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1.Introduction

Graphene is a new nanomaterial which has been discovered a few years ago, Novoselov et al.
(2004); Novoselov et al. (2005); Zhang et al. (2005) and has demonstrated unique mechanical,
electrical, thermal and optical properties, see review articles Katsnelson (2007); Castro Neto
et al. (2009); Geim (2009). This is a one-atom-thick layer of carbon atoms arranged in a highly
symmetric two-dimensional honey-comb lattice, Figure 1. Graphene exhibits many interesting
fundamental physical properties such as the minimal electrical conductivity Novoselov et al.
(2005); Zhang et al. (2005); Katsnelson (2006); Nomura & MacDonald (2007); Tan et al. (2007),
unconventional quantum Hall effect Novoselov et al. (2005); Zhang et al. (2005) observable
up to room temperatures Novoselov et al. (2007), Klein tunneling Stander et al. (2009); Young
& Kim (2009), optical conductivity determined only by the fine structure constant Ando et al.
(2002); Kuzmenko et al. (2008); Nair et al. (2008) and many other. Graphene promises many
electronic applications like terahertz transistors, photodetectors, transparent electrodes for
displays, gas and strain sensors and so on, Geim (2009).
Microscopically, the most distinguished feature of graphene is that, in contrast to other
(semiconductor) materials with two-dimensional electron gases, electrons and holes in
graphene have not a parabolic, but a linear energy spectrum near the Fermi level Wallace
(1947); McClure (1956); Slonczewski & Weiss (1958). The Brillouin zone of graphene electrons
has a hexagonal shape, Figure 2, and near the corners Kj, j = 1, . . . 6, the electron and hole
energy bands Elp touch each other; here p is the quasi-momentum of an electron and l is the
band index (l = 1 for holes and l = 2 for electrons). The spectrum Elp near these, so called
Dirac points is linear,

Elp = (−1)lV|p − h̄Kj| = (−1)lV|p̃| = (−1)l h̄V|k − Kj|, (1)

where k is the quasi-wavevector, p̃ = p − h̄Kj and V is the Fermi velocity. In graphene V ≈
108 cm/s, so that electrons and holes behave like massless “relativistic” particles with the
effective “velocity of light” V ≈ c/300, where c is the real velocity of light. In the intrinsic
graphene the chemical potential µ (or the Fermi energy EF) goes through Dirac points, µ = 0.
If graphene is doped or if a dc (gate) voltage is applied between the graphene layer and a
semiconductor substrate (in a typical experiment the graphene sheet lies on a substrate, e.g.
on Si-SiO2) the chemical potential can be shifted to the upper or lower energy band, so that
the electron or hole density ns can be varied from zero up to ≈ 1013 cm−2. It is the unusual
“relativistic” energy dispersion of graphene electrons (1) that leads to the unique physical
properties of graphene.
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Fig. 1. The honey-comb lattice of graphene. All points of the sublattice A (black circles) are
given by n1a1 + n2a2, of the sublattice B (open circles) by n1a1 + n2a2 + b. Dashed lines show
the boundaries of the elementary cell. a is the lattice constant.
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Fig. 2. The Brillouin zone of graphene. The basis vectors of the reciprocal lattice are G1 and
G2. The vectors Kj, j = 1, . . . , 6, correspond to the corners of the Brillouin zone (the Dirac
points). Here K1 = −K4 = 2πa−1(1/3, 1/

√
3), K2 = −K5 = 2πa−1(2/3, 0),

K3 = −K6 = 2πa−1(1/3,−1/
√

3).

In 2007 it was predicted Mikhailov (2007) that the linear spectrum of graphene electrons (1)
should lead to a strongly nonlinear electromagnetic response of this material. The physical
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origin of this effect is very simple. As seen from (1) the graphene electrons cannot stop and can
move only with the velocity V. If such a particle is placed in the uniform oscillating electric
field E(t) = E0 cos ωt, its momentum will oscillate as p(t) ∝ sin ωt. The velocity of such
particles v = ∂Elp/∂p = Vp̃/|p̃| will then take the value of +V or −V dependent on the sign
of the momentum p̃, i.e. v(t) ∝ sgn(sin ωt). The electric current j(t) induced by the external
field is determined by the velocity, therefore one will have 1

j(t) ∝ sgn(sin ωt) =
4
π

(

sin ωt +
1
3

sin 3ωt +
1
5

sin 5ωt + . . .
)

