected domain with C2-boundary, the inclusions occupy a region Σδ = ∪j∈Iδ(j + Σ) with I = {j ∈
Z3|δ(j + Y ) ⊂ Ω}. The complement Σ∗ := Y \ Σ is assumed to be simply connected. In the sample setup of
Figure 1 (right), Σ is a (filled) ball-type inclusion compactly embedded in the unit cube. In that case, all loops
in Σ∗ can be contracted to a point and hence, Σ∗ is simply connected. Note that we do not assume Σ∗ to be
contractible.

The inverse relative permittivity ε−1
δ = ε−1 is then defined (possibly after rescaling) as (cf. Fig. 1)

ε−1
δ (x) :=


δ2ε−1

1 , if x ∈ Σδ with ε1 ∈ C, Im(ε1) > 0,Re(ε1) > 0,
ε−1

0 , if x ∈ Ω \ Σδ with ε0 ∈ R, ε0 > 0,
1, if x ∈ G \ Ω.

(2.1)

Physically speaking, this means that the scatterer Ω consists of periodically disposed metallic inclusions Σδ
embedded in a dielectric “matrix” medium. In practical situations, δ2ε−1

1 is the given material parameter for
the inclusions. The scaling of δ2 means that the optical thickness of the inclusions remains constant, see [7]. We
assume Re(ε1) > 0 for simplicity; all results hold – up to minor modifications in the proofs – also for ε1 with
Re(ε1) ≤ 0.
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Definition 2.1. Let ε−1
δ be defined by (2.1) and let g ∈ L2

T (∂G). The weak formulation of (1.1) is: Find
uδ ∈ Himp(G) such that∫

G

ε−1
δ curl uδ · curlψ − k2uδ ·ψ dx− ik

∫
∂G

(uδ)T ·ψT dσ =
∫
∂G

g ·ψT dσ ∀ψ ∈ Himp(G). (2.2)

The problem admits a unique solution for fixed δ, which can be shown with the Fredholm theory, see e.g.
Theorem 4.17 of [48]. Throughout the article, C denotes a generic constant, which does not depend on k, H, or
h, and we use the notation a . b for a ≤ Cb with such a generic constant.

3. Homogenization

As the parameter δ is very small in comparison to the wavelength and the typical length scale of G, one can
reduce the complexity of problem (2.2) by considering the limit δ → 0. This process, called homogenization, can
be performed with the tool of two-scale convergence [2]. It has also been used in the papers [6, 7, 14] studying
closely related problems/formulations. We proceed in a slightly different way and provide our homogenization
results in Section 3.1. In Section 3.2, we compare with the mentioned literature and show the equivalence of
various formulations.

In addition to the notation from Section 2, we introduce the space

H̃](curl,Σ∗) := H](curl,Σ∗)/ ker(curly|Σ∗ ).

This is the space of functions v ∈ H](curl,Σ∗) such that curly v is uniquely determined in Σ∗ or, in other
words, such that v is determined up to a gradient (as Σ∗ is simply connected). Note, however, that in practical
applications, we will always be interested in curly v only, which is in L2

] (Σ
∗) and uniquely determined.

3.1. Two-scale and effective equations

Two-scale convergence is defined and characterized in [2], for instance. We write in short form 2
⇀. The special

scaling of ε−1
δ leads to a different behavior of the solution inside Σδ, which can be seen in the two-scale equation

and the homogenized effective equation.

Theorem 3.1 (Two-scale equation). Let uδ be the unique solution of (2.2). There are functions u0 ∈ Himp(G),
u1 ∈ L2(Ω; H̃](curl,Σ∗)), u2 ∈ L2(Ω;H1

],0(Σ∗)), and u3 ∈ L2(Ω; H0(curl,Σ)), such that the following two-scale
convergences hold

uδ
2
⇀ u0 + χΣ∗∇yu2 + χΣu3, χΩ\Σδ curl uδ

2
⇀ χΣ∗(curl u0 + curly u1),

δχΣδ curl uδ
2
⇀ χΣ curly u3, curl uδ

2
⇀ curl u0 in G \ Ω.

The quadruple u := (u0,u1, u2,u3) ∈ H of two-scale limits is the unique solution to

B((u0,u1, u2,u3), (ψ0,ψ1, ψ2,ψ3)) = (g, (ψ0)T )∂G ∀(ψ0,ψ1, ψ2,ψ3) ∈ H (3.1)

with H := Himp(G)× L2(Ω; H̃](curl,Σ∗))× L2(Ω;H1
],0(Σ∗))× L2(Ω; H0(curl,Σ)) and

B((v0,v1, v2,v3), (ψ0,ψ1, ψ2,ψ3))

:=
∫

Ω

∫
Σ∗
ε−1

0 (curl v0 + curly v1) · (curlψ0 + curly ψ1) dydx+
∫

Ω

∫
Σ

ε−1
1 curly v3 · curly ψ3 dydx

− k2

∫
Ω

∫
Y

(v0 + χΣ∗∇yv2 + χΣv3) · (ψ0 + χΣ∗∇yψ2 + χΣψ3) dydx

+
∫
G\Ω

curl v0 · curlψ0 − k2v0 ·ψ0 dx− ik
∫
∂G

(v0)T ·ψT dσ.
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The proof is postponed to Section 6.1.
We now decouple the influence of the microscale and the macroscale by introducing so called effective param-

eters. The macroscopic solution u0 solves an effective scattering problem, from which we can later on deduce
the physically relevant behavior. We emphasize that u0 is not the weak limit of uδ.

Theorem 3.2 (Cell problems and effective macroscopic problem). The quadruple (u0,u1, u2,u3) solves the
two-scale Equation (3.1) if and only if u0 ∈ Himp(G) solves the effective macroscopic scattering problem∫
G

(ε−1)hom curl u0 · curlψ − k2µhomu0 ·ψ dx− ik
∫
∂G

(u0)T ·ψT dσ =
∫
∂G

g ·ψT dσ ∀ψ ∈ Himp(G) (3.2)

and the correctors are

u1 = χΩχΣ∗

3∑
j=1

(curl u0)jw1
j , u2 = χΩχΣ∗

3∑
j=1

k2(u0)jw2
j and u3 = χΩχΣ

3∑
j=1

k2(u0)jw3
j , (3.3)

where (u0)j is a scalar function that denotes the jth component of the vector-valued function u0. Here, the
homogenized (or effective) material parameters (ε−1)hom and µhom are the identity in G \ Ω. In Ω, they are
defined via the solution of cell problems in the following way.

(ε−1)hom is given as (
(ε−1)hom

)
j,l

:=
∫

Σ∗
ε−1

0 (el + curly w1
l ) · ej dy,

where w1
l ∈ H̃](curl,Σ∗), l = 1, 2, 3, solves∫

Σ∗
ε−1

0 (el + curly w1
l ) · curly ψ1 dy = 0 ∀ψ1 ∈ H̃](curl,Σ∗). (3.4)

µhom is given as (
µhom

)
j,l

:=
∫
Y

(el + k2χΣ∗∇yw2
l + k2χΣw3

l ) · ej dy,

where w2
l ∈ H1

],0(Σ∗) and w3
l ∈ H0(curl,Σ), l = 1, 2, 3, solve∫

Σ∗
(el + k2∇yw2

l ) · ∇yψ2 dy = 0 ∀ψ2 ∈ H1
],0(Σ∗), (3.5)∫

Σ

ε−1
1 curly w3

l · curly ψ3 − k2w3
l ·ψ3 dy =

∫
Σ

el ·ψ3 dy ∀ψ3 ∈ H0(curl,Σ). (3.6)

We emphasize that all cell problems are uniquely solvable due to the Theorem of Lax-Milgram. (For the
well-posedness of (3.6), note that Im(ε−1

1 ) < 0.) Unique solvability of the effective macroscopic Equation (3.2)
follows because Im(µeff) is positive definite in Ω according to Proposition 4.4, see [7] and Section 4 of [48] for
details.

The effective macroscopic equation reveals the physical properties of the material: For small δ it behaves
(effectively) like a homogeneous scatterer Ω with inverse permittivity (ε−1)hom and permeability µhom. The
occurrence of µhom, which is not present in (2.2), can (physically) be interpreted as artificial magnetism.



HMM FOR MAXWELL EQUATIONS WITH HIGH CONTRAST 41

3.2. Comparison with the literature

In this subsection, we show the equivalence of our results and those available in the literature, namely [14]
and [6, 7]. However, we already want to emphasize a few new aspects and advantages of our presentation:

• Presentation of a two-scale equation: So far, this concise and elegant formulation has been hidden in the
proofs of [14].

• Uniqueness of the two-scale solution: By a slightly modified definition of the correctors (in comparison to
[14], see below), we are able to prove uniqueness in nevertheless simple and natural function spaces. This is
a great advantage for analysis.

• A new formulation for µhom: As already discussed in [7] in detail, the computation of µhom is very challenging,
especially with respect to numerical implementations. In contrast to the two-dimensional case, µhom does
not only depend on the behavior of the magnetic field inside the inclusions (as one might expect), but also
the surrounding medium Σ∗ has to be considered. This, of course, is also persistent in our formulation. Here,
however, both parts decouple quite nicely. Moreover, in comparison to [7], we are also able to use quite
natural function spaces and cell problems which are easy to implement.

Comparison with [14]. Cherednichenko and Cooper ([14], Thm. 2.1) obtain a very similar homogenization
result to Theorem 3.1. Note that in [14], the sign of the identity term is switched and a volume source term
is present. Instead of the corrector u1, ([14], Lem. 4.4) already includes the effective matrix (ε−1)hom (named
Ahom) in the two-scale equation.

