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We study the dynamics of non-interacting quantum particles with two bands in the presence
of random scattering. The two bands are associated with a chiral symmetry. After breaking the
latter by a potential, we still find that the quantum dynamics is controlled by a non-Abelian chiral
symmetry. The possibility of spontaneous symmetry breaking is analyzed within a self-consistent
approach, and the instability of a symmetric solution is discussed.

I. INTRODUCTION

Recent experiments on two-dimensional two-band systems, such as graphene [1, 2] or the surface of
topological insulators [3, 4], have revealed that transport in these systems is very robust with a universal
behavior that does not depend on the sample quality. In general, the mechanism for the appearance of
universal and robust properties in many-body systems is often associated with underlying symmetries
and the spontaneous breaking of these symmetries. For instance, the long-range and long-time behavior is
usually controlled by symmetries but it is not much affected by the fine details of the model. Apart from
critical points in systems with second-order phase transitions, dynamical properties such as diffusion may
also be related to symmetry properties. An example is a system of non-interacting Dirac fermions in two
dimensions at the Dirac node with a random gap, where we have identified a non-Abelian chiral symmetry
[5]. This symmetry transformation is usually called “supersymmetric” because it connects bosons and
fermions [6]. It turned out that spontaneous breaking of this symmetry generates a massless fermion mode,
caused by pairing a boson and a fermion. This is analogous to the Cooper pair in superconductivity which
consists of a pair of fermions rather than a boson-fermion pair. Another difference is that the massless
fermion decays as a power law and does not provide a coherent state. The physical effect of the massless
mode is diffusion of fermionic quasiparticles. On the other hand, the system is insulating if the symmetry
is not spontaneously broken. This can happen for a sufficiently large average gap [7]. Moreover, diffusion
and the metal-insulator transition are described by a simple scaling law which deviate from the Drude
behavior of conventional metals [8]. All this indicates that the spontaneous breaking of the non-Abelian
chiral symmetry is the origin of the metallic behavior and the metal-insulator transition due to random
gap opening of Dirac fermions.
The idea of this work is to extend the analysis of the Dirac fermions to the more general case of tight-

binding models with two bands. In particular, we will identify the non-Abelian chiral symmetry for a
four-body Hamiltonian which is constructed from one-body Hamiltonians with broken chiral symmetry.

II. MODEL

In a chiral-invariant system states in the upper band at energy E are directly connected with states
in the lower band at energy −E by a linear transformation U . In other words, the chiral Hamiltonian
satisfies the anti-commutator relation

[U,H ]+ = 0 . (1)

For an eigenstate ΨE of energy E with HΨE = EΨE this relation implies that Ψ−E = UΨE; i.e., the
states of the negative (positive) spectrum are created by the linear transformation U from the states of
the positive (negative) spectrum. A consequence of the vanishing anti-commutator is the chiral symmetry
relation

eαUHeαU = H (2)

with a continuous parameter α.
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A. Special Hamiltonians

A two-band Hamiltonian can be represented in terms of Pauli matrices σj (j = 0, ..., 3) as

H = h0σ0 + h1σ1 + h2σ2 + h3σ3 , (3)

where hj are matrices in real space, and the associated eigenfunctions ofH are spinor states. A symmetric
example is a tight-binding Hamiltonian on a bipartite lattice, such as the honeycomb lattice. It can also be
written in the form of Eq. (3), where the Pauli matrices refer to the two sublattices. For nearest-neighbor
hopping on the honeycomb lattice the Fourier components of the coefficients read

h1 = −t
3

∑

j=1

cos(aj · k), h2 = −t
3

∑

j=1

sin(aj · k)

with the lattice vectors a1 = (−
√
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functions). As a result, the dynamics is described by the scattering of two independent particles with iden-
tical Hamiltonians. In principle, we could add more independent particles, since we always can project the
resulting few-body Hamiltonian to the desired product of Green’s functions. Using a functional-integral
representation of non-interacting particles (cf. Appendix A), we can accommodate an arbitrary number
of factors. It is important to notice that the average of the Green’s function leads to an effective inter-
action between the particles. We assume that the one-body Hamiltonians obey the relation (1). Now we
can take advantage of the relation (1) which allows us to switch between retarded and advanced Green’s
functions by applying the linear transformation U . This is discussed in the next Section.

A. non-Abelian chiral symmetry of the four-body Hamiltonian

We consider the extended Hamiltonian H +H1, which is not chiral symmetric, and the transformation
matrices Uj (j = 1, 2), for which we assume that they satisfy the (anti-)commutator relation

[H,Uj ]+ = [H1, Uj ]− = 0 (6)

as a generalization of the relation (1). This includes the case U1 = U2 ≡ U . Next we replicate the
one-body Hamiltonian H +H1 to a two-body Hamiltonian H̄ + H̄1 with

H̄ =

(

H 0
0 H

)

, H̄1 =

(

H1 0
0 −H1

)

, Ū =

(

U1 0
0 U2

)

.

Together with Eq. (6) these expressions are connected by the relations

[H̄, Ū ]+ = [H̄1, Ū ]− = 0 . (7)

Now we introduce the four-body Hamiltonian

Ĥ =

(

H̄ + H̄1 0
0 H̄ − H̄1

)

(8)

and the transformation matrix

Û =







0 0 ϕ1U1 0
0 0 0 ϕ2U2

ϕ′

1U1 0 0 0
0 ϕ′

2U2 0 0






(9)

and obtain the anti-commutator relation

[Ĥ, Û ]+ = 0 . (10)

This implies the non-