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Anderson localization is studied for two-dimensional Dirac fermions in the presence of strong
random scattering. Averaging with respect to the latter leads to a graphical representation of the
correlation function with entangled random walks and three-vertices which connect three different
types of propagators. This approach indicates Anderson localization along a semi-infinite line, where
the localization length is inversely proportional to the scattering rate.

I. INTRODUCTION

The physics of diffusion and Anderson localization is based on the picture that quantum particles
scatter on impurities or defects of the underlying lattice structure. This represents a complex dynamical
system which can be treated in practice only by some simplifying assumptions. First, we consider only
independent particle of the system and average over all possible scattering effects. For the latter we
introduce a static distribution by assuming that the relevant scattering processes happen only on time
scales that are large in comparison to the tunneling process of the quasiparticle in the lattice.
For the diffusive regime of such a disordered system exist powerful methods, such as the nonlinear

sigma model [1–3] and the weak-localization approach [4–6]. The latter is based on a perturbation series
in powers of 1/kF l, where kF is the Fermi wavector and l the mean-free path. This approach, however, is
not directly applicable if kF ∼ 0, which is, for instance, the case for Dirac fermions at the spectral nodes
[7–10]. The special transport properties at these nodes have attracted great interest in the context of
graphene [11, 12] and topological insulators [13]. Therefore, it is important to develop a flexible approach
which allows us to study the related physics.
An alternative perturbative approach to the above mentioned methods was suggested recently, based on

the idea that Eb/η is a small parameter (Eb is the band width, η the scattering rate) [14]. The scattering
rate is related to the scattering time τ by η = h̄/τ and to the mean-free path l by η = h̄vF /l (vF is the
Fermi velocity). Thus, in contrast to the weak-localization approach the expansion parameter Ebl/h̄vF
depends on the bandwidth rather than on the Fermi wavevector kF . This approach enables us to study
the regime with short mean-free path l, where we expect Anderson localization. The latter phenomenon is
connected with a special type of symmetry breaking: While diffusion breaks the time-reversal invariance
of the underlying microscopic system, Anderson localization breaks the scaling invariance of diffusion
by creating a finite scale, the localization length. This is similar to the Kosterlitz-Thouless transition
in the XY model, where thermal fluctuations create vortex pairs whose correlation decays exponentially
[15, 16]. This can be understood in a more formal way: In the presence of weak disorder we have diffusion,
characterized by the diffusion propagator Kq ∝ 1/(iω+Dq2) with diffusion coefficient D, which has two

poles q± = ±
√

http://arxiv.org/abs/1412.7732v1
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II. TRANSITION PROBABILITY

At weak scattering we expect diffusion, a behavior known from classical physics, where the mean-square
displacement of a particle position grows linearly with time. This behavior is also valid for quantum
systems [19]. It provides our basic understanding for a large number of transport phenomena, such as
the metallic behavior in electronic systems. Starting point is the transition probability for a particle,
governed by the random Hamiltonian H , to move from the site r′ on a lattice to another lattice site r
within the time t:

Prr′(t) =
∑

j,j′

〈|〈r, j|e−iHt|r′, j′〉|2〉d , (1)

where 〈...〉d is the average with respect to randomly distributed disorder. The indices j, j′ refer to different
bands of the system. In the following we will focus on the specific case of the 2D Dirac Hamiltonian
H = vF ~p · ~σ +H1 where H1 is a random term with mean zero, and where vF is the Fermi velocity. The
components of the vector ~σ = (σ1, σ2) are Pauli matrices. Assuming a cut-off λ for the momentum, there
is an effective bandwidth Eb = 2vFλ

2. In this case j, j′ = 1, 2 are spinor indices.
With the expression (1) we obtain, for instance, the mean-square displacement as

〈(rk − r′k)
2〉 =

∑

r

(rk − r′k)
2Prr′(t)

and the diffusion coefficient as

D = lim
ǫ→0

ǫ2
∑

r

(rk − r′k)
2

∫ ∞

0

Prr′(t)e
−ǫtdt .