The only crucial difference between our Theorem 3.1 and Theorem 2.1 of [14] is the different choice or
construction of u2 and u3. Roughly speaking, our u3 fulfills u3 = ∇yu1 + u2 in Σ for the functions u1, u2

defined in Theorem 2.1 from [14]. Basically, we cut off our u2 at the boundary ∂Σ and add the “remaining”
normal boundary traces to u3, whereas in [14] the function u1 (corresponding to our u2) is present on the whole
cube Y . Moreover, this different definition of the identity correctors leads to the lower regularity u3 ∈ H0(curl,Σ)
instead of u2 ∈ H1

0 (Σ) in [14]. The great advantage of our new formulation is the uniqueness of the two-scale
solution. In [14], only uniqueness of u and of ∇yu1 + u2 can be demonstrated.
Comparison with [7]. Comparing with [7], we have (ε−1)hom = (εeff)−1 and µhom = µeff , where µeff and
εeff are defined in [7]. The relationship (ε−1)hom = (εeff)−1 is shown in Lemma 4.4 from [14]. Comparing the
definition of µhom and the definition of µeff (via Eqs. (5.23) and (5.21) of [7]), we observe that we have to prove

χΣ∗∇yw2
j + χΣw3

j = uj ,

where w2
j and w3

j are defined in Theorem 3.2 above and uj is introduced in Equation (5.21) of [7]. Equivalently,
this means to check that

w̃j := χΣ∗∇yw2
j + χΣw3

j ∈ Xdiv
0 := {v ∈ H1

] (Y )|divy v = 0 in Y, curly v = 0 in Σ,
∮

v = 0}

and that w̃j fulfills Equation (5.18) of [7]. For that, we first prove the following lemma.

Lemma 3.3. Let w2
j and w3

j be the solutions to (3.5) and (3.6) from Theorem 3.2. The function w̃j :=
χΣ∗∇yw2

j + χΣw3
j fulfills

w̃j ∈ H1
] (Y ) with divy w̃j = 0.

Consequently, the same holds true for χΣ∗∇yu2 + χΣu3 with the correctors u2, u3 defined in (3.3).

Proof. We have divy∇yw2
j = 0 in Σ∗ because of (3.5) tested with ψ2 ∈ H1

],0(Σ∗) satisfying ψ2 = 0 on ∂Σ. By
inserting ψ3 = ∇yψ3 with ψ3 ∈ H1

0 (Σ) into (3.6), we obtain divy w3
j = 0 in Σ. Inserting now test functions

as before, but without vanishing (normal) traces on ∂Σ, we deduce that the normal traces of ∇yw2
j and w3

j

coincide on ∂Σ. These properties together imply w̃j ∈ H](div, Y ) with divy w̃j = 0. Since also obviously
w̃j ∈ H](curl, Y ), the assertion follows with Lemma 4.7 from [7]. �
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The inclusion w̃j ∈ Xdiv
0 now follows from the previous lemma and because w̃j is given as a gradient on Σ∗.

Equation (5.18) of [7] follows from our two cell problems (3.5) and (3.6) by a direct calculation, which we omit
here. Note that ε0 and ε1 are constants on Σ∗ and Σ, respectively.

4. Stability and regularity analysis for the homogenized system

In the previous section, we have presented two variational problems, the two-scale equation and the homog-
enized effective system. This section is devoted to a detailed analysis of those problems with the aim to derive
stability and regularity results. We want to emphasize that this stability and regularity analysis is a prerequisite
for the a priori estimates in Section 5.2.

We start this section with two lemmas concerning the two-scale equation (3.1).

Lemma 4.1. The two-scale energy norm

‖(v0,v1, v2,v3)‖2e := ‖ curl v0 + curly v1‖2G×Σ∗ + ‖ curly v3‖2Ω×Σ

+ k2‖v0 + χΣ∗∇yv2 + χΣv3‖2G×Y + k‖(v0)T ‖2∂G
(4.1)

is equivalent to the following (natural) norms on H

‖(v0,v1, v2,v3)‖2H := ‖v0‖2Himp
+ ‖ curly v1‖2Ω×Σ∗ + ‖∇yv2‖2Ω×Σ∗ + ‖v3‖L2(Ω;H(curl,Σ)),

‖(v0,v1, v2,v3)‖2k;H := ‖v0‖2imp;k + ‖ curly v1‖2Ω×Σ∗ + k2‖∇yv2‖2Ω×Σ∗ + ‖v3‖curl;k;Ω×Σ. (4.2)

The equivalence constants between (4.1) and (4.2) are independent of k.

Proof. The essential ingredient is a sharpened Cauchy–Schwarz inequality for the mixed terms, see the two-
dimensional case [51]. Note that due to the choices of H1

],0(Σ∗) and H̃](curl,Σ∗), the H1- and H(curl)-seminorms
are norms on those function spaces, respectively. �

The two-scale sesquilinear form B from Theorem 3.1 is obviously continuous with respect to the energy norm
(4.1) with a k-independent constant. Due to the large kernel of the curl-operator, the L2-term is no compact
perturbation of the curl-term. In order to prove a G̊arding-type inequality, we have to use a Helmholtz-type
splitting. We have the following decomposition of (v0,v3) ∈ Himp(G)× L2(Ω; H0(curl,Σ)):

v0 + χΣv3 = z0 + χΣz3 +∇θ0 + χΣ∇yθ3 with θ0 ∈ H1
0 (G), θ3 ∈ L2(Ω;H1

0 (Σ)),
and 0 = (z0 + χΣz3,∇η0 + χΣ∇yη3)L2(G×Y ) ∀(η0, η3) ∈ H1

0 × L2(Ω;H1
0 (Σ)).

(4.3)

The orthogonality in the last line implies a weak divergence-free constraint on z0 + χΣz3. In fact, we have
divy z3 = 0 and div(µhomz0) = 0 in the weak sense. See [36] for a similar approach using the regular decompo-
sition.

Lemma 4.2. Define the sign-flip isomorphism F : H → H via

F ((v0,v1, v2,v3)) := (z0 −∇θ0,v1,−v2, z3 −∇yθ3)

with the Helmholtz decomposition from (4.3). There exist Cg > 0 and γell > 0, both independent of k, such that∣∣B((v0,v1, v2,v3), F ((v0,v1, v2,v3))) + Cgk
2‖z0 + χΣz3‖2L2(G×Y ) + Cgk‖(z0)T ‖2L2(∂G)

∣∣ ≥ γell‖v‖2e. (4.4)

Proof. The sign-flip isomorphism and the added terms correct the “wrong” sign of the sesquilinear form B and
make it coercive. Mixed terms between θ0 and z0, or θ3 and z3, respectively, either vanish due to the orthogonality
of the Helmholtz decomposition or can be absorbed using Cauchy–Schwarz and Young inequalities. �
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We now analyze the stability and higher regularity of the two-scale solution by analyzing the cell problems
and the homogenized equation separately. As we have already discussed, all cell problems are coercive, so that
their stability is an easy consequence.

Lemma 4.3. The correctors fulfill the stability estimates

‖ curly u1‖L2(Ω×Σ∗) . ‖ curl u0‖L2(Ω), k‖∇yu2‖L2(Ω×Σ∗) . ‖u0‖imp;k;Ω,

‖ curly u3‖L2(Ω×Σ) + k‖u3‖L2(Ω×Σ) . ‖u0‖imp;k;Ω.

With this knowledge on the cell problems, we can now characterize the effective parameters in more detail.

Proposition 4.4. The effective parameters have the following properties:

• (ε−1)hom is a piece-wise constant, real-valued, symmetric positive definite matrix;
• µhom is a piece-wise constant, complex-valued, symmetric (not hermitian!) matrix with upper bound inde-

pendent from k;
• Im(µhom) is symmetric positive-definite (and thus µhom is invertible);
• we have

Im(µhom)ξ · ξ ≥ Ck−2|ξ|2 ∀ξ ∈ C3.

Proof. The characterization of (ε−1)hom is well-known and follows from the ellipticity of the corresponding cell
problem, see [34].

The upper bound on µhom easily follows from the stability bounds on u2 and u3 given in the previous lemma.
For the positive-definiteness of Im(µhom) we deduce from the cell problems that

Im(µhomξ · ξ) = k2

∫
Σ

Im(ε−1
1 )| curly w3

ξ |2 dy,

where wξ is the solution to cell problem (3.6) with right-hand side ξ. Note that by assumption it holds Im(ε−1
1 )) >

0. curly w3
ξ = 0 is only possible if ξ = 0 due to the cell problem and its boundary condition.

For the k-explicit lower bound on Im(µhom), we use the equivalence to the effective µ given in [7] (cf. Sect. 3.2).
Then, we can use the following representation, which is Equation (6.16) of [7],

(µhom)j,l = Idjl +
∑
n

ε1k
2

λn − ε1k2

(∫
Y

φn · ej dy
)(∫

y

φn · el dy
)
.

Here, (φn, λn) are eigenfunctions and eigenvalues of a vector-Laplacian on Y . Now, the lower bound can be
shown as in the two-dimensional case in [51]. �

The regularity results for the cell problems can be deduced from well-known regularity theory, see [35] for
details.

Proposition 4.5. There are 1/2 < tj ≤ 1, j = 1, 2, 3, such that u1 ∈ L2(Ω; Ht1(curl,Σ∗)), u2 ∈
L2(Ω;H1+t2(Σ∗)) and u3 ∈ L2(Ω; Ht3(curl,Σ)) with the regularity estimates

‖ curly u1‖L2(Ω;Ht1 (Σ∗)) . ‖u0‖curl;k;G

k‖u2‖L2(Ω;H1+t2 (Σ∗)) . ‖u0‖imp;k;G

‖ curly u3‖L2(Ω;Ht3 (Σ)) + k‖u3‖L2(Ω;Ht3 (Σ)) . (1 + k)‖u0‖imp;k;G.

