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We study the dynamics of non-interacting quantum particles with two bands in the presence
of random scattering. The two bands are associated with a chiral symmetry. After breaking the
latter by a potential, we still find that the quantum dynamics is controlled by a non-Abelian chiral
symmetry. The possibility of spontaneous symmetry breaking is analyzed within a self-consistent
approach, and the instability of a symmetric solution is discussed.

I. INTRODUCTION

Recent experiments on two-dimensional two-band systems, such as graphene [1, 2] or the surface of
topological insulators [3, 4], have revealed that transport in these systems is very robust with a universal
behavior that does not depend on the sample quality. In general, the mechanism for the appearance of
universal and robust properties in many-body systems is often associated with underlying symmetries
and the spontaneous breaking of these symmetries. For instance, the long-range and long-time behavior is
usually controlled by symmetries but it is not much affected by the fine details of the model. Apart from
critical points in systems with second-order phase transitions, dynamical properties such as diffusion may
also be related to symmetry properties. An example is a system of non-interacting Dirac fermions in two
dimensions at the Dirac node with a random gap, where we have identified a non-Abelian chiral symmetry
[5]. This symmetry transformation is usually called “supersymmetric” because it connects bosons and
fermions [6]. It turned out that spontaneous breaking of this symmetry generates a massless fermion mode,
caused by pairing a boson and a fermion. This is analogous to the Cooper pair in superconductivity which
consists of a pair of fermions rather than a boson-fermion pair. Another difference is that the massless
fermion decays as a power law and does not provide a coherent state. The physical effect of the massless
mode is diffusion of fermionic quasiparticles. On the other hand, the system is insulating if the symmetry
is not spontaneously broken. This can happen for a sufficiently large average gap [7]. Moreover, diffusion
and the metal-insulator transition are described by a simple scaling law which deviate from the Drude
behavior of conventional metals [8]. All this indicates that the spontaneous breaking of the non-Abelian
chiral symmetry is the origin of the metallic behavior and the metal-insulator transition due to random
gap opening of Dirac fermions.
The idea of this work is to extend the analysis of the Dirac fermions to the more general case of tight-

binding models with two bands. In particular, we will identify the non-Abelian chiral symmetry for a
four-body Hamiltonian which is constructed from one-body Hamiltonians with broken chiral symmetry.

II. MODEL

In a chiral-invariant system states in the upper band at energy E are directly connected with states
in the lower band at energy −E by a linear transformation U . In other words, the chiral Hamiltonian
satisfies the anti-commutator relation

[U,H ]+ = 0 . (1)

For an eigenstate ΨE of energy E with HΨE = EΨE this relation implies that Ψ−E = UΨE; i.e., the
states of the negative (positive) spectrum are created by the linear transformation U from the states of
the positive (negative) spectrum. A consequence of the vanishing anti-commutator is the chiral symmetry
relation

eαUHeαU = H (2)

with a continuous parameter α.
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A. Special Hamiltonians

A two-band Hamiltonian can be represented in terms of Pauli matrices σj (j = 0, ..., 3) as

H = h0σ0 + h1σ1 + h2σ2 + h3σ3 , (3)

where hj are matrices in real space, and the associated eigenfunctions ofH are spinor states. A symmetric
example is a tight-binding Hamiltonian on a bipartite lattice, such as the honeycomb lattice. It can also be
written in the form of Eq. (3), where the Pauli matrices refer to the two sublattices. For nearest-neighbor
hopping on the honeycomb lattice the Fourier components of the coefficients read

h1 = −t
3

∑

j=1

cos(aj · k), h2 = −t
3

∑

j=1

sin(aj · k)

with the lattice vectors a1 = (−
√
3/2, 1/2), a2 = (0,−1) and a3 = (

√
3/2, 1/2). h3 either plays the role

of a staggered potential that breaks the sublattice symmetry, or it represents a next nearest-neighbor
hopping term on the honeycomb lattice [9]. For h3 = 0 the Hamiltonian has a chiral symmetry with
U = σ3 while for h3 6= 0 the chiral symmetry is broken. We will treat Hamiltonians with broken chiral
symmetry in Sect. III A.
Remark: A prominent example for Eq. (3) is the two-dimensional Dirac Hamiltonian, where hj = i∂j

(j = 1, 2) and h3 = m is the mass term. It should be noticed that the Dirac Hamiltonian is not
symmetric but chiral invariant for m = 0, and it satisfies Eq. (1) for U = σ3 again. m 6= 0 breaks the
chiral symmetry. In that case the Dirac Hamiltonian satisfies

σ1H = −H∗σ1 , (4)

rather than the relation (1), with H∗ = HT , where T with the matrix transposition [5]. This relation is
associated with particle-hole symmetry [10].