. (2)

The induced current thus contains higher frequency harmonics nω, n = 3, 5, . . . and hence a
single graphene sheet should radiate electromagnetic waves not only at the frequency ω but
also at nω with n = 3, 5, 7, . . . Mikhailov (2007; 2008); Mikhailov & Ziegler (2008). Graphene
could thus serve as a simple and inexpensive frequency multiplier Mikhailov (2007; 2009). The
nonlinear electromagnetic response of graphene has been also discussed by López-Rodríguez
& Naumis (2008).
Apart from the frequency multiplication effect all other known nonlinear electromagnetic
phenomena should be also observable in this material. For example, irradiation of the
graphene layer by two electromagnetic waves E1(t) and E2(t) with the frequencies ω1 and ω2
should lead to the emission of radiation at the mixed frequencies n1ω1 + n2ω2 with integer
numbers n1 and n2. Since the graphene lattice (Figure 1) has a central symmetry, the even order
effects are forbidden in the infinite and uniform graphene layer, so that n1 + n2 must be an odd
integer. In the third order in the external field amplitudes E1 and E2, apart from the frequencies
ω1, ω2, 3ω1 and 3ω2, the radiation at the mixed frequencies ω1 ± 2ω2 and 2ω1 ±ω2 should be
observed. In a recent experiment Hendry et al. (2010) the coherent emission from graphene at
the frequency 2ω1 − ω2 has indeed been discovered in the near-infrared and visible frequency
range.
In this Chapter we develop a theory of the frequency mixing effect in graphene. We begin
with a discussion of the electronic spectrum and the wave functions of graphene obtained
in the tight-binding approximation (Section 2) and continue by a brief overview of the
linear response theory of graphene in Section 3. Then we study the frequency mixing effects
in graphene within the framework of the quasi-classical approach which works on low
(microwave, terahertz) frequencies (Section 4). In Section 5 we introduce a quantum theory
of the nonlinear electromagnetic response of graphene to high (infrared, optical) frequencies.
A summary of results and the prospects for future research are discussed in Section 6.

2. Energy spectrum and wave functions of graphene

We calculate the spectrum and the wave functions of graphene electrons within the framework
of the tight-binding approximation Wallace (1947); Reich et al. (2002) assuming that both the
overlap and the transfer integrals are nonzero only for the nearest-neighbor atoms. The lattice
of graphene, Figure 1, consists of two triangular sublattices A and B. For the basic vectors
of the A lattice we choose the vectors a1 = a(1/2,

√
3/2) and a2 = a(−1/2,

√
3/2), where

a is the lattice constant (a ≈ 2.46 Å in graphene). The vector b connecting the sublattices is

1 In conventional electron systems with the parabolic spectrum of charge carriers Ep = p2/2m⋆ the
velocity v = ∂Ep/∂p = p/m⋆ is proportional to the momentum, therefore j ∝ v ∝ sin ωt and the
higher frequency harmonics are not generated.
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b = a(0, 1/
√

3). The two-dimensional single-particle Hamiltonian Ĥ0 of graphene can then
be written as

Ĥ0 =
p̂2

2m
+ ∑

a

[Ua(r − a) + Ua(r − a − b)], (3)

where p̂ = −ih̄(∂x , ∂y) is the two-dimensional momentum operator, m is the free electron
mass and Ua is the atomic potential. Following the standard procedure of the tight binding
approximation we get the energy Elk and the wave functions |lk〉 of graphene electrons as

Elk = (−1)lt|Sk|, (4)

|lk〉 ≡ Ψlk(r) =
1√
S

eik·rulk(r), (5)

ulk(r) =

√

A

2 ∑
a

e−ik·(r−a)
[

(−1)lζkψa(r − a) + ψa(r − a − b)
]

, (6)

where l = 1, 2, k = (kx, ky) is the quasi-wavevector, t is the transfer integral (in graphene
t ≈ 3 eV), S and A are the areas of the sample and of the elementary cell, respectively, and ψa

is the atomic wave function. The functions Sk and ζk in (4) and (6) are defined as

Sk = 1 + eik·a1 + eik·a2 = 1 + 2 cos(kxa/2)ei
√

3kya/2, (7)

ζk = Sk/|Sk|. (8)