We have tj = 1 for all j if Σ is of class C2.
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The higher regularity for the effective scattering equation is more difficult to derive due to the impedance
boundary condition. As the effective parameters (ε−1)hom and µhom are piecewise constant, we can only expect
piecewise higher regularity. Therefore, we introduce Hs

pw(curl, G) = H(curl, G) ∩Hs(curl,Ω) ∩Hs(curl, G \ Ω)
with the corresponding norm. For the definition of the trace spaces, we use the notation of [31] and refer to
[10,11,47] for details on the spaces.

Proposition 4.6. Let f ∈ H(div, G) with div f = 0. Let u0 be the solution to (3.2) with additional volume term
f on the right-hand side.

• If Ω and G have C2-boundary and g ∈ H1/2
T (∂G), then u0 ∈ H1

pw(curl, G).
• If G is convex and g ∈ Hsg

T (∂G) for 0 < sg < 1/2, there is 1/2 < s ≤ 1/2 + sg, only depending on the shape
of Ω and G, such that u0 ∈ Hs

pw(curl, G).

In both cases, we have the regularity estimate

‖ curl u0‖Hs
pw(G) + k‖u0‖Hs

pw(G) ≤ C
(
(1 + k)‖u0‖curl;k;G + ‖f‖L2(G) + ‖g‖Hsg (∂G)

)
.

Moreover, if u0 ∈ Hs
pw(G) with 1/2 < s ≤ 1, we also have u0 ∈ Hs−1/2

‖ (∂G) ∩H(curl∂G) with

k1/2(‖u0‖Hs−1/2
‖ (∂G)

+ ‖ curl∂G((u0)T )‖L2(∂G)) ≤ Ck1/2‖u0‖Hs
pw(G). (4.5)

Proof. The proof can be easily adopted from the case of scalar-valued constant material parameters in [47]. We
refer to [5, 20] for other results on higher regularity of curl-curl-problems with piecewise constant coefficients.
The regularity on the boundary directly follows from the continuity of trace operators, see [10–12]. �

Remark 4.7. The arguments from Proposition 4.5 also imply z3 ∈ L2(Ω; Ht3(curl,Σ)). According to [17], it
also holds z0 ∈ H1/2

pw (G). Moreover, if (z0)T ∈ Hr
T (∂G) with 0 < r < 1/2 for some reason (for instance, higher

regularity of the function which is decomposed), the arguments of Proposition 4.6 imply z0 ∈ H1/2+r
pw (G).

In order to have a full regularity estimate only in terms of the data, we need a stability result, i.e., the
dependence of the solution in its natural norm (here ‖ · ‖imp;k;G) on the data. Fredholm theory gives us such a
stability result, but without explicit dependency of the constant on k. We now assume an explicit, polynomial
stability constant.

Assumption 4.8. We assume that there is q ∈ N0 and Cstab > 0 such that the solution u0 to (3.2) with
additional volume term f ∈ H(div, G) with div f = 0 and g ∈ Hsg

T (∂G) with 0 < sg < 1/2 fulfills

‖u0‖imp;k,G ≤ Cstab k
q(‖f‖L2(G) + ‖g‖Hsg (∂G)). (4.6)

The only polynomial stability results for time-harmonic Maxwell equations available in the literature so far
consider the case of constant coefficients, see [28,37,47]. The setting of the effective homogenized Equation (3.2)
exhibits new challenges for the stability analysis: discontinuous, namely piecewise constant, and matrix-valued
coefficients and a partly complex parameter µ. In order to cope with these challenges, we first generalize the
known results to the class of real- and matrix-valued, Lipschitz continuous coefficients. More precisely, we have
the following proposition, which is proved in Section 6.2.

Proposition 4.9. Assume that there is γ > 0 such that

x · nG ≥ γ on ∂G x · nΩ ≥ 0 on ∂Ω, (4.7)

where n denotes the outer normal of the domain specified in the subscript. Let v ∈ Himp(G) be the unique
solution to∫

G

A curl v · curlψ − k2Bv ·ψ dx− ik
∫
∂G

βvT ·ψT dσ =
∫
G

f ·ψ dx+
∫
∂G

g ·ψT dσ ∀ψ ∈ Himp(G) (4.8)

with f ∈ H(div, G) with div f = 0, g ∈ L2
T (∂G). Moreover, we assume for A,B ∈W 1,∞(G) that
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• A,B are real-valued symmetric positive definite;
• A = α(x) Id, B = β(x) Id in a neighborhood of the boundary ∂G with α, β > 0 uniformly in x;
• the matrix DA·x is negative semidefinite and DB ·x is positive semidefinite, where (DA·x)jl :=

∑
n ∂nAj,lxl

and DB · x is defined analogously.

Then, there exists a constant C > 0, depending only on G, k0, and the upper and lower bounds (eigenvalues) of
A and B, but not on k, the data f and g, or any derivative information of A and B, such that

‖v‖imp;k;G ≤ C(‖f‖L2(G) + ‖g‖L2(∂G)). (4.9)

The geometrical assumption (4.7) is the common assumption for scattering problems, see [37,47]. It can, for
example, be fulfilled if Ω is convex (and w.l.o.g. 0 ∈ Ω) and G is chosen appropriately. Note that the conditions
on the derivatives of the coefficients are similar to those for the Helmholtz equation, see [51] and the remarks
therein. We emphasize that we obtain the same stability result, i.e., q = 0, as for Maxwell’s equations with
constant coefficients, see [37,47]. This generalization to a wider class of coefficients maybe of interest on its own.

We can now prove Assumption 4.8 with q = 3 for the setting of the homogenized equation (3.2). More
precisely, we have the following theorem, which is proved in Section 6.2.

Theorem 4.10. Let G and Ω fulfill (4.7). Furthermore assume that (ε−1)hom|G\Ω − (ε−1)hom|Ω is negative
semidefinite. Let u0 be the solution to (3.2) with additional volume term

∫
G

f · ψ dx on the right hand-side for
f ∈ H(div, G) with div f = 0 and g ∈ Hsg

T (∂G) with 0 < sg < 1/2. Then there is Cstab,0 only depending on the
geometry, the parameters, and k0, such that u0 satisfies the stability estimate

‖u0‖imp,k,G ≤ Cstab,0(k3‖f‖L2(G\Ω) + k2‖f‖L2(Ω) + k3/2‖g‖L2(∂G) + k−1‖g‖Hsg (∂G)).

The assumption on (ε−1)hom in fact is an assumption on ε−1
0 and can be fulfilled for appropriate choices of

material inside and outside the scatterer. It comes from the conditions on the derivative of A in Proposition
4.9 and is similar to the two-dimensional case in [51]. The different powers in k in comparison to Proposition
4.9 are caused by the complex-valued µhom and the dependence of Im(µhom) on k, see also the discussion in
Section 6.2. Note that we obtain the same powers in k as in the two-dimensional stability estimate in [51].

In the following, we will work with the (abstract) polynomial stability of Assumption 4.8 and keep in mind
that we have obtained an explicit (maximal) q in Theorem 4.10. Hence, we can conclude that the regularity
constant from Proposition 4.6 behaves like kq+1. Furthermore, we can also deduce the following form for the
inf-sup constant.

Lemma 4.11. Under Assumption 4.8, the sesquilinear form B is inf-sup stable with

inf
v∈H

sup
w∈H

|B(v,w)|
‖v‖e ‖w‖e

≥ γell

1 + Cstab,eCgkq+1
,

where Cstab,e is a stability constant for the two-scale Equation (3.1) and is k-independent.

Proof. Let v = (v0,v1, v2,v3) ∈ H be arbitrary and consider its Helmholtz-type decomposition according to
(4.3). Let w ∈ H be the solution to the adjoint two-scale problem with volume term Cgk

2(z0 + χΣz3) and
boundary term (z0)T on the right-hand side. Note that z0 and z3 are divergence-free and therefore, Assumption
4.8 can be applied. Recall the sign-flip isomorphism and the G̊arding inequality from Lemma 4.2. On the one
hand, due to the orthogonality of the Helmholtz decomposition we have∣∣B(v, F (v) + w)

∣∣ =
∣∣B(v, F (v)) + Cgk

2(z0 + χΣz3,v0 + χΣ∗∇yv2 + χΣv3)G×Y + Cgk((z0)T , (v0)T )∂G
∣∣

=
∣∣B(v, F (v)) + Cgk

2‖z0 + χΣz3‖2G×Y + Cgk‖(z0)T ‖2∂G
∣∣ ≥ γell‖v‖2e.
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On the other hand, it holds that

‖F (v) + w‖e ≤ ‖F (v)‖e + ‖w‖e ≤ ‖v‖e + Cstab,ek
qCg(k2‖z0 + χΣz3‖L2(G×Y ) + k‖(z0)T ‖2L2(∂G))

≤ (1 + Cstab,eCgk
q+1)‖v‖e.

Combining both estimates finishes the proof. �

5. Numerical method and error analysis

As explained in the introduction, a direct discretization of the heterogeneous problem (2.2) is infeasible due
to the necessary small mesh width. In Section 5.1, we introduce the HMM and perform its rigorous numerical
analysis in Section 5.2.

5.1. The Heterogeneous Multiscale Method

The idea of the Heterogeneous Multiscale Method (HMM) [21,22] is to imitate the homogenization procedure
and thereby provide a method with δ-independent mesh sizes. In particular, we want to use a macroscopic
sesquilinear form similar to (3.2) for the finite element method. Instead of solving the cell problems on the unit
cube, local variants are set up and solved around the quadrature points of some macroscopic computational
grid.