III. FEW-BODY APPROACH

Now we consider briefly the dynamics of non-interacting particles in a random environment and derive
a four-body Hamiltonian to describe transport behavior in the presence of random scattering. In order
to study the motion of a quantum particle in space we calculate the transition probability of a particle
going from site r at time t to site r

′ at time t′. The transition amplitude (or Green’s function) for this
process is

Gr,t;r′,t′ =

∫

e−iE(t−t′)(H − E + iǫ)−1
r,r′dE ,

and the corresponding transition probability reads

Pr,t;r′,t′ = |Gr,t;r′,t′ |2 =

∫

e−i(E−E′)(t−t′)(H − E + iǫ)−1
r,r′(H − E′ − iǫ)−1

r
′,rdEdE′ . (5)

Then the expansion of the wave function within the time interval [t, 0] can be written as

〈r2j 〉 =
∑

r
r2jPr,t;0,0

∑

r
Pr,t;0,0

.

A straightforward calculation for a translational invariant Hamiltonian H results in a quadratic increase
of this expression with time t. This is ballistic transport, in contrast to diffusion, where it would increase
linearly with time. Diffusive transport is possible when we consider a random Hamiltonian H and average
the transition probability with respect to the distribution of H .
The product of the two resolvents in Eq. (5) can be interpreted as a scattering process of two inde-

pendent particles that move in opposite time directions because of ±iǫ (advanced and retarded Green’s
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functions). As a result, the dynamics is described by the scattering of two independent particles with iden-
tical Hamiltonians. In principle, we could add more independent particles, since we always can project the
resulting few-body Hamiltonian to the desired product of Green’s functions. Using a functional-integral
representation of non-interacting particles (cf. Appendix A), we can accommodate an arbitrary number
of factors. It is important to notice that the average of the Green’s function leads to an effective inter-
action between the particles. We assume that the one-body Hamiltonians obey the relation (1). Now we
can take advantage of the relation (1) which allows us to switch between retarded and advanced Green’s
functions by applying the linear transformation U . This is discussed in the next Section.

A. non-Abelian chiral symmetry of the four-body Hamiltonian

We consider the extended Hamiltonian H +H1, which is not chiral symmetric, and the transformation
matrices Uj (j = 1, 2), for which we assume that they satisfy the (anti-)commutator relation

[H,Uj ]+ = [H1, Uj ]− = 0 (6)

as a generalization of the relation (1). This includes the case U1 = U2 ≡ U . Next we replicate the
one-body Hamiltonian H +H1 to a two-body Hamiltonian H̄ + H̄1 with

H̄ =

(

H 0
0 H

)

, H̄1 =

(

H1 0
0 −H1

)

, Ū =

(

U1 0
0 U2

)

.

Together with Eq. (6) these expressions are connected by the relations

[H̄, Ū ]+ = [H̄1, Ū ]− = 0 . (7)

Now we introduce the four-body Hamiltonian

Ĥ =

(

H̄ + H̄1 0
0 H̄ − H̄1

)

(8)

and the transformation matrix

Û =







0 0 ϕ1U1 0
0 0 0 ϕ2U2

ϕ′

1U1 0 0 0
0 ϕ′

2U2 0 0






(9)

and obtain the anti-commutator relation

[Ĥ, Û ]+ = 0 . (10)

This implies the non-Abelian chiral symmetry

eÛĤeÛ = Ĥ . (11)

Moreover, we notice that det(H̄+H̄1+iǫ) = det(H̄−H̄1+iǫ). Then we obtain for the graded determinant
[8]

detg(Ĥ + iǫ) = detg(eÛ ) = 1 .

Eventually, there is a relation between advanced and retarded Green’s function:

Û(Ĥ + iǫ)−1Û−1 = (−Ĥ + iǫ)−1 = −(Ĥ − iǫ)−1 . (12)

Eqs. (10) and (11) are a non-Abelian generalization of Eqs. (1) and (2), respectively. The symmetry
transformation in Eq. (9) depends on the free parameters ϕj , ϕ

′

j . For the special case of a random
Hamiltonian they are Grassmann variables (cf. Appendix A and Refs. [5, 8, 11]). This can be understood
as if the upper block matrix (the lower block matrix) of the Hamiltonian (8) acts on bosons (fermions).

