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ABSTRACT
The electrodynamics of two-dimensional (2D) dielectric and conducting layers cannot be described by three-dimensional macro-
scopic quantities such as the dielectric constant ε or the refractive index n. By means of the proper averaging of the micro-
scopic Maxwell equations, we derive general macroscopic electrodynamic equations for 2D crystals and discuss some of their
consequences.

© 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5052179

Equations of the macroscopic electrodynamics of bulk
(three-dimensional, 3D) materials are derived from the micro-
scopic Maxwell equations

div e = 4πρ, divh = 0,

rot e = −
1
c
∂h
∂t

, roth =
1
c
∂e
∂t

+
4π
c
j,

(1)

by their averaging over “physically infinitesimal” volume ele-
ments,1 i.e., over dimensions small as compared to the macro-
scopic scales, such as the wavelength of radiation and the
sample dimensions, but large as compared to the inter-atomic
distances. Here, e, h, ρ, and j are the microscopic electric field,
magnetic field, charge density, and current density. As a result
of the averaging, one defines the macroscopic electric field
E = ē, the polarization vector P = χE, which has the meaning
of the dipole moment of a volume element, the electric induc-
tion D = E + 4πP, the dielectric susceptibility χ, the dielectric
constant ε = 1 + 4πχ, and other macroscopic quantities. The
dimensionless quantities χ and ε (we use the more physical
Gaussian system of units), which can in general be functions of
the frequencyω and the wave-vector q of the electromagnetic
field, fully determine the linear response of the medium to the
electromagnetic field. In the nonlinear optics, one defines2 the
higher order susceptibilities, e.g., the third order tensor χ(3)

ijkl
which determines the cubic term in the Taylor expansion of
the function P(E).

The discovery of graphene3–5—a one-atom-thick layer of
carbon atoms—triggered great interest to this, as well as other
two-dimensional (2D) materials,6 both metallic (graphene),
dielectric (e.g., BN) and semiconducting (e.g., MoS2). The
notions of the dielectric susceptibility χ, the dielectric con-
stant ε , and the refractive index n =

√
ε are no longer applica-

ble to these materials since the averaging of microscopic fields
over the physically infinitesimal volume elements is impossi-
ble in the direction perpendicular to the 2D layer. However, by
analogy with 3D materials, many authors continue to charac-
terize the electrodynamic response of graphene and other 2D
crystals, especially their nonlinear properties, by 3D quantities
such as the third susceptibility χ(3) or the nonlinear refractive
index n2. A basic inadequacy of such an approach is evident:
the refractive index n characterizes the change of the phase
velocity of the wave propagating inside the material, but it
makes no sense to talk about the propagation of waves inside
a one-atom-thick layer.

Thus, a fundamental question arises: how to write down
the macroscopic electrodynamic equations for atomically-
thin (in fact, two-dimensional) materials and which physi-
cal quantity should be used to characterize their linear and
nonlinear electrodynamic and optical properties.

In a 3D dielectric, the averaging of the microscopic charge
density over the physically infinitesimal volume elements leads
to the definition of the polarization vector P, ρ → ρ̄ = −divP,
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which has the meaning of the dipole moment per unit volume1
and has the dimension [e/cm2]. In two dimensions, such an
averaging can be performed only over a physically infinitesimal
surface element

ρ → δ(z)ρ̄(r‖ ) = −δ(z)div2 P‖ (r‖ ), (2)

where the subscripts ‖ and 2 indicate 2D vectors or opera-
tors, the vector P‖ = (Px, Py) is the dipole moment of a surface
element (the dimension [e/cm]), and we consider the polar-
ization in the direction parallel to the layer. The correspond-
ing contribution to the polarization current (the dimension
statampere/cm) is

j
‖
= ∂P‖/∂t. (3)

In the presence of external charges ρex(r, t) and currents
jex(r, t) (which can be three-dimensional), the macroscopic
Maxwell equations for a 2D nonmagnetic medium assume the
form

divE = −4πdiv2 P‖δ(z) + 4πρex, (4)

divH = 0, (5)

rotE = −
1
c
∂H
∂t

, (6)

rotH =
1
c
∂E
∂t

+
4π
c
∂P‖
∂t

δ(z) +
4π
c
jex. (7)