In this and the next section, we assume that Σ, Ω, and G are Lipschitz polyhedra (in contrast to the C2-
boundaries in the analytic sections). The reason is that the C2-boundaries can be approximated by a series
of more and more fitting polygonal boundaries. This procedure of boundary approximation results in non-
conforming methods, i.e., the discrete function spaces are no subspaces of the analytic ones. We avoid this
difficulty in our numerical analysis by assuming polygonally bounded domains by now. The new assumption
reduces the possible higher regularity of solutions as discussed in Section 4. However, we can always obtain
the maximal regularity in the limit of polygonal approximation of C2-boundaries, which we have in mind as
application case.

Denote by TH = {Tj |j ∈ J} and Th = {Sl|l ∈ I} regular and shape regular triangulations of G and Y ,
respectively. Additionally, we assume that TH resolves the partition into Ω and G \ Ω and that Th resolves the
partition of Y into Σ and Σ∗ and is periodic in the sense that it can be wrapped to a regular triangulation of the
torus (without hanging nodes or edges). The δ-scaled and xj-shifted unit cubes are denoted by Y δj = δY + xj ,
together with the (affine) mappings yδj : Y δj → Y and xδj = (yδj )

−1 : Y → Y δj . The same procedure can be
applied to Σ and Σ∗, which results in Σδj and (Σ∗)δj and gives a partition of Y δj . A simplicial mesh of the shifted
unit cubes is then given by Th(Y δj ) = {S̃|S̃ = xδj(S), S ∈ Th}. Since we assume Th to resolve the partition of
Y into Σ and Σ∗, this carries over to Th(Y δj ) with Σδj and (Σ∗)δj , respectively. We define the local mesh sizes
Hj := diam(Tj) and hl := diam(Sl) and the global mesh sizes H := maxj∈J Hj and h := maxl∈I hl. Note that
h denotes the mesh size of the triangulation of the unit cube. Thus, it is in no way related to δ and can be of
the same order as H. The δ-scaled cubes Y δj , where the actual (local) micrscopic computations are carried out,
consequently have a mesh size of δh.

We use the following conforming finite element spaces, associated with the meshes TH or Th,

• the classical linear Lagrange elements W̃h(Σ∗) ⊂ H1
],0(Σ∗) (adopted to periodic boundary conditions and

zero mean value);
• Nédélec edge elements of lowest order VH⊂ Himp(G), Vh(Σ)⊂ H0(curl,Σ), and Ṽh(Σ∗)⊂ H̃](curl,Σ∗).

Using the (affine) mapping xδj , the spaces W̃h(Σ∗), Ṽh(Σ∗), and Vh(Σ) can transferred to spaces on Y δj and we
denote these counterparts by W̃h((Σ∗)δj), Ṽh((Σ∗)δj), and Vh(Σδj), respectively.

The space Ṽh(Σ∗) is used to discretize the first cell problem (3.4) with solutions w1
j . As discussed in Section 3,

we are only interested in the curls. However, in order to obtain unique solutions, we have to apply a suitable
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stabilization procedure to the corresponding cell problem, such as a Lagrange multiplier or weighted divergence
regularization, see [18,19]. As an alternative, we can also directly discretize curly w1

j in a suitable finite element
space.

We pick numerical quadrature rules that are exact for the given test and ansatz spaces: In our case of piecewise
linear functions, it suffices to choose the one-point rule {xj , |Tj |} with barycenter xj for the curl-part and a
second order quadrature rule Q(2)

j := {xl, ql} with l = 1, . . . , 4 for the identity part.
With these preliminaries we can now define the HMM, see also [21,22,49].

Definition 5.1. The HMM-approximation of (2.2) is a quadruple (uH ,R1(uH),R2(uH),R3(uH)), where uH ∈
VH is the solution of

BH(uH ,ψH) = (g, (ψH)T )L2(∂G) ∀ψH ∈ VH

with the discrete sesquilinear form given by

BH(uH ,ψH) :=
∑
Tj⊂Ω

|Tj |
δ3

∫
(Σ∗)δj

ε−1
0 curl Rj,1(uH)(x) · curlψH(x) dx

− k2
∑
Tj⊂Ω

∑
{xl,ql}∈Q(2)

j

ql
δ3

∫
Y δl

(Rl,2(uH) + Rl,3(uH))(x) ·ψH(xl) dx

+
∫
G\Ω

curl uH · curlψH − k2uH ·ψH dx− ik
∫
∂G

(uH)T · (ψH)T dσ.

The local reconstructions Rj,1(uH) ∈ uH |Y δj + Ṽh((Σ∗)δj), Rj,2(uH) = uH(xj)|Y δj + χ(Σ∗)δj
∇rh,2 with rh,2 ∈

W̃h((Σ∗)δj), and Rj,3(uH) ∈ uH(xj)|Y δj + χΣδj
Vh(Σδj) are defined as solutions of the following three local cell

problems ∫
(Σ∗)δj

ε−1
0 curl Rj,1(uH) · curlψh,1 dx = 0 ∀ψh,1 ∈ Ṽh((Σ∗)δj),∫

(Σ∗)δj

k2Rj,2(uH) · ∇ψh,2 dx = 0 ∀ψh,2 ∈ W̃h((Σ∗)δj),∫
Σδj

δ2ε−1
1 curl(Rj,3(uH)− uH) · curlψh,3 − k2Rj,3(uH) ·ψh,3 dx = 0 ∀ψh,3 ∈ Vh(Σδj).

Note that the reconstructions Rj,1 and Rj,2 are the (standard) reconstructions for the HMM of Maxwell
equations and have already been introduced in [34], see also [16]. We emphasize that the cell problem for Rj,2 is
an elliptic problem, since we have Rj,2(uH) = uh(xj) +χ(Σ∗)δj

∇rh,2 and solve for rh,2. In the local cell problem

for Rj,3, the parameter δ2ε−1
1 is used, which is consistent with the definition of ε−1

δ in (2.1): Only the knowledge
of δ2ε−1

1 as a whole is required, not ε−1
1 alone. This reflects the fact that the scaling of δ2 is only a modeling

assumption for the high contrast and that in realistic applications, ε−1
1 is not known.

In the periodic case, the HMM simplifies to the solution of three cell problems and the macroscopic effective
equation. The presented method can be easily extend to the locally periodic case with x- and y-dependent ε0 and
ε1. However, the partition into Σ and Σ∗ has to be respected in the reconstructions because the high contrast
in the coefficients leads to a different behavior of the solution in these two parts. This implies that we implicitly
rely on a (nearly) periodic distribution of the inclusions to capture the high contrast with our method. We
emphasize that the HMM itself can be applied to nonperiodic settings, see [32,33], but it is by now means clear
whether the (analytical) setting considered here has a meaningful extension beyond the (locally) periodic case.
In particular, the resonances achieved for certain wavenumbers may highly depend on this periodic pattern.

The reconstructions of the HMM solution can be reformulated to draw a parallel between them and the
analytical correctors. This idea goes back to elliptic diffusion problems in [49] and has been applied in the context
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of time-harmonic Maxwell’s equation [34] and the Helmholtz equation with high contrast [51], for instance.
Let (uH ,R1(uH),R2(uH),R3(uH)) denote the HMM-approximation from Definition 5.1. Setting Kj,1(uH) =
Rj,1(uH) − uH and Kj,3(uH) = Rj,3(uH) − uH(xj), we have Kj,1(uH) ∈ Ṽh((Σ∗)δj) and Kj,3 ∈ Vh(Σδj),
respectively. Furthermore, denote by Kj,2(uH) ∈ W̃h((Σ∗)δj) the function satisfying ∇Kj,2(uH) = Rj,2(uH) −
uH(xj). We then define the discrete finescale corrections uh,1 ∈ S0

H(Ω; Ṽh(Σ∗)), uh,2 ∈ S1
H(Ω; W̃h(Σ∗)), and

uh,3 ∈ S1
H(Ω; Vh(Σ)) as

uh,1(x, y) :=
1
δ
Kj,1(uH)(δy) ∀x ∈ Tj ∀Tj ∈ TH ,

uh,2(xl, y) :=
1
δ
Kl,2(uH)(δy) ∀xl ∈ Q(2)

j ∀Tj ∈ TH ,

uh,3(xl, y) := Kl,3(uH)(δy) ∀xl ∈ Q(2)
j ∀Tj ∈ TH .

Here, the space of discontinuous, piecewise p-polynomial (w.r.t. x) discrete functions is defined as

SpH(Ω;Xh) := {vh ∈ L2(Ω;X)| vh(·, y)|Tj ∈ Pp ∀j ∈ J, y ∈ Y ; vh(x, ·) ∈ Xh ∀x ∈ Ω},

for any conforming finite element space Xh ⊂ X. Note that uh,2 and uh,3 are piecewise x-linear discrete
functions, since Q(2) consists of 4 quadrature points on each tetrahedron.

The functions uh,1, uh,2, and uh,3 are the discrete counterparts of the analytical correctors u1, u2 and u3

introduced in Theorem 3.2. The specific relation will be clear from Proposition 5.2 below. Therefore, these
corrections are an important part of the HMM-approximation and cannot be neglected as higher order terms:
For Maxwell’s equations, we saw in [29,34] that uh,2 is necessary to obtain good L2 approximations. Additionally,
the corrector uh,3 encodes the behavior of the solution inside the inclusions, see [51] for the Helmholtz equation
with high contrast.

Having observed this correspondence, we can now reformulate the whole HMM to see that it is a direct
discretization of the two-scale Equation (3.1).