They are periodic in the k-space and satisfy the equalities

S−k = S⋆

k; Sk+G = Sk; ζ−k = ζ⋆

k; ζk+G = ζk; (9)

where G are the 2D reciprocal lattice vectors. Similar relations are valid for the energies Elk

and the wave functions Ψlk(r),

El,−k = Elk; Ψl,−k(r) = Ψ⋆

lk(r); El,k+G = Elk; Ψl,k+G(r) = Ψlk(r). (10)

The basic reciprocal lattice vectors G1 and G2 can be chosen as G1 = (2π/a)(1, 1/
√

3), G2 =

(2π/a)(1,−1/
√

3), see Figure 2.
The energy dispersion (4) is shown in Figure 3. At the corners of the Brillouin zone, in the
Dirac points k = Kj, the function Sk vanishes and at |k − Kj|a = |δkj|a ≪ 1 one has

Sk ≈ −
√

3a

2

[

(−1)jδk
j
x + iδk

j
y

]

, (11)

ζk = −
(−1)jδk

j
x + iδk

j
y

√

(δk
j
x)2 + (δk

j
y)2

. (12)

The energy (4) then assumes the form (1) with the velocity V =
√

3ta/2h̄ ≈ 108 cm/s.
Using the wave functions (5)–(6) one can calculate the matrix elements of different physical
quantities. For example, for the function eiq·r we get

〈l ′k′|eiq·r|lk〉 =
1
2

δk′,k+q

[

1 + (−1)l ′+lζ⋆

k+qζk

]

. (13)
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Fig. 3. The bandstructure of graphene electrons Elk calculated in the tight-binding
approximation, Eq. (4).

In the limit q → 0 we obtain from here the matrix elements of the coordinate

〈l ′k|x̂α|lk〉 =
i

2
(−1)l ′+lζ⋆

k

∂ζk

∂kα
(14)

and of the velocity operator v̂ = p̂/m,

〈lk|v̂α|lk〉 =
1
h̄

∂Elk

∂kα
, 〈lk|v̂α|l̄k〉 =

Elk − El̄k

2h̄
ζ⋆

k

∂ζk

∂kα
. (15)

Here l̄ means not l, i.e. l̄ = 2 if l = 1 and l̄ = 1 if l = 2.

3. Linear response

Before presenting our new results on the nonlinear frequency mixing effects we will briefly
overview the linear response theory of graphene. We will calculate the linear response
dynamic conductivity of graphene σ(1)(ω) ≡ σ(ω) which has been studied theoretically in
Refs. Gusynin & Sharapov (2006); Gusynin et al. (2006); Nilsson et al. (2006); Abergel & Fal’ko
(2007); Falkovsky & Pershoguba (2007); Falkovsky & Varlamov (2007); Mikhailov & Ziegler
(2007); Peres et al. (2008); Stauber, Peres & Castro Neto (2008) and experimentally in Refs.
Dawlaty et al. (2008); Li et al. (2008); Mak et al. (2008); Stauber, Peres & Geim (2008).

3.1 Quantum kinetic equation

The system response is described by the quantum kinetic (Liouville) equation

ih̄
∂ρ̂

∂t
= [Ĥ, ρ̂] (16)
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for the density matrix ρ̂, where

Ĥ = Ĥ0 + Ĥ1 = Ĥ0 − eφ(r, t), (17)

is the Hamiltonian of graphene in the presence of the external electric field E(r, t) = −∇φ(r, t)
and e > 0 is the electron charge. We will be interested in the response to the uniform electric
field but at this step will describe the electric field by the potential

φ(r, t) = φqωeiq·r−iωt+γt, γ → +0, (18)

and will take the limit q → 0 later on. The unperturbed Hamiltonian Ĥ0 is given by Eq. (3). It
has the eigenenergies and eigenfunctions,

Ĥ0|lkσ〉 = Elk|lkσ〉, (19)

given by equations (4) and (5), respectively; we have also introduced the spin index σ here.
Expanding the density matrix up to the first order in the electric field,

ρ̂ = ρ̂0 + ρ̂1, (20)

where ρ̂0 satisfies the equation

ρ̂0|lkσ〉 = f0(Elk)|lkσ〉, (21)

and f0 is the Fermi function, we get

〈l ′k′σ′|ρ̂1|lkσ〉 =
f0(El ′k′) − f0(Elk)