The time integral in the last expression can also be written in terms of the Green’s function as
∫ ∞

0

Prr′(t)e
−ǫtdt =

∫

Tr2 {Gr,r′(E + iǫ) [Gr′,r(E − iǫ)−Gr′,r(E + iǫ)]} dE , (2)

where Tr2 is the trace with respect to the spinor index. The one-particle Green’s function is defined as
the resolvent G(z) = (H − z)−1 of the Hamiltonian H , and Gr0(E + iǫ) describes the propagation of a
particle with energy E from the origin to a site r.
The correlation function of the Green’s functions with poles on different half planes is dominant, whereas

the correlation function of the Green’s functions with poles only on one half plane is the derivative of
Tr2Gr,r(E + iǫ) with respect to E:

∂
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The brackets 〈...〉a mean integration with respect to the angular variables {0 ≤ αrj < 2π}, normalized by
2π. These angles represent the relevant part of the disorder fluctuations, which are subject to long-range
correlations of the Green’s functions. Here it should be noticed that there is an invariance of C with
respect to a global phase change αrj → αrj + φ. Moreover, we have

hrr′ = σ0δrr′ + 2iη(vF ~p · ~σ − iη̄)−1
rr′ with η̄ = η + ǫ , (6)

where η ≥ 0 is the scattering rate in units of vFλ
2 = Eb. In the limit ǫ → 0 the propagator h is unitary:

hh† = 1− 4ǫ(1− ǫ)η̄(p2 + η̄2)−1 . (7)

It is convenient to introduce the generating functional log(〈det(C + a)〉a) with the N ×N matrix a (N
is the number of lattice sites). Then we obtain from (4)

Krr′ =
〈C−1

rr′ detC〉a
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FIG. 1: Propagators, vertices and two typical graphs of the linked cluster expansion: a) is a graph of the
generating function and b) is a graph of the correlation function K

rr
′ of Eq. (8), generated from graph a) by

differentiation.

h† and g, and two types of three-vertices (cf. Fig. 1). Moreover, the linked cluster expansion is based
on the relation 〈eA〉a = e〈A〉c , where 〈A〉c consists of those diagrams from the expansion of 〈eA〉a which
are connected (or linked) graphs [14, 15]. The latter provides an expansion, where the number of terms
increases exponentially with the number of propagators. Then we have a convergent expansion when we
can make the contribution of each propagator small. This will be discussed for 2D Dirac lattice fermions
with finite momentum cut-off λ in the next section.

B. Propagators for 2D Dirac fermions

Now we have to analyze the three propagators of the three-vertex expansion for 2D Dirac fermions.
The three-vertices contribute only a factor 1. The Fourier components of the propagators h and h† are

hk ∼ −1 + κ2
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C. Discussion of the propagator g

The propagator g̃q is invariant under a global phase shift but it is sensitive to the difference ∆ of two
uniform phases φ1 and φ2. In particular, the position of its poles with respect to q1 depends on c = cos∆,
s = sin∆:

q± = −i
ηc
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FIG. 2: (Color online) The Propagator g from Eq. (21) with ∆ = π/4 describes Anderson localization along a
semi-infinite line.

opposite direction, in order to close the loop. Therefore, the constant contribution is compensated by an
exponentially decaying contribution.
Now we return to the right-hand side of Eq. (8) to calculate the correlation function Krr′ . There is

the leading term from the prefactor in Eq. (10)

− ∂ log(det g)
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Appendix A: Calculation of Propagators

1. Propagator h

Fourier transformation of hk gives the hr that decays exponentially on the scaled 1/η.

hq → hr =

∫

q

e−iq·rhq = η2
∫

q

e−iq·r
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and Γ1 after exchanging c and s. Thus, we have |Γk| < ∞. Moreover, we expand the exponent and the
denominator for η ≫ vFλ

2. In leading order we obtain

Γ2 ∼ −ηπ

http://arxiv.org/abs/1404.2146
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