Proposition 5.2. Let uh,1, uh,2 and uh,3 be the discrete finescale corrections as defined above. Then

(uH ,uh,1, uh,2,uh,3) ∈ VH × S0
H(Ω; Ṽh(Σ∗))× S1

H(Ω; W̃h(Σ∗))× S1
H(Ω; Vh(Σ))

is a solution of the discrete two-scale equation

B((uH ,uh,1, uh,2,uh,3), (ψH ,ψh,1, ψh,2,ψh,3)) = (g, (ψH)T )∂G

∀(ψH ,ψh,1, ψh,2,ψh,3) ∈ VH × L2(Ω; Ṽh(Σ∗))× L2(Ω; W̃h(Σ∗))× L2(Ω; Vh(Σ))
(5.1)

with the sesquilinear form B of Theorem 3.1.

The proof first uses the transformation formula and the chain rule to switch integrals from Y δj to Y . Second,
periodicity and exactness of the quadrature rules are employed. The procedure is similar to the case of time-
harmonic Maxwell’s equations [34] and therefore omitted here. The idea to reformulate the HMM as a direct
discretization of the two-scale equation (with numerical quadrature) goes back to the work on elliptic diffusion
problems [49] and has been applied to other problems classes, for instance in [34,51]. We emphasize that in the
locally periodic setting both perspectives on the HMM are totally equivalent. Somewhat different, but related,
is the idea to directly discretize the multiscale limit equation using sparse tensor finite element methods: It
has been presented for elliptic diffusion problems in [39] for the first time and has been applied recently to
Maxwell-type equation in [15].

For simplicity of notation, we abbreviate uH,h := (uH ,uh,1, uh,2,uh,3) and VH,h := VH × L2(Ω; Ṽh(Σ∗))×
L2(Ω; W̃h(Σ∗))× L2(Ω; Vh(Σ)) in the sequel.
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5.2. A priori error estimates

Based on the definition of the HMM as direct discretization of the two-scale equation (Prop. 5.2), we analyze
its well-posedness and quasi-optimality in Theorem 5.3. This quasi-optimality is a kind of Céa lemma for
indefinite problems and leads to explicit a priori estimates in Corollary 5.4 and Theorem 5.5. As discussed for
the G̊arding inequality and in general in [29], we will again frequently use the Helmholtz decomposition in our
analysis.

Let us define the error terms e0 = u0 − uH , e1 = u1 − uh,1, e2 = u2 − uh,2, and e3 = u3 − uh,3 and set
e := (e0, e1, e2, e3). We will only estimate these (discretization) errors and leave the modeling error, introduced
by homogenization, apart. All proofs are postponed to Section 6.3.

Theorem 5.3 (Discrete inf-sup-condition and quasi-optimality). Let Assumption 4.8 be fulfilled. Under the
resolution condition

CcCappr(Cg + 2)(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2) ≤ γell/2, (5.2)

we have the discrete inf-sup condition

inf
vH,h∈VH,h

sup
wH,h∈VH,h

|B(vH,h,wH,h)|
‖vH,h‖e‖wH,h‖e

≥ γell

2 + γell/Cc + 2CgCstab,ekq+1
∼ k−(q+1)

and the error between the analytical and discrete two-scale solution satisfies

‖(e0, e1, e2, e3)‖e ≤
2Cc
γell

inf
vH,h∈VH,h

‖u− vH,h‖e. (5.3)

The approximation result of Lemma 6.2 (see below) gives explicit convergences rates from the quasi-optimality.

Corollary 5.4. Let the assumptions of Theorem 5.3 be fulfilled. Then, the energy error can be estimated as

‖(e0, e1, e2, e3)‖e . (kq+1(Hs + ht1 + ht2 + ht3) + kq+1/2Hs−1/2)‖g‖Hsg (∂G).

Assuming smooth domains (i.e., maximal regularity), the a priori estimate gives linear convergence for the
volume terms and H1/2 convergence rate for the boundary terms. These are classical optimal convergence rates
under mesh refinement for problems posed in H(curl), see [25,31].

As discussed in [29,34], we have to go to dual norms to obtain higher order convergence.

Theorem 5.5. Under the assumptions of Theorem 5.3, let e0 + χΣe3 = z0 + χΣz3 + ∇θ0 + χΣ∇yθ3 be the
Helmholtz decomposition of the error according to (4.3). This decomposition satisfies the following a priori
estimate

‖z0 + χΣz3‖L2(G×Y ) + ‖θ0 + χΣθ3‖L2(G×Y ) . (kq+1(Hs + ht1 + ht2 + ht3) + kq+1/2Hs−1/2)‖e‖e.

Assuming maximal regularity, i.e., s = t1 = t2 = t3 = 1, and optimal stability with q = 0, the resolution
condition reads k2(H + h) + k3/2H1/2 . 1. The first part k2(H + h) comes from the volume terms and is
unavoidable for the Helmholtz equation, see [51] and [55]. The second part k3/2H1/2 is caused by the boundary
terms, which are an essential part of the energy norm for Maxwell equations. In contrast to the Helmholtz
equation, they cannot be estimated against the volume terms by using a trace inequality and thus, seem to
be unavoidable as well. The powers in k and H for the resolution condition caused by the boundary terms is
consistent with the volume terms: for both, k and H, the power is reduced by 1/2. Unfortunately, despite this
consistency, the part k3/2H1/2 is the dominating part in the resolution condition and finally, leads to a condition
like “k3H small”.
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We emphasize that it is natural that h enters the resolution condition because the third cell problem depends
on k. Note that h denotes the mesh width of the unit square and is not coupled to δ in any way. Our explicit
stability estimate in Theorem 4.10 yields q = 3 and thus, a kind of “worst case” resolution condition: It is
certainly sufficient for well-posedness and quasi-optimality, but may well be sub-optimal for most frequencies
k, since in particular the influence from Im(µhom) may be overestimated. This has been discussed in detail and
examined in the numerical experiment for the Helmholtz equation in [51]. We emphasize that the resolution
condition can be improved if better stability results are known, which is outside the scope of this work. Moreover,
we underline that previous works [31,35,36,48] so far have only proved well-posedness for sufficiently fine meshes
without explicit k-dependent resolution condition.

Furthermore, we note that the resolution condition may be reduced, which has been extensively studied
for the Helmholtz equation. For Maxwell’s equations, developments in that direction include hp-FEM [45],
(hybridizable) discontinuous Galerkin methods [27,28,41], or (plane wave) Trefftz methods [38], just to name a
few. Also the Localized Orthogonal Decomposition (LOD) [43,52] has shown promising results for the Helmholtz
equation in [30,53]. Only recently, it has been discussed for H(curl)-problems [29,56]. The definition of the HMM
as direct diescretization of the two-scale equation makes an additional application of the LOD possible, see [50]
for Helmholtz-type problems.

As already remarked in [34, 49, 51], the definition of the HMM as direct discretization of the two-scale
equation is the crucial starting point for the proofs of the a priori error estimates. In particular, it also enables
the derivation of a posteriori error estimates.

6. Main proofs

In this section all essential proofs on the two-scale equation, the stability of the homogenized equation and
the numerical analysis of the HMM are given.

6.1. Proof of the two-scale equation

In this section, we show the two-scale Equation (3.1). It closely follows [7] and mainly differs in the form of
the two-scale convergence, so that we will focus on that part.

Proof of Theorem 3.1.
First step: A priori bounds. Assume that uδ is uniformly bounded in L2(G). We then easily deduce that√
|ε−1
δ | curl uδ is also uniformly bounded in L2(G).

Second step: Two-scale convergences. By the a priori bounds, uδ converges weakly in H(curl, G\Ω) to some
u0. Using Proposition 7.1 from [7], we deduce u0 ∈ H(curl, G \Ω). Since G \Σδ is a simply connected domain,
the two-scale convergences from Wellander et al. [58, 59] and Visintin [57] can be applied (formally with the
help of extension by zero in Σδ): There exist u0 ∈ Himp(G), u1 ∈ L2(Ω; H̃](curl,Σ∗)), and u2 ∈ L2(Ω;H1

],0(Σ∗))
such that, up to a subsequence,

χG\Σδuδ
2
⇀ χΣ∗(u0 +∇yu2), χG\Σδ curl uδ

2
⇀ χΣ∗(curl u0 + curly u1).

The uniform a priori bound of uδ furthermore imply that there is ũ0 ∈ L2(Ω;H](curl,Σ)) such that, up to
a subsequence,

χΣδuδ
2
⇀ χΣũ0, δχΣδ curl uδ

2
⇀ χΣ curly ũ0,

cf. [14]. Using all these two-scale convergences, we can deduce for any ψ ∈ C∞0 (Ω;C∞] (Y ))∫
Ω

∫
Σ

curly ũ0 ·ψ dydx←−
∫

Ω

δ curl uδ ·ψ
(
x,
x

δ
dx
)

=
∫

Ω

δuδ · curly ψ
(
x,
x

δ
dx
)
−→

∫
Ω

∫
Y

curly ψ · (χΣũ0 + χΣ∗(u +∇yu2)) dydx.
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Integrating now by parts on the right-hand side, we derive the continuity of the tangential traces over ∂Σ, i.e.,∫
Ω

∫
∂Σ

ũ0 × n ·ψ dσdx =
∫

Ω

∫
∂Σ

(u0 +∇yu2)× n ·ψ dσdx ∀ψ ∈ C∞0 (Ω;C∞] (Y )).

Therefore, there exists u3 ∈ L2(Ω; H0(curl,Σ)) such that

uδ
2
⇀ u0 + χΣ∗∇yu2 + χΣu3.