El ′k′ − Elk − h̄(ω + i0)
〈l ′k′σ′|Ĥ1|lkσ〉, (22)

〈l ′k′σ′|Ĥ1|lkσ〉 = −eφqωδσσ′〈l ′k′|eiq·r|lk〉. (23)

Calculating the first order current j(r, z, t) = jqωeiq·r−iωt+γtδ(z) we obtain

jqω = − e

2S
Sp

(

ρ̂1[v̂, e−iq·r]+
)

=
e2gs

2S
φqω ∑

kk′ll ′
〈lk|[v̂, e−iq·r]+|l ′k′〉 f0(El ′k′) − f0(Elk)

El ′k′ − Elk − h̄(ω + iγ)
〈l ′k′|eiq·r|lk〉, (24)

where j = (jx, jy) and [. . . ]+ denotes the anti-commutator. Taking the limit q → 0 gives the
frequency dependent conductivity σαβ(ω) which describes the linear response of graphene to
a uniform external electric field. The conductivity σαβ(ω) consists of two contributions, the
intra-band (l = l ′) and the inter-band (l �= l ′) conductivities.

3.2 Intra-band conductivity

The intra-band conductivity reads

σintra
αβ (ω) =

−ie2gs

h̄2(ω + iγ)S
∑
lk

∂Elk

∂kα

∂ f0(Elk)

∂E

∂Elk

∂kβ
, (25)

where gs = 2 is the spin degeneracy and the summation over k is performed over the whole
Brillouin zone. If the chemical potential µ lies within ∼ 1 eV from the Dirac points (which is
typically the case in the experiments) and if the photon energy h̄ω does not exceed 1 − 2 eV
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the main contribution to the integrals is given by the vicinity of Dirac points and one can use
the linear (Dirac) approximation (11), (1). Then one gets σintra

αβ (ω) = σintra(ω)δαβ and

σintra(ω) =
ie2gsgvT

2πh̄2(ω + iγ)
ln

[

2 cosh
( µ

2T

)]

, (26)

where T is the temperature and gv = 2 is the valley degeneracy factor. At low temperatures
T ≪ |µ| the formula (26) gives

σintra(ω) =
e2gsgv|µ|

4πh̄2
i

ω + iγ
=

nse2V2

|µ|
i

ω + iγ
=

nse2

m⋆

i

ω + iγ
, (27)

where the last equalities are written in the Drude form with the phenomenological scattering
rate γ, the “effective mass” of graphene quasiparticles at the Fermi level m⋆ = |µ|/V2 and the
charge carrier density

ns =
gsgv

4
µ2

πh̄2V2
=

gs gv

4
k2

F

π
. (28)

The value kF in (28) is the Fermi wavevector.
The intra-band conductivity has a standard Drude form. In the collisionless approximation
ω ≫ γ it is an imaginary function which falls down with the growing frequency as 1/ω. In
the currently available graphene samples with the mobility µe ≃ 200000 cm2/Vs Orlita et al.
(2008); Geim (2009) and the electron density ns ≃ 1012 cm−2 the condition ω � γ is satisfied
at ω/2π � 0.1 THz.

3.3 Inter-band conductivity

For the inter-band conductivity σinter
αβ (ω) which is dominant at high (infrared, optical)

frequencies we get in the limit q → 0

σinter
αβ (ω) =

ie2h̄gs

S ∑
k,l �=l ′

f (El ′k)− f (Elk)

El ′k − Elk − h̄(ω + iγ)

〈lk|v̂α|l ′k〉〈l ′k|v̂β|lk〉
El ′k − Elk

. (29)

Using the matrix elements (15), assuming that γ → 0 and considering again only the vicinity
of Dirac points one gets σinter

αβ (ω) = σinter(ω)δαβ, where

σinter(ω) =
ie2gsgv

16πh̄

∫ ∞

0
dk

sinh(h̄Vk/T)

cosh(µ/T) + cosh(h̄Vk/T)

(

1
k + ω/2V + i0

− 1
k − ω/2V − i0

)

.

