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Creation of ray modes by strong random scattering
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In the presence of strong random scattering the behavior of particles with degenerate spectra is
quite different from Anderson localization of particles in a single band: it creates geometric states
rather than confining the particles to an area of the size of the localization length. These states are
subject to a Fokker-Planck dynamics with universal drift velocity and disorder dependent diffusion
coefficient. This behavior has some similarity with the unidirectionally propagating edge states in
quantum Hall systems.
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Random scattering of wave-like states (electrons,
photons or acoustic waves) leads either to diffu-
sion for weak random scattering or to Anderson
localization (AL) in the presence of strong random
scattering. AL is a phenomenon where diffusion
or propagation is suppressed because random scat-
tering confines the modes to a finite region, whose
size is characterized by the localization length [1–
3]. The characteristics of AL can be observed in a
pure form for photons [4–6] due to the absence of
an additional particle-particle interaction.

Another interesting phenomenon in disordered
systems is the quantum Hall effect, which is char-
acterized by plateaux in the Hall conductivity
[7]. The latter have been attributed to propagat-
ing edge modes in the otherwise Anderson local-
ized bulk system [8]. Edge modes also exist in
gapped systems without any random scattering.
A simple case is a massive 2D Dirac Hamiltonian,
whose mass sign changes by crossing an edge in
y-direction: The mass is −m for x < 0 and m for
x > 0. The gap 2|m| > 0 prevents the system to
generate any other extended state than that along
the edge. This mode decays exponentially when
we go away from the edge in x-direction. The ap-
pearence of such states can be realized in a pho-
tonic crystal with Faraday effect [9].

It was recently observed that similar one-
dimensional modes can also be generated sponta-
neously by strong scattering in 2D systems without
the existence of any edge [10, 11]. These states,
which will be called ray modes subsequently, are
created in systems with a generalized particle-hole
symmetry. The latter implies spectral degeneracies
[11]. This is caused by the fact that the Hamilto-
nian H acts on states Ψrj that depend on space
coordinates r and on an additional spinor index j,
typically with values j = 1, 2. Then there exists
a unitary matrix U that acts only on the spinor

index and which transforms H into −H∗ as

H = −UH∗U † . (1)

In this paper we will show that ray modes can
be created spontaneously by strong random scat-
tering in systems with spectral degeneracies based
on the relation (1). Starting point is the transition
probability for a particle, governed by the random
Hamiltonian H , to move from the site r′ on a lat-
tice to another lattice site r within the time τ :

Prr′(τ) =
∑

j,j′

〈|〈r, j|e−iHτ |r′, j′〉|2〉d , (2)

where 〈r, j|...|r′, j′〉 is the quantum average and
〈...〉d is the average with respect to randomly dis-
tributed disorder. r and r′ refer to real space coor-
dinates and the indices j, j′ refer to different bands
of the system. Prr′(τ) is a fundamental quantity
from which we can obtain transport and localiza-
tion properties [12, 13].

In the following we will focus on 2D Dirac and
3D Weyl particles and on particles on the square
lattice with π flux. For all these models the Hamil-
tonian reads in sublattice representation

H = ~σ · ~H + σ0V , (3)

where σj (j = 0, 1, 2, 3) are Pauli matrices with
the 2 × 2 unit matrix σ0 and a random potential
V with mean zero and variance 〈VrVr′〉d = gδrr′.
The part with σ1, σ2 provides scattering between
different values of j, which will be crucial for the
subsequent discussion.

The relation (1) is satisfied, for instance, for
the block-diagonal matrix of the 3D gapless Weyl
Hamiltonian diag(σ1p1+σ2p2+σ3p3+V σ0, σ1p1+
σ2p2 − σ3p3 − V σ0) with

U =
1
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where pj is the momentum operator with p∗j =
−pj. Another example is the massive 2D Dirac
Hamiltonian diag(σ1p1+σ2p2+σ3m+V σ0, σ1p1+
σ2p2+σ3m−V σ0), which also obeys condition (1).
It was shown in Ref. [10] that the Fourier com-

ponent P̃rr′(iǫ) of Prr′(τ) agrees for large distances
|r − r′| with a correlation function of a random-
phase model, defined by the random matrix

Crr′ = 2δrr′ −
∑

j,j′

hrj,r′j′

∑

j′′,r′′

h†
r′j′,r′′j′′ , (5)

where the propagator

hrr′ = σ0δrr′ + 2iη(H− iη̄σ0)
−1
rr′ (6)

depends on the random phase Hamiltonian

Hrj,r′j′ = eiαrj H̄rj,r′j′e
−iαr′j′ . (7)

H̄ = 〈H〉d is the average Hamiltonian and η is the
scattering rate while η̄ = η + ǫ. η can be consid-
ered as an empirical parameter or can be calculated
self-consistently from the self-energy of the average
one-particle Green’s function 〈(H−z)−1〉d [14]. In
any case, it increases with variance g of the random
potential.
In the limit ǫ → 0 the propagator h is unitary

since

hh† = 1− 4ǫη(H2 + η̄2σ0)
−1 . (8)

Then there is the following asymptotic relation for
large scales between the random phase model and
the Fourier components of the average transition
probability [10]:

P̃rr′(iǫ) ∼
〈C−1

rr′ detC〉a
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FIG. 1: Four ray modes on a torus, created by strong
random scattering.

whose pole give the dispersion of a ray mode

ωp ∼ 1
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FIG. 3: Square lattice with π flux as defined by the
tight-binding Hamiltonian (18). The dots represent the
sublattice with index j = 1 and the complex numbers
are the Peierls phase factors for hopping from j = 1 to
j = 2.

for the ray mode on a square lattice with π flux
with the same directions as in the two previous
cases. Here it should be noticed that there are
small values for Pj near the four spectral nodes
with akj = 0,±π.
Discussion: The effect of strong random scatter-

ing in models with a Weyl-Dirac Hamiltonian and
for the tight-binding Hamiltonian on the square
lattice with π flux does not lead to conventional
AL but creates four orthogonal ray modes. For pe-
riodic boundary conditions the ray modes are par-
allel to a torus or follow its circumference (cf. Fig.
1). The spontaneous creation of the four ray modes
can be understood as an azimuthal localization at
four discrete angles. In contrast to isotropic diffu-
sion or isotropic Anderson localization, the states
are confined to four orthogonal directions. This
is similar to the uni-directional edge states in the
quantum Hall effect or in photonic crystals with
Faraday effect [9]. The mechanisms for their cre-
ation are rather different, though. Whereas the
edge states are created in gapped photonic crys-
tals at interfaces between regions with different
Chern numbers [9], strong randomness creates the
ray modes spontaneously in an isotropic system
with strong random scattering. This makes them
more accessible in real materials, provided that a
band structure with linear dispersion exists for in-

terband scattering.

The result of the calculation can be summarized
as a mapping of the momentum part of the Dirac-
Weyl Hamiltonian to the ray-mode dispersion as

~σ · ~p → 1
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