Third step: Two-scale equation and uniqueness. The two-scale equation follows now from the two-scale
limits by inserting a test function of the form ψ(x)+δψ1(x, xδ )+∇yψ(x, xδ )+ψ3(x, xδ ) with smooth and periodic
(in the second variable y) functions ψi and with ψ3(·, y) = 0 for y ∈ Σ∗ and ∇yψ2(·, y) = 0 for y ∈ Σ into (2.2).
Uniqueness of this problem can either be derived by the uniqueness of the effective equation (see Thm. 3.2) or
by inserting appropriate test functions.

Fourth step: L2(G) bound on uδ. Finally, the assumption that uδ is uniformly bounded in L2(G) is proved
by a contradiction argument, for details we refer to [7]. Note that we cannot argue in the same way as for
Helmholtz problems in [8,51] since weak convergence in H(curl) does not imply strong convergence in L2. �

6.2. Stability of the Maxwell scattering problem

This section is devoted to a detailed proof of Theorem 4.10. First, we show the (general) stability result for
real- and matrix-valued Lipschitz coefficients, Proposition 4.9. The discontinuity in (ε−1)hom is then accounted
for by an approximation procedure, while the partly complex µhom can be treated by an auxiliary problem.

The proof uses Rellich-Morawetz identities for Maxwell’s equations, see [47] for the constant coefficient case.
For our Lipschitz continuous coefficients, we have the following result.

Lemma 6.1. Let G be an open, bounded domain, which is star-shaped w.r.t. a ball centered at the origin. Let
A,B ∈ W 1,∞(G) be symmetric positive definite such that DA · x is negative semidefinite, DB · x is positive
semidefinite and it holds A = α(x) Id, B = β(x) Id with real-valued, uniformly positive α, β in a neighborhood
of the boundary ∂G.

• If ξ ∈ H(div, G) with curl(Aξ) ∈ L2(G) and ξT ∈ L2
T (∂G), then

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣∫
G

curl(Aξ) · (ξ × x) + (Aξ · x) div ξ dx
∣∣∣+ C(G)

∫
∂G

α|ξT |2 dσ. (6.1)

• If ξ ∈ Himp(G) with div(Bξ) ∈ L2(G), then

‖B1/2ξ‖2L2(G) ≤ 2
∣∣∣∫
G

curl ξ · (Bξ × x) + (ξ · x) div(Bξ) dx
∣∣∣+ C(G)

∫
∂G

β|ξT |2 dσ. (6.2)

Proof. We only prove (6.1), the procedure for (6.2) is similar.
First step: Assuming that A and ξ are C1, we derive the pointwise identity

2 Re
(
curl(Aξ) · (ξ × x)

)
= 2 Re

(
div((Aξ · x)ξ)− (Aξ · x) div ξ

)
− div((Aξ · ξ) x) +Aξ · ξ − (DA · x)ξ · ξ,

(6.3)

This is a direct computation using product rules for curl(a × b), div(a × b), the vector calculus identity
a× (b× c) = (a · c)b− (a · b)c, and

2 Re(Aξ · (x · ∇)ξ) = x · ∇(Aξ · ξ)− (DA · x)ξ · ξ = div((Aξ · ξ)x)− 3Aξ · ξ − (DA · x)ξ · ξ.
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Second step: We then integrate (6.3) over G with partial integration in the divergence-terms. Splitting the
vector ξ in its tangential and normal components, ξT and ξN , respectively, and using their orthogonality, we
obtain ∫

G

Aξ · ξ − (DA · x)ξ · ξ

= 2 Re
{∫

G

curl(Aξ) · (ξ × x)) + (Aξ · x) div ξ dx
}
− 2 Re

{∫
∂G

((Aξ)T · xT ) (ξ · n) dσ
}

+ Re
{∫

∂G

((Aξ)T · ξT − (Aξ)N · ξN ) (x · n) dσ
}
.

(6.4)

Third step: Using the assumptions of this lemma in (6.4) gives

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣∫
G

curl(Aξ) · (ξ × x) + (Aξ · x) div ξ dx
∣∣∣

+
∫
∂G

α(|ξT |2 − |ξN |2)(x · n) dσ − 2 Re
{∫

∂G

α(ξT · xT )(ξ · n) dσ
}
.

Now we apply Young’s inequality with weight x · n to the last term and obtain

‖A1/2ξ‖2L2(G) ≤ 2
∣∣∣∫
G

curl(Aξ) · (ξ × x) + (Aξ · x) div ξ dx
∣∣∣+
∫
∂G

α|ξT |2|x|2 dσ,

which directly yields (6.1). The claim can now be obtained by approximating A and ξ with sufficiently smooth
fields. �

For this lemma it is essential that A and B reduce to scalar values near the boundary because otherwise no
connection between (Aξ)T and ξT , etc. can be drawn. The previous lemma eliminated all terms with normal
components on the boundary, which is necessary in order to apply it to functions in Himp. In other words, we
do not have any knowledge about vN on ∂G for the solution v to (4.8).

Proof of Proposition 4.9. We test (4.8) with ψ = v and take the imaginary part to obtain

k‖vT ‖2L2(∂G) ≤ C
(
‖f‖L2(G)‖v‖L2(G) + k−1‖g‖2L2(∂G)

)
(6.5)

with a constant independent of k. Next, we observe that by testing with ∇φ for φ ∈ H1
0 (G), we deduce

div(Bv) = 0. We now apply (6.1) with ξ = curl v and (6.2) with ξ = v and obtain

‖v‖2curl;k;G

≤ 2
∣∣∣∫
G

curl(Av) · (curl v × x) + k2 curl v · (Bv × x) dx
∣∣+ C

∫
∂G

α| curl vT |2 + βk2|vT |2 dσ

= 2
∣∣∣∫
G

curl(Av) · (curl v × x)− k2Bv · (curl v × x) dx
∣∣+ C

∫
∂G

α| curl vT |2 + βk2|vT |2dσ

≤ 2
∣∣∣∫
G

f · (curl v × x) dx
∣∣∣+ C

∫
∂G

k2|vT |2 + |g|2 dσ,

where we used (the strong form of) the PDE and the boundary condition. Inserting Hölder’s and Young’s
inequalities for the first term on the right-hand side, we deduce

‖v‖2curl;k;G ≤ C(‖f‖2L2(G) + ‖g‖2L2(∂G) + k2‖vT ‖2L2(∂G)).

Now plugging in (6.5) and using once more Young’s inequality we finally obtain the asserted estimate (4.9). �
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The presented proof thus generalizes the result of [47] to a wider class of non-constant coefficients.

Proof of Theorem 4.10. Let ũ ∈ Himp be the solution to (3.2) with µhom replaced by µ̃ = Id on all of G. Using
the higher regularity of ũ (see Prop. 4.6) and an approximation argument for (ε−1)hom, similar to [51], gives
the following stability

‖ũ‖imp;k;G . ‖f‖L2(G) + ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

This also implies that the inf-sup-constant behaves like k−1, so that the above stability estimate holds also for
f̃ ∈ L2(G) without the divergence-free constraint.

The difference function u0 − ũ solves (3.2) with µhom replaced by µ̃ and right-hand side (volume term)
k2(µ̃ − µhom)u0 ∈ L2(G). Note that the right-hand side vanishes outside Ω. Hence, the previous arguments
together with the triangle inequality yield

‖u0‖imp;k;G . ‖f‖L2(G) + ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G) + k2‖u0‖L2(Ω).

It thus remains to bound ‖u0‖L2(Ω). Inserting ψ = u0 into (3.2) and considering the imaginary part gives

k2c0‖u0‖2L2(Ω) . k
−1‖g‖2L2(∂G) + k−2c−1

0 ‖f‖2L2(Ω) + ‖f‖L2(G\Ω)‖u0‖L2(G\Ω),

where c0 denotes the lower bound on Im(µhom). Together with Young’s inequality and the foregoing estimates
this finally gives

‖u0‖imp;k;G . c
−1
0 ‖f‖L2(Ω) + kc−1

0 ‖f‖L2(G\Ω) + k1/2c
−1/2
0 ‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

Setting c0 = k−2 according to Proposition 4.4 finishes the proof. �

The proof shows that if the lower bound c0 on Im(µhom) is independent of k, we get the improved stability
estimate

‖u0‖imp;k;G . ‖f‖L2(Ω) + k‖f‖L2(G\Ω) + k1/2‖g‖L2(∂G) + k−1‖g‖Hsg (∂G).

6.3. Proofs concerning the HMM

In this section, we prove our central results, namely Theorems 5.3 and 5.5.
We introduce the following dual problem: For f ∈ H(div, G) with div f = 0, f3 ∈ L2(Ω; H(div,Σ)) with

divy f3 = 0, and g̃ ∈ Hr
T (∂G) with 0 < r < 1/2, find w = (w0,w1, w2,w3) ∈ H such that

B(ψ,w) =
∫
G

∫
Y

(f + χΣf3) · (ψ0 + χΣψ3) dydx+
∫
∂G

g · (ψ0)T dσ ∀ψ = (ψ0,ψ1, ψ2,ψ3) ∈ H. (6.6)

Dual problem (6.6) is very similar to the two-scale limit Equation (3.1) and we thereby know that it is uniquely
solvable. Note that we can also apply our theory from Section 4, in particular Assumption 4.8, since the right-
hand side is divergence-free. We have the following approximation result for the dual problem.

Lemma 6.2. Under Assumption 4.8, the solution w ∈ H to (6.6) satisfies

inf
wH,h∈VH,h

‖w −wH,h‖e ≤ Cappr

(
kq+1(Hs + ht1 + ht2 + ht3)

+ kq+1/2Hs−1/2
)
(‖f + χΣf3‖L2(G×Y ) + ‖g̃‖Hr(∂G)).