Consequently, the off-diagonal blocks in the transformation matrix Û transform bosons into fermions and
vice versa. This requires that the parameters ϕj , ϕ

′

j are Grassmann variables.

Remark: The construction of the Hamiltonian Ĥ would work for H = 0. This implies that we could
obtain the non-Abelian chiral symmetry even for a one-body Hamiltonian with only one band. The
reason is that H̄ is a two-body Hamiltonian with chiral symmetry.
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IV. SPONTANEOUS SYMMETRY BREAKING

The main question is whether or not the non-Abelian chiral symmetry in Eq. (11) is spontaneously

broken for the average Green’s function 〈(Ĥ+iǫ)−1〉 after sending ǫ → 0. This can be studied by employing
the self-consistent Born approximation (SCBA), which is equivalent to the saddle-point approximation of
the functional integral in (A3). For this purpose we introduce the (complex) self-energy η to approximate
the average Green’s function by

〈(Ĥ + iǫ)−1〉 ≈ (〈Ĥ〉+ iǫ+ iη)−1 ≡ Ĝ0 . (13)

η satisfies the self-consistent (or saddle-point) equation for disorder strength g

η = g

∫

k

z

λ2
1 + λ2

2 + λ2
3 + z2

, z = η − iµ , (14)

where λj are the Fourier components of hj of the Hamiltonian. The integration is performed with respect
to the Brillouin zone. µ is a uniform chemical potential which replaces the H1 term in the Hamiltonian:
H1 ≡ µσ0. This equation is equivalent to

iµ = z

(

−1 + g

∫

k

1

λ2
1 + λ2

2 + λ2
3 + z2

)

≡ zf(z) , (15)

which allows us to determine the two solutions z(±µ) for a given µ. The solutions of this equation can
be distinguished according to their transformation behavior under the sign change µ → −µ: There is a
symmetric solution with

z(−µ) = −z(µ) (16)

which does not break the non-Abelian chiral symmetry and an asymmetric solution that obeys

z(−µ)

(

−1 + g

∫

k

1

λ2
1 + λ2

2 + λ2
3 + z(−µ)2

)

= −z(µ)

(

−1 + g

∫

k

1

λ2
1 + λ2

2 + λ2
3 + z(µ)2

)

, (17)

where z(−µ)2 6= z(µ)2. The symmetric solution in (16) implies z(0) = 0. Moreover, the effective
symmetry breaking field is

η̄ =
z(µ) + z(−µ)

2
=

η(µ) + η(−µ)

2
. (18)

Whether the symmetric or the asymmetric solution is relevant depends on the stability of the solution.
Inspection of the fluctuations around the symmetric solution, according to the expansion in Appendix B,
provides us a stable symmetric solution if the kernel of the quadratic form in Eq. (B1) is non-negative
and unstable symmetric solution if it has negative eigenvalues. Thus spontaneous symmetry breaking
is indicated by an instability of a symmetric solution. This will be discussed in the next Section for a
specific choice of the Hamiltonian H .

A. Example: linear spectrum

In the case of a linear spectrum with s nodes, where we have λj = kj (j = 1, 2) with cut-off λ (i.e.
0 ≤ k21 + k22 ≤ λ2) and λ3 = 0, the integral in Eq. (15) can be performed to yield

η = z
sg

2
log

(

1 + λ2/z2
)

. (19)

For µ = 0 this equation has the symmetric solution z = η = 0 and the asymmetric solution

z = η =
λ√

e2/sg − 1
.
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For z 6= 0 we can rewrite (19) as

λ2 = z2
(

e2/sge2iµ/sgz − 1
)

. (20)

Thus, the imaginary part of the right-hand side must vanish and its real part must be λ2. There is
no closed solution of these equations but for µ ∼ 0 we can expand the exponential function for the
asymmetric solution and obtain a quadratic expression for the right-hand side

η =

(

1− β

αsg

)

iµ±
√

λ2

α
+ µ2

β

(sg)2α
(2− β/α) (α = β − 1, β = e2/sg) .

Thus, the symmetry breaking field of (18)

η̄ =

√

λ2

α
+ µ2

β

(sg)2α
(2 − β/α)

increases with µ. For small g we have β/α ∼ 1 such that

η̄ ∼
√

λ2

α
+

µ2

(sg)2
. (21)

In physical terms, η̄ is the effective scattering rate in the Green’s function (13). Our result means
that the scattering rate increases as we go away from the nodes at µ = 0 into the bands. This effect
is not surprising, since the density of states also increases as we go away from the nodes. For this
special case the eigenvalues of the stability matrix on large scales have been evaluated in Ref. [7] as
(1/g, 1/g + 2, 1/g − 2, 1/g). Thus, the symmetric solution is unstable for g > 1/2.