(30)
The real part of the inter-band conductivity (30) is calculated analytically at all values of ω, µ
and T,

Re σinter(ω) =
e2gsgv

16h̄

sinh(h̄|ω|/2T)

cosh(µ/T) + cosh(h̄|ω|/2T)
. (31)

At high frequencies h̄ω ≫ |µ|, T this gives the remarkable result of the universal optical
conductivity

σopt(ω) =
e2gs gv

16h̄
=

e2

4h̄
, h̄ω ≫ |µ|, T, (32)
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which depends only on the fundamental constants e and h̄, Ando et al. (2002); Kuzmenko et al.
(2008); Nair et al. (2008). The imaginary part is determined by the principal value integral

Im σinter(ω) =
e2gs gv

16πh̄
−
∫ ∞

0
dx

sinh x

cosh(|µ|/T) + cosh x

(

1
x + h̄ω/2T

− 1
x − h̄ω/2T

)

, (33)

which can be analytically calculated at low temperatures T ≪ |µ|. Together with the real part
this gives

σinter(ω) =
e2gsgv

16h̄

(

θ(h̄ω − 2µ) +
i

π
ln

∣

∣

∣

∣

1 − h̄ω/2|µ|
1 + h̄ω/2|µ|

∣

∣

∣

∣

)

, (34)

see Figure 4. At high frequencies the inter-band conductivity tends to a (universal) constant
and exceeds the intra-band contribution if h̄ω � |µ|. Finally, the total conductivity σ(ω) =
σintra(ω) + σinter(ω) in the collisionless limit ω ≫ γ has the form

σ(ω) =
e2gs gv

16h̄

(

4i|µ|
πh̄ω

+ θ(h̄ω − 2|µ|) +
i

π
ln

∣

∣

∣

∣

1 − h̄ω/2|µ|
1 + h̄ω/2|µ|

∣

∣

∣

∣

)

(35)

and is shown in Figure 5.
Summarizing the linear response results on the dynamic conductivity of graphene one sees
that at low frequencies h̄ω ≪ |µ| the conductivity σ(ω) is imaginary and is described by
the classical Drude formula. It corresponds to the intra-band response of the system. At high
frequencies h̄ω ≫ |µ| the real part of the quantum inter-band conductivity dominates. At
the typical charge carrier densities of ns ≃ 1011 − 1013 cm−2 the transition between the
two regimes h̄ω ≃ |µ| lies in graphene at the frequencies ω/2π ≃ 10 − 100 THz. The
low-frequency limit h̄ω ≪ |µ| thus corresponds to the radio, microwave and terahertz
frequencies, while the high-frequency limit – to the infrared and optical frequencies. The
collisions can be ignored, in the high quality samples, at ω/2π � 0.1 THz.

4. Frequency mixing: Quasi-classical theory

In this Section we consider the frequency mixing effect using the quasi-classical approach
based on the solution of the kinetic Boltzmann equation. The quasi-classical solution is simpler
and, within the collisionless approximation, can be obtained non-perturbatively, at arbitrary
values of the external electric field amplitudes Mikhailov (2007). The quasi-classical theory is
valid at h̄ω ≪ |µ|, which corresponds to the very broad and technologically important range
of radio, microwave and terahertz frequencies.

4.1 Boltzmann kinetic equation

Consider the classical motion of massless particles (1) under the action of the external electric
field E(t). The evolution of the electron distribution function fp(t) is determined by the
Boltzmann kinetic equation which has the form

∂ fp

∂t
− eE(t)

∂ fp

∂p
= 0 (36)

in the collisionless approximation. Its exact solution is

f (p, t) =

[

1 + exp
(

V|p − p0(t)| − µ

T

)]−1

, (37)
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Fig. 4. The inter-band conductivity of graphene at γ/µ = 0.01 and three different
temperatures as shown in the Figure. The conductivity is measured in units e2gsgs/16h̄.
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Fig. 5. The total conductivity of graphene at γ/µ = 0.01 and three different temperatures as
shown in the Figure. The conductivity is measured in units e2gs gs/16h̄. At low frequencies
h̄ω � |µ| the conductivity is imaginary and corresponds to the intra-band classical
contribution. At high frequencies h̄ω � |µ| the quantum inter-band contribution dominates.

where p0(t) satisfies the classical equation of motion dp0(t)/dt = −eE(t). The current can
then be calculated as

j(t) = −e
gsgvV

(2πh̄)2

∫

dpxdpy
p

√

p2
x + p2

y

1

1 + exp
(

V|p−p0(t)|−µ
T

) . (38)
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Assuming now that the temperature is low, T ≪ µ, and expanding the right-hand side of Eq.
(38) we get