(6.7)

Proof. Interpolation estimates and best-approximation results in Himp, see [26] and [31], yield

inf
wH,h∈VH,h

‖w −wH,h‖e . (Hs + ht1 + ht2 + ht3)‖w‖k,Hs,t

+ k1/2Hs−1/2(‖(w0)T ‖Hs
‖(∂G) + ‖ curl∂G(w0)T ‖L2(∂G)),
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where ‖ · ‖k,Hs,t denotes the (weighted) higher order norms defined as follows

‖w‖k,Hs,t := ‖ curl w0‖Hs
pw(G) + k‖w0‖Hs

pw(G) + ‖ curly w1‖L2(Ω;Ht1 (Σ∗)) + k‖w2‖L2(Ω;H1+t2 (Σ∗))

+ ‖ curly w3‖L2(Ω;Ht3 (Σ)) + k‖w3‖L2(Ω;Ht3 (Σ)).

Inserting the regularity and stability results from Section 4 and using Assumption 4.8 finishes the proof. �

With these preliminaries, we can now prove the inf-sup condition and the quasi-optimality of Theorem 5.3.

Proof of Theorem 5.3.
Proof of (5.1): Let vH,h ∈ VH,h be arbitrary and apply the Helmholtz decomposition (4.3) to vH =

z0 + ∇θ0 and vh,3 = z3 + ∇yθ3. We write in short vH,h = z + ∇θ with z = (z0,vh,1, 0, z3) and ∇θ :=
(∇θ0, 0,∇yvh,2,∇yθ3). Let w = (w0,w1, w2, z3) ∈ H be the solution to dual problem (6.6) with f = Cgk

2z0,
f3 = Cgk

2z3, and g̃ = Cgk(z0)T . Note that (z0)T ∈ Hr
T (∂G) for all r < 1/2 due to the boundary regularity of

edge element functions. Let wH,h be the best-approximation to w in the two-scale energy norm ‖ · ‖e.
Imitating the proof of the analytical inf-sup condition in Lemma 4.11, we would like to choose the test function

F (vH,h) + wH,h. Unfortunately, F (vH,h) is not discrete any more, so that we have to apply an additional
interpolation operator. We choose the corresponding standard (nodal) interpolation operator for each of the
single spaces of VH,h and call the resulting operator IH,h. Hence, we obtain∣∣B(vH,h, IH,h(F (vH,h)) + wH,h)

∣∣
≥
∣∣B(vH,h, F (vH,h) + w)

∣∣− ∣∣B(vH,h, (IH,h − id)F (vH,h)
∣∣− ∣∣B(vH,h,wH,h −w)

∣∣.
Due to the orthogonality of the Helmholtz decomposition, the first term can be estimated as∣∣B(vH,h, F (vH,h) + w)

∣∣ =
∣∣B(vH,h, F (vH,h) + Cgk

2(z0 + χΣz3,vH + χΣvh,3)G×Y + Cgk((z0)T , (vH)T )∂G
∣∣

=
∣∣B(vH,h, F (vH,h) + Cgk

2‖z0 + χΣz3‖2L2(G×Y ) + Cgk‖(z0)T ‖2L2(∂G)

∣∣ ≥ γell‖vH,h‖2e.
Using the continuity of B and Lemma 6.2, we deduce for the third term∣∣B(vH,h,wH,h −w)

∣∣
≤ CcCapprCg(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖vH,h‖e
· (k‖z0 + χΣz3‖L2(G×Y ) + k1/2‖(z0)T ‖L2(∂G))

≤ CcCapprCg(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖vH,h‖2e,
where we used the stability of the Helmholtz decomposition in the last step.

For the second term we note that F (vH,h) = 2z− vH,h. It holds that curl(IH,h − id)z = 0 because the nodal
interpolation operator is a commuting projector and curl z = curl vH,h. In particular, this means that the curl
and the tangential trace of z0 + χΣz3 are discrete functions, so that we can apply the modified interpolation
estimates ([31], Lems. 5.1 and 5.3). Together with the regularity of the decomposition discussed in Remark 4.7,
this yields for the second term∣∣B(vH,h, (IH,h − id)F (vH,h))

∣∣
≤ 2Cc‖vH,h‖e

(
k‖(IH,h − id)(z0 + χΣz3)‖L2(G×Y ) + k1/2‖(IH,h − id)(z0)T ‖L2(∂G)

)
≤ 2CcCappr(k(Hs + ht3) + k1/2Hs−1/2)‖vH,h‖e.

The term |B(vH,h, (IH,h − id)F (vH,h))| thus is of lower order than the term |B(vH,h,wH,h − w)| and can be
absorbed in the latter because of k ≥ k0. All in all, this gives∣∣B(vH,h, IH,h(F (vH,h)) + wH,h)

∣∣
≥ (γell − CcCappr(Cg + 2)(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2))‖vH,h‖2e
≥ γell/2‖vH,h‖2e,
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where we used the resolution condition (5.2) in the last step.
Furthermore, it holds – with the same arguments as before – that

‖IH,h(F (vH,h)) + wH,h‖e
≤ ‖F (vH,h)‖e + ‖w‖e + ‖w −wH,h‖e + ‖(IH,h − id)F (vH,h)‖e
≤ (1 + CgCstab,ek

q+1 + (Cg + 2)Cappr(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2))‖vH,h‖2e,

which finishes the proof of the inf-sup-condition.
Proof of the quasi-optimality (5.3): Let e := (e0, e1, e2, e3) and apply the Helmholtz decomposition (4.3)

to e0 + χΣe3 = z0 + χΣz3 + ∇θ0 + χΣ∇yθ3. We write in short e = z + ∇θ with z = (z0, e1, 0, z3) and
∇θ := (∇θ0, 0,∇ye2,∇yθ3).

Using the G̊arding-type inequality (4.4), we have that

γell‖e‖2e ≤ |B(e, F (e)) + Cgk
2‖z0 + χΣz3‖2L2(G×Y ) + Cgk‖(z0)T ‖2L2(∂G)|

≤ |B(e, e)|+ (Cg + 2)k2‖z0 + χΣz3‖2L2(G×Y ) + (Cg + 2)k‖(z0)T ‖2L2(∂G).
(6.8)

The main work is now to bound the second and third term. For this, let w ∈ H be the solution to dual
problem (6.6) with f = kz0, f3 = kz3, and g̃ = k1/2(z0)T . Note that (z0)T ∈ Hs−1/2

T (∂G) due to the regularity
of u0 from Proposition 4.6 and the regularity of functions in VH,h. Because of the orthogonality in the Helmholtz
decomposition of (4.3) and ∇T θ0 = 0 it holds that

k‖z0+χΣz3‖2L2(G×Y )+k
1/2‖(z0)T ‖2L2(∂G) = k(z0+χΣz3, e0+χΣe3)L2(G×Y )+k1/2((z0)T , (e0)T )L2(∂G) = B(e,w).

Using Galerkin orthogonality and Lemma 6.2, we obtain for any wH,h ∈ VH,h that

k‖(z0 + χΣz3)‖2L2(G×Y ) + k1/2‖(z0)T ‖2L2(∂G) = kB(e,w) = kB(e,w −wH,h)

≤ CcCappr(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖e‖e
· (‖(z0 + χΣz3)‖L2(G×Y ) + ‖(z0)T ‖L2(∂G))

and thus

k‖(z0 +χΣz3)‖L2(G×Y ) +k1/2‖(z0)T ‖L2(∂G) ≤ CcCappr(kq+2(Hs +ht1 +ht2 +ht3) +kq+3/2Hs−1/2)‖e‖e. (6.9)

Inserting (6.9) now into (6.8) and applying Galerkin orthogonality, we get

γell‖e‖2e ≤
∣∣B(e, e)

∣∣+ (Cg + 2)k2‖z0 + χΣz3‖2L2(G×Y ) + (CG + 2)k‖(z0)T ‖2L2(∂G)

≤
∣∣B(e,u− vH,h)

∣∣+ (Cg + 2)‖e‖e (k‖z0 + χΣz3‖L2(G×Y ) + k1/2‖(z0)T ‖L2(∂G))
≤ Cc‖e‖e‖u− vH,h‖

+ (Cg + 2)CcCappr(kq+2(Hs + ht1 + ht2 + ht3) + kq+3/2Hs−1/2)‖e‖2e,

which gives the claim using resolution condition (5.2). �

The proof of the quasi-optimality already showed that the compact perturbation is of higher order (with
respect to the rates in the mesh size) than the energy error. This kind of Aubin-Nitsche trick can be extended
to the whole Helmholtz decomposition.

Proof of Theorem 5.5. The estimate for z0 + χΣz3 is already given by (6.9) (considering only the volume term
and dividing by k). To estimate θ0 + χΣθ3, we pose another dual problem (cf. [34]): Find w := (w,w2, w3) ∈
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S := H1
0 (G)× L2(Ω;H1

],0(Σ∗))× L2(Ω;H1
0 (Σ)) such that

A(ψ,w) := −k2

∫
G

∫
Y

(∇ψ + χΣ∗∇yψ2 + χΣ∇yψ3) · (∇w + χΣ∗∇yw2 + χΣ∇yw3) dydx

=
∫
G

∫
Y

(θ0 + χΣθ3) · (ψ + χΣψ3) dydx ∀ψ = (ψ,ψ2, ψ3) ∈ S.