V. SUMMARY AND CONCLUSIONS

The starting point of our analysis is a one-body Hamiltonian H with chiral symmetry (2). After
breaking this symmetry by a potential term, we have identified the non-Abelian chiral symmetry (11)
of the corresponding four-body Hamiltonian (8). This four-body Hamiltonian can be used to describe
random scattering processes, where the transformation from retarded to advanced Green’s is performed
by a chiral transformation.
The non-Abelian chiral symmetry can be spontaneously broken after averaging the Green’s function

with respect to random fluctuations of the Hamiltonian. We have studied the general case in a self-
consistent approximation and have identified symmetric and asymmetric solutions. For a special Hamil-
tonian with linear spectrum around the nodes we have found that the symmetric solution becomes
unstable for sufficiently strong random fluctuations.
These results indicate that the symmetric two-band Hamiltonian has a similar non-Abelian structure

as the 2D Dirac fermions with particle-hole symmetry. Like for the latter case, we anticipate that the
spontaneously broken non-Abelian chiral symmetry leads to a massless fermion mode which describes the
physics on large scales.

Appendix A: Functional integral: distribution of the Green’s function

Now we combine the matrix structure of Ĥ in Eq. (8) with the averaging procedure for a random

Hamiltonian H . This will justify that the parameters ϕj , ϕ
′

j in the transformation matrix Û are Grass-
mann variables. For this purpose we employ a functional-integral approach with bosons and fermions.
The latter has been discussed extensively in the literature [6] and specifically for the problem of two-band
models in Refs. [7, 8, 11]. Therefore, only a brief summary that is relevant for the symmetry discussion,
is given here whereas details can be found in the mentioned literature.
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We consider the Green’s functions or products of Green’s functions, averaged over a Gaussian distri-
bution of some physical quantity inside the Hamiltonian Ĥ . For simplicity we focus here on a random
chemical potential and study 〈(Ĥ + iǫ)−1〉, where we use the notation for the average

〈(Ĥ + iǫ)−1
r,r〉 =

1

N

∫

(Ĥ + iǫ)−1
r,r

∏

r

e−µ2

r
/gdµr (A1)

with the normalization N . Now we can apply a transformation from the random variable µr to the 8× 8
random matrix Q̂r

Q̂r =

(

Qr Θr

Θ̄r iPr

)

(A2)

with Hermitean 4 × 4 matrices Qr and Pr and 4 × 4 supermatrices Θ, Θ̄. Qr is related to the diagonal
elements of the Green’s function (Ĥ + iǫ)−1

r,r due to

〈(Ĥ + iǫ)−1
r,r〉 =

∫

Q̂rJ
∏

r

e−Trg4(Q̂
2

r
)/gD4[Q̂r] . (A3)

Products of Green’s functions can also be represented by this functional integral [7]. J is the Jacobian

of the transformation µr → Q̂r and reads as a graded determinant

J = detg(〈Ĥ〉+ iǫτ̂0 + Q̂) . (A4)

It is important to notice that J is invariant under the global symmetry transformation (9) because

detg(eÛ ) = eTrgÛ = 1 with the graded trace Trg. Then we can apply the transformation Q̂r → eÛQ̂re
Û ,

which leaves the integral invariant in the limit ǫ → 0. By sending ǫ to zero we are able to study
spontaneous symmetry breaking within a saddle-point approximation of the functional integral (A3).

Appendix B: Instability of the symmetric saddle point

Fluctuations around the symmetric saddle point Q̂ = 0 can become unstable when there is an asymmet-
ric saddle point. Gaussian fluctuations around the saddle-point solution indicate clearly the instability of
the symmetric solution [7]. The stability analysis can be applied to the integral in Eq. (A3) by expanding

the logarithm of the Jacobian in Eq. (A4) around Q̂ = 0:

1

g
T rg4(Q̂

2
r)− log detg(〈Ĥ〉+ iǫτ̂0 + Q̂) =

1

g
T rg4(Q̂

2
r)−

1

2
Trg4

[

Ĝ0;r,r′Q̂r′Ĝ0;r′,rQ̂r

]

+ o(Q̂3) . (B1)

The symmetric solution is stable if the kernel of the quadratic form in Q̂ is non-negative (i.e. it has no
negative eigenvalues). On the other hand, it is unstable if one or more eigenvalues become negative.
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