Equations (4)–(7) should be completed by a relation between
the 2D polarization vector P‖ and the electric field E(z = 0).
If we ignore a possible spontaneous ferroelectric polariza-
tion of a 2D crystal, predicted in Ref. 7, such a relation for
centrosymmetric dielectric crystals has the form

P‖;α = χ
(1),2D
αβ Eβ + χ(3),2D

αβγδEβEγEδ , (8)

where the Greek indexes take only the values {x, y} and the
fields are taken at z = 0. For conducting crystals, it is more
convenient to use the current-field relation

j‖;α = σ
(1),2D
αβ Eβ + σ(3),2D

αβγδEβEγEδ . (9)

The 2D quantities χ2D and σ2D are similar to the correspond-
ing 3D ones but are measured in different units: for example,
the first- and third-order 2D susceptibilities χ(1),2D and χ(3),2D

are measured in cm and cm3/statvolt2, respectively, in con-
trast to the corresponding 3D quantities which are dimen-
sionless (χ(1)) and measured in cm2/statvolt2 (χ(3)). In general,
the (linear and nonlinear) physical quantities χ2D and σ2D are
complex functions of the frequency ω and the wave-vector q‖
of the electromagnetic field. They are related to each other by
formulas which can be obtained from (3).

The electrodynamics of 2D materials should thus be stud-
ied using the system of Eqs. (4)–(7), and their electrodynamic
properties should be described by the 2D quantities χ2D or
σ2D. Describing, for example, the Kerr effect in graphene, one
should directly relate the experimentally measured quantities
to the linear and nonlinear components of χ2D orσ2D; see, e.g.,
Refs. 8 and 9. The use of unphysical (for 2D crystals) quantities
ε , n, and n2 is inappropriate since they cannot be rigorously

defined for 2D materials. All above said refers to any material
consisting of a single or a few atomic layers, including, e.g.,
tilted Dirac cone 2D systems10–12 and thin films of topological
insulators.13

Let us consider some consequences of the above equa-
tions. The linear and nonlinear dynamic conductivities of
conducting graphene and carbon nanotubes have been theo-
retically studied in many papers.14–30 Electrodynamic proper-
ties of dielectric 2D materials have been discussed to a lesser
extent. Below we discuss some properties of a model dielec-
tric 2D crystal characterized by the linear susceptibility χ(1),2D.
If a 2D crystal has a hexagonal lattice like graphene, the sus-
ceptibility χ(1),2D can be calculated within the tight-binding
approximation assuming different on-site energies of elec-
trons sitting on atoms of different sublattices. This model well
describes the hexagonal boron nitride (BN) and was theoreti-
cally studied, for example, in Refs. 31 and 32, under the name
“gapped graphene.” The spectrum of electrons and holes near
the Dirac points in such a model reads

Elk = (−1)l
√
∆2 + (~3Fk)2, l = 1, 2, (10)

where 2∆ = Egap is the energy gap and 3F is the effective Fermi
velocity of electrons. Assuming that the Fermi energy lies in
the gap and that the temperature is small, T � ∆, one can get
the following analytical expression for the function χ(1),2D(ω):

χ(1),2D(ω) =
e2gsg3
12π∆

F
(
~ |ω |

2∆

)
, (11)

where gs and g3 are the spin and valley degeneracies (gsg3 = 4)
and

F(Ω) =
3
8

(
1 +Ω2

|Ω |3
ln

�����
1 + |Ω |
1 − |Ω |

�����
−

2
Ω2

)
+ i

3π
8
Θ( |Ω | − 1)

1 +Ω2

Ω3
. (12)

The frequency dependence of real and imaginary parts of the
function F(Ω) [Eq. (12)] is shown in Fig. 1. The susceptibility has
a logarithmic divergence at the frequency ~—ω— = 2∆ = Egap

FIG. 1. The frequency dependence of the real and imaginary parts of the function
F(Ω), defined by Eq. (12).
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corresponding to the inter-band transition between the
valence and conduction bands. At low frequencies Ω � 1, the
function F(Ω) tends to unity, F(Ω → 0) = 1, so that the 2D
static susceptibility is

χ
(1),2D
ω→0 =

e2

3π∆
. (13)

It dramatically grows when the band gap decreases. If ∆ = 1 eV
(Egap = 2∆ = 2 eV), the static susceptibility (13) equals χ(1),2D

ω→0 =

0.153 nm; if the gap lies in the terahertz range, it is several
orders of magnitude larger.