Let us denote by wH,h = (wH , wh,2, wh,3) the solution of the corresponding discrete problem over the Lagrange
finite element spaces WH ⊂ H1

0 , Wh(Σ∗) ⊂ H1
],0(Σ∗), and Wh(Σ) ⊂ H1

0 (Σ). It is a well-known fact of finite ele-
ment exterior calculus that ∇WH ⊂ VH , etc. We obtain with the Galerkin orthogonality and the orthogonality
of the Helmholtz decomposition

‖θ0 + χΣθ3‖2L2(G×Y ) = A((θ0, e2, θ3),w) = B((∇θ0, e1, e2,∇yθ3), (∇w, 0, w2,∇yw3))

= B(e, (∇w, 0, w2,∇yw3))− B((z0, 0, 0, z3), (∇w, 0, w2,∇yw3))
= B(e, (∇(w − wH), 0, w2 − wh,2,∇y(w3 − wh,3)).

Using the approximation properties of the Lagrange finite element spaces and the regularity and stability of
elliptic diffusion two-scale problems [49], we deduce

‖θ0 + χΣθ3‖2L2(G×Y ) . ‖e‖e k‖∇(w − wH) + χΣ∗∇y(w2 − wh,2) + χΣ∇y(w3 − wh,3)‖L2(G×Y )

. (Hs + ht2 + ht3)‖e‖e‖θ0 + χΣθ3‖L2(G×Y ),

which in combination with (6.9) finishes the proof. �

7. Numerical results

In this section we give some numerical results on the HMM with particular respect to the convergence order
(see Thm. 5.3, Cor. 5.4 and Thm. 5.5) and the behavior for different frequencies k and different values µhom.
The implementation was done with the module dune-gdt [46] of the DUNE software framework [3, 4].

We consider the macroscopic domain G = (0, 1)3 with embedded scatterer Ω = (0.25, 0.75)3. The boundary
condition g is computed as g = curl uinc × n − ikn × (uinc × n) with the (left-going), e2-polarized incoming
plane wave uinc = exp(−ikx1)e2. The unit cube Y has the inclusion Σ = (0.25, 0.75)3 and we choose the inverse
permittivities as ε−1

0 = 1.0 and ε−1
1 = 1.0− 0.01i. Obviously, the real parts of both parameters are of the same

order and ε1 is only slightly dissipative.
First, we analyze the dependency of the effective permeability µhom on the wavenumber k. The contribution

to µhom from the second cell problem (3.5) in Σ∗ is independent of k, as expected. The wavenumber-dependency
is wholly caused by cell problem (3.6) inside Σ. As discussed also in [7] and for the two-dimensional case in
[8,51], significant changes in µhom are expected around the eigenvalues of the vector Laplacian. Only some of the
eigenvalues, namely those where the mean value of the eigenfunction(s) is not the zero vector, will eventually
lead to resonances in the behavior of the effective permeability. As Σ is a cube, those eigenvalues are explicitly
known and for our setup, the first interesting values are k ≈ 8.9 and k ≈ 19.9. We compute µhom using cell
problems (3.5) and (3.6) with a mesh consisting of 196 608 elements on Y . Figure 2 depicts the behavior of
the diagonal entries of Re(µhom) and Im(µhom) (all three diagonal entries are the same due to symmetry) for
changing k. As predicted, we see a significant change of behavior around the eigenvalues, where the imaginary
part has large values and the real part shows resonances. For the first eigenvalue, this resonance is strong enough
to produce a negative real part, while this is not the case for the second eigenvalue in our setup.

We now take a closer look at the convergence of errors and verify the predictions of Theorem 5.3/Corollary 5.4
and Theorem 5.5. We use a reference homogenized solution by computing the effective parameters with 196 608
elements on Y and the solving the effective homogenized equation (3.2) with these parameters using a mesh with
663 552 elements for G. This reference homogenized solution is compared to the macroscopic part uH of the
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Figure 2. Dependence of the effective permeability µhom on the wavenumber k for square
inclusion Σ = (0.25, 0.75)2 with ε−1

1 = 1.0− 0.01i.

Table 1. Convergence history and EOC for the error between the macroscopic part uH of the
HMM-approximation and the reference homogenized solution for k = 12.

H = h ‖e0‖L2(G) ‖ curl e0‖L2(G) ‖θ‖L2(G) EOC(e0) EOC(curl e0) EOC(θ)
√

3× 1/4 0.945214 11.6003 0.01555 – – –√
3× 1/8 0.5316 5.76452 0.0096331 0.8303 1.0089 0.6908√
3× 1/12 0.3211809 3.36067 0.00409982 1.2379 1.3308 2.1069√
3× 1/16 0.230797 2.38167 0.00220056 1.1555 1.1969 2.1629

HMM-approximation on a sequence of simultaneously refined macro- and microscale meshes for the frequencies
k = 9 and k = 12. Note that k = 12 corresponds to “standard” effective parameters, while for k = 9, Re(µhom)
is negative definite. The errors in the L2 and H(curl)-semi norm are shown in Table 1 for k = 12 and in Table 2
for k = 9. In order to verify Theorem 5.5, we compute an approximation of the gradient part θ of the Helmholtz
decomposition: We solve the Poisson problem determining θ (with right-hand side e0) using linear Lagrange
elements on the reference mesh (with 663 552 elements). The L2 norms of this resulting θ are also shown in
Tables 1 and 2, respectively. The experimental order of convergence (EOC), which is defined for two mesh
sizes H1 > H2 and the corresponding error values eH1 and eH2 as EOC(e) := ln( eH1

eH2
)/ ln(H1

H2
), verifies the linear

convergence in L2 and H(curl), predicted in Theorem 5.3 and Corollary 5.4, and the quadratic convergence of the
Helmholtz decomposition, predicted in Theorem 5.5. Note that from the geometry one might expect a reduced
regularity of the analytical solution and therefore, a sub-linear convergence of the H(curl)-error. We believe
that the linear convergence observed in the experiment does not imply a sub-optimality of the error bound in
Theorem 5.3, but that in fact, the analytical homogenized solution in this special case has full H1

pw(curl, G)
regularity, probably because of the specific boundary condition. This clearly shows that our general theory holds
for all regimes of wavenumbers even if they result in unusual effective parameters. This is consistent with the
observations made for the two-dimensional case in [51].

Finally, we compare the two frequencies k = 9 and k = 12 in more detail. They have a different physical
meaning: For k = 12, normal transmission through the scatterer is expected, while k = 9 corresponds to a
wavenumber in the band gap due to the negative definite real part of µhom. Thus, wave propagation through
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Table 2. Convergence history and EOC for the error between the macroscopic part uH of the
HMM-approximation and the reference homogenized solution for k = 9.

H = h ‖e0‖L2(G) ‖ curl e0‖L2(G) ‖θ‖L2(G) EOC(e0) EOC(curl e0) EOC(θ)
√

3× 1/4 0.697211 5.54104 0.0242162 – – –√
3× 1/8 0.410991 2.94379 0.0104552 0.7625 0.9125 1.2118√
3× 1/12 0.285927 1.85786 0.00574651 0.8949 1.1351 1.4761√
3× 1/16 0.216505 1.31478 0.0033278 0.9668 1.2019 1.8989

Figure 3. Isosurfaces for the magnitude of Re(uH) for k = 12 (left) and k = 9 (right).

the scatterer is forbidden for k = 9. We consider the magnitude of the real part of uH (the macroscopic part of
the HMM-approximation with H = h =

√
3× 1/16) and plot it in Figure 3. The isosurfaces are almost parallel

planes for k = 12 indicating normal, almost undisturbed propagation of the wave through the scatterer. Note
that the effective wave speed inside the scatterer does not differ greatly from the one outside in our choice of
material parameters. In contrast, the scatterer has a significant influence on the wave propagation for k = 9, as
we can deduce from the distorted wavefronts in Figure 3, right.

To compare this in more detail, we study two-dimensional representations in the plane x2 = 0.545 in Figure 4.
There we depict the x2-component, which is the principal one due to the polarization of the incoming wave. The
top row shows again the macroscopic part uH of the HMM-approximation and we see the expected exponential
decay of the amplitude inside the scatterer for k = 9 (top right), while the amplitude is not affected for
k = 12. The zeroth order approximation u0

HMM := uH +∇yuh,2(·, ·δ ) + uh,3(·, ·δ ) in the bottom row of Figure 4
explains this effect. The (resonant) amplitudes inside the inclusions are much higher for k = 9 than for k =
12. Wavenumber k = 9 almost coincides with the eigen resonance of the inclusions, which explains the high
amplitudes. This implies that a lot of the waves’ energy is confined to the inclusions and thus the wave amplitude
is decaying throughout the scatterer. In contrast for the wavenumber k = 12 the higher amplitudes inside the
inclusions are solely due to the different material parameters and do not trigger any resonances, so that the
overall wave propagation remains undisturbed.
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Figure 4. In the plane x2 = 0.545: x2-component of Re(uH) (top row) and of Re(u0
HMM)

(bottom row) for k = 12 (left column) and k = 9 (right column).

Conclusion

We suggested a new Heterogeneous Multiscale Method (HMM) for the Maxwell scattering problem with
high contrast. A two-scale limit problem is obtained via two-scale convergence, which is equivalent to existing
homogenization results in the literature, but has some advantages for analysis and numerics. The stability and
regularity of the homogenized system is analyzed rigorously and thereby, the first stability result for time-
harmonic Maxwell’s equations with impedance boundary condition and non-constant coefficients is proved. The
HMM is reformulated as direct finite element discretization of the two-scale equation, which is crucial for the
numerical analysis. Well-posedness, quasi-optimality and a priori error estimates in energy and dual norms are
shown under an (unavoidable) resolution condition linking the mesh size and the wavenumber and which depends
on the polynomial stability. Numerical experiments verify the developed convergence results. The comparison of
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the HMM-approximation (with the discrete correctors) to a full reference solution of the heterogeneous problem
is subject of future research.
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