− j(t)

ensV
=

P(t)
√

P2(t) + 1

[

1 +
3
8

P2(t)

[P2(t) + 1]2

]

, (39)

where

P(t) =
p0(t)

pF
. (40)

Notice that the expansion parameter in Eq. (39) is |P(t)/(P2(t) + 1)| ≪ 1, i.e. the result (39) is
valid both at small and large |P(t)|. In the regime of low electric fields |P(t)| ≪ 1 the current
is

− j(t)

ensV
≈ P(t)

(

1 − 1
8

P2(t)

)

. (41)

4.2 Frequency mixing response

If the graphene layer is irradiated by two waves with the frequencies ω1, ω2 and the both
waves are linearly polarized in the same direction,

E(t) = E1 cos ω1t + E2 cos ω2t, E1 ‖ E2, (42)

then

p0(t) = −e

(

E1
ω1

sin ω1t +
E2

ω2
sin ω2t

)

, (43)

the current is parallel to the electric fields and equals

j(t)

ensV
= α1

(

1 − 3
32

α2
1 −

3
16

α2
2

)

sin ω1t

+
α3

1
32

sin 3ω1t +
3α2

1α2

32

[

sin(2ω1 + ω2)t − sin(2ω1 − ω2)t
]

+ . . . , (44)

where

αj =
eEj

pFωj
=

eEjV

|µ|ωj
, j = 1, 2. (45)

The omitted terms marked by the dots are obtained from the present ones by replacing ω1 ↔
ω2 and α1 ↔ α2. We will call αj the field parameters. The field parameter α = eEV/µω is the
work done by the electric field during one oscillation period (eEV/ω) divided by the average
energy of electrons µ, Mikhailov (2007).
If the field parameters are small, αj ≪ 1, Eq. (44) describes the low-frequency linear response,
since ensVαj = σintra(ωj)Ej, see Eq. (27). If αj are not negligible, the first line in (44) represents
the second order corrections to the linear conductivity, the first term in the second line gives
the third harmonics generation effect, Mikhailov (2007), and the last terms in the second
line – the frequency mixing. The amplitudes of the third-order mixed frequency current

j
(3)
(2ω1±ω2)

(t) = j
(3)
(2ω1±ω2)

sin(ω2 ± 2ω1)t can be rewritten as

j
(3)
(2ω1±ω2)

=
3

32
ensV

(

eE1
pFω1

)2 eE2

pFω2
=

3
32

σintra(ω2)E2α2
1, (46)
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i.e., up to a numerical factor, the third order current is the product of the low-frequency
Drude conductivity (27), the electric field E2 and the squared field parameter α2

1. One sees
that the amplitude of the third order mixed-frequency current will be comparable with the
linear response current if the field parameter α is of order unity (or larger). This means that
the required electric field is determined by the inequality

E �
pFω

e
=

h̄ω
√

πns

e
. (47)

The lower the charge carrier density ns and the radiation frequency ω the smaller is the electric
field needed for the observation of the nonlinear effects. If, for example, the density is ≃ 1011

cm−2 and the frequency is ≃ 0.5 THz, Eq. (47) gives E � 1 kV/cm which corresponds to the
incident wave power ≃ 2 kW/cm2.
If the linear polarizations of the two incident waves ω1 and ω2 are perpendicular to each other,
E1 · E2 = 0, the current at the mixed frequencies 2ω1 ± ω2 is three times smaller than for the
parallel polarization. This is a general result which is also valid in the quantum regime.

5. Frequency mixing: Quantum theory

The full quantum theory of the nonlinear frequency mixing effects in graphene is substantially
more complicated and is yet to be developed. In this paper we only consider the frequency
mixing response at the frequency ωe ≡ 2ω1 − ω2 and calculate it under the conditions

h̄ω1, h̄ω2, h̄ωe ≫ |µ|, (48)

relevant for the experiment of Hendry et al. (2010).

5.1 Quantum kinetic (Liouville) equation

In order to investigate the nonlinear response problem in the quantum regime (48) we have
to solve the quantum kinetic equation (16) in, at least, the third order in the external field
amplitudes Ej, j = 1, 2. We do this using the perturbation theory. Expanding the density
matrix ρ̂ in powers of the electric fields, ρ̂ = ρ̂0 + ρ̂1 + ρ̂2 + ρ̂3 + . . . , we get from (16) a set of
recurrent equations

ih̄
∂ρ̂n

∂t
= [Ĥ0, ρ̂n] + [Ĥ1, ρ̂n−1], n = 2, 3, . . . (49)

for ρ̂n. At high frequencies (48) we can write the Hamiltonian Ĥ1 in the form

Ĥ1 = (eE1x cos ω1t + eE2x cos ω2t) eγt = hω1 ei(ω1−i0)t + hω2 ei(ω2−i0)t + {ωj → −ωj}, (50)

where hω1 = h−ω1 = eE1x/2, hω2 = h−ω2 = eE2x/2 and it is assumed that γ → 0. In the first
order in Ej we get

〈λ|ρ̂1|λ′〉 = ∑
ω={±ω1,±ω2}

fλ′ − fλ

Eλ′ − Eλ − h̄ω + i0
〈λ|hω |λ′〉eiωt ≡ ∑

ω{±ω1,±ω2}
ρ1ωeiωt, (51)

where we have used a short notation |λ〉 for the set of three quantum numbers |lkσ〉. The right
hand side of Eq. (51) contains the oscillating exponents with the frequencies ±ω1 and ±ω2.
For the matrix elements of ρ̂2 we obtain, similarly,

〈λ|ρ̂2|λ′〉 = ∑
ωa,ωb

〈λ|[hωa , ρ1ωb
]|λ′〉

Eλ′ − Eλ − h̄ωa − h̄ωb + i0
ei(ωa+ωb)t. (52)
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The summation here is performed over the sets of frequencies ωa = {±ω1,±ω2} and
ωb = {±ω1,±ω2}, i.e. the right hand side in (52) contains the oscillating terms with the
frequencies ±2ω1, ±2ω2, ±(ω1 + ω2), ±(ω1 − ω2) and a time independent term with ω = 0.
We will denote this set of frequencies as ωc = {±2ω1,±2ω2,±(ω1 + ω2),±(ω1 − ω2), 0}. The
commutator [hωa , ρ1ωb

] is calculated as

〈λ|[hωa , ρ1ωb
]|λ′〉 = ∑

λ′′

(

〈λ|hωa |λ′′〉〈λ′′|ρ1ωb
|λ′〉 − 〈λ|ρ1ωb

|λ′′〉〈λ′′|hωa |λ′〉
)

,

where the matrix elements 〈λ|hω |λ′〉 and 〈λ|ρ1ω |λ′〉 are known from (14) and (51).
Then, for the matrix elements of ρ̂3 we get

〈λ|ρ̂3|λ′〉 = ∑
ωa,ωc

〈λ|[hωa , ρ2ωc
]|λ′〉

Eλ′ − Eλ − h̄ωa − h̄ωc + i0
ei(ωa+ωc)t. (53)

Now the right hand side of Eq. (53) contains the terms with the frequencies ±ω1, ±ω2, ±3ω1,
±3ω2, ±(2ω1 ± ω2) and ±(2ω2 ± ω1).
The general formulas (51), (52) and (53) allows one, in principle, to calculate the time
dependence of the matrix elements of the density matrix in the third order in Ej. Then, using
the formula

jα(t) = − e

S ∑
λλ′

〈λ′|v̂α|λ〉〈λ|ρ̂1 + ρ̂2 + ρ̂3 + . . . |λ′〉 (54)

one can find the time dependence of the current in the same order of the perturbation theory.
This general expression for the current will contain the terms with the frequencies ω1, ω2, 3ω1,
3ω2, as well as (2ω1 ± ω2) and (2ω2 ± ω1).

5.2 Optical frequency mixing at ωe = 2ω1 − ω2
Being interested in this work only in the response at the frequency of the emitted light ωe ≡
2ω1 − ω2 (see Hendry et al. (2010)) we get, after quite lengthy calculations,

j
(3)
(ωe)

(t) =
e4gs

8h̄2 E2
1E2

2ω1 − ω2

ω1(ω1 − ω2)2 eiωet 1
S ∑

k

( f2k − f1k)〈1k|vx|2k〉〈1k|x|2k〉3

×
(

− 2
E2k − E1k + h̄ω1 − i0

+
2

E2k − E1k − h̄ω1 + i0

+
1

E2k − E1k + h̄ω2 − i0
− 1

E2k − E1k − h̄ω2 + i0

− 1
E2k − E1k − h̄ωe + i0

+
1

E2k − E1k + h̄ωe − i0

)

+ (ωj → −ωj). (55)

The current j
(3)
(ωe)

(t) contains the resonant terms corresponding to the vertical optical
transitions at E2k − E1k = h̄ω1, h̄ω2 and h̄ωe. As it follows from the linear response theory
(Section 3), the largest contribution to the current at the optical frequencies h̄ω ≫ |µ| is given
by the absorption terms proportional to δ(E2k − E1k − h̄ω). The same is valid in the nonlinear
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regime too. Taking into account in (55) only the terms ∝ δ(E2k − E1k − h̄ω1,2,e) we finally get

j
(3)
(ωe)

(t) ≈ 3e4gs gvV2

256h̄3 E2
1E2

2ω1 − ω2

ω1(ω1 − ω2)2

[

2
ω2

1
− 1

ω2
2
− 1

(2ω1 − ω2)2

]

cos(2ω1 − ω2)t

= − 9
8

σopt(ω2)E2β2
1F

(

ω2

ω1

)

cos(2ω1 − ω2)t, (56)

where
β1 =

eE1V

h̄ω2
1

(57)

is the optical field parameter and

F(x) =
2 + 2x − x2

3x2(2 − x)
. (58)

Eq. (56) is the main result of this work. It represents the ac electric current induced in the
graphene layer at the frequency ωe = 2ω1 − ω2 by the two incident waves (42) polarized in
the same direction (the current direction coincides with that of the fields). If the two incident
waves are perpendicularly polarized, the numerical prefactor in (56) is reduced (9/8 → 3/8).
As seen from (56), at high frequencies the current depends neither on the chemical potential
µ nor on the temperature T as it should be under the conditions when the vertical inter-band
transitions play the main role. The second line of (56) is written in the form similar to (46):
at the optical frequencies the current is the product of the high-frequency, universal optical
conductivity (32), the electric field E2 and the squared field parameter β2

1. The optical field
parameter β = eEV/h̄ω2 is the work done by the electric field during one oscillation period
(eEV/ω) divided by the photon energy h̄ω (instead of the Fermi energy µ at low frequencies,
Eq. (45)). In addition to the mentioned parameters, the current (56) weakly depends on the
ratio of the two optical frequencies ω2/ω1 which is described by the function (58) shown in
Figure 6. The function F(x) is of order unity if the difference ω2 − ω1 is not very large. If ω1,
ω2 or ωe tend to zero the current (56) has a strong tendency to grow. These limits are very
interesting for future studies but have been excluded from the current consideration by the
conditions (48).
The formula (56) is in good quantitative agreement with the experimental results of Hendry
et al. (2010). The comparison with other materials made in that paper showed that graphene
has much stronger nonlinear properties than typical nonlinear insulators and some metals
(Au). Comparing the experimental results of Hendry et al. (2010) with those of Erokhin
et al. (1987) shows that graphene is also a stronger nonlinear material than a typical
nonlinear semiconductor InSb. Further theoretical and experimental studies of the nonlinear
electrodynamic and optical properties of graphene are therefore highly desirable.

6. Summary and conclusions

Due to the massless energy spectrum of the charge carriers graphene demonstrates strongly
nonlinear electromagnetic properties. In this work we have developed a theory of the
nonlinear frequency mixing effect in graphene. The two physically different regimes have
been considered. At low frequencies, corresponding to the radio, microwave and terahertz
range, the problem is solved within the quasi-classical approach which takes into account the
intra-band response of the material. At high frequencies, corresponding to the infrared and
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Fig. 6. The function F(x) from Eq. (58).

visible light, a quantum theory is developed which takes into account the inter-band optical
transitions.
At the optical frequencies our results quantitatively agree with the recent experimental
findings of Hendry et al. (2010) who have observed the nonlinear electromagnetic response
of graphene for the first time. The results of Hendry et al. (2010) show that in the visible
and near-infrared frequency range the nonlinear parameters of graphene are much stronger
than in many other nonlinear materials. Even more important conclusion is that, according to
our theoretical predictions, the nonlinear response of graphene substantially grows at lower
frequencies. One should expect therefore even stronger nonlinear properties of graphene
at the mid-infrared, terahertz and microwave frequencies which would be of extreme
importance for the future progress of the nonlinear terahertz- and optoelectronics.
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