The third-order nonlinear susceptibility χ(3),2D can be
calculated within the tight binding approximation, in a sim-
ilar way as for graphene.28 Within the Dirac Hamiltonian
approach, it was done in Ref. 32.

If an electromagnetic wave is normally incident on a 2D
dielectric layer characterized by the susceptibility (11), the
transmission coefficient is determined by the formula T(ω) =
—1 − 2πiωχ(1),2D(ω)/c—−2. Its frequency dependence is shown
in Fig. 2. At small frequencies, ω � c∆/e2, the function T(ω)
decreases quadratically with the growing frequency,

T(ω) =

1 +

(
2e2ω

3c∆

)2

−2

' 1 − Dω2, (14)

with the coefficient D ∝ 1/∆2 determined by the bandgap.
At frequencies higher than 2∆, the inter-band absorption
is switched on and the transmission coefficient falls down.
Notice that at the absorption edge ~ω ' 2∆, a single dielec-
tric 2D layer (e.g., a monolayer of BN) absorbs more than 4% of
the incident radiation energy which is about twice as large as
in graphene ('2.3%).

Now consider the static screening of a point charge
Qδ(r) = Qδ(r‖ )δ(z) placed in the plane of a 2D dielectric.
The Poisson equation for the electric potential has the form

∆φ + 4πχ(1),2D
∆2φδ(z) = −4πQδ(r‖ )δ(z). (15)

FIG. 2. The transmission coefficient of a wave passing through a 2D dielectric layer
with the susceptibility χ(1),2D [Eq. (11)] as a function of frequency Ω = ~ω/2∆.

FIG. 3. The potential (16) as a function of R = r /2πχ(1),2D for θ = 0 (the direction
normal to the 2D plane) and θ = π/2 (the direction parallel to the 2D plane). The
green dashed-dotted curve shows the unscreened Coulomb potential 1/r. The inset
shows the function C(θ) [Eq. (18)] in the interval from θ = 0 to θ = π/2.

Its solution,

φ(r) =
Q

2πχ(1),2D

∫ ∞
0

f(ξR, θ)
1 + ξ

dξ , (16)

is shown in Fig. 3; here f(t, θ) = e−tcosθ J0(t sin θ), J0 is the Bessel
function, R = r/2πχ(1),2D, and θ is the angle between the vector
r and the z-axis. At a large distance from the charge, R � 1,
Eq. (16) gives the unscreened Coulomb potential φ(r) ≈ Q/r.
At smaller distances R . 1, the r-dependence of the screened
Coulomb potential is logarithmic,

φ(r) ≈
Q

2πχ(1),2D

(
ln

2πχ(1),2D

r
+ C(θ)

)
, (17)

and depends on the angle θ

C(θ) =
∫ ∞

1

f(t, θ)
t

dt −
∫ 1

0

1 − f(t, θ)
t

dt. (18)

In the directions perpendicular (θ = 0) and parallel (θ = π/2)
to the 2D plane, the integrals in (18) are calculated analyti-
cally, C(0) = −γ and C(π/2) = ln 2 − γ (γ = 0.577 . . . is the Euler
constant). At arbitrary angles θ, the function C(θ) is shown
in the inset of Fig. 3. The 2D dielectric substantially screens
the field of the point charge at the distance smaller than or
of order of the susceptibility length χ(1),2D which lies between
∼0.1 µm and ∼0.1 nm if the bandgap varies from several meV to
several eV.

To summarize, we have shown that the standard proce-
dure of averaging microscopic electromagnetic fields which is
admitted in the macroscopic electrodynamics of 3D materi-
als is inapplicable to 2D crystals like graphene and graphene
related materials. We have performed a proper averaging of
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microscopic Maxwell equations and derived the correspond-
ing macroscopic electrodynamic equations suitable for the
description of 2D crystals. We have shown that electrody-
namic properties of such crystals are adequately described by
two-dimensional quantitiesσ2D or χ2D. The three-dimensional
quantities such as χ(3);3D, the dielectric function ε , and the
refractive index n =

√
ε (linear and nonlinear) cannot be prop-

erly defined and should not be used in the electrodynamics of
2D crystals.

The work has received funding from the European Union’s
Horizon 2020 research and innovation programme Graphene
Core 2 under Grant Agreement No. 785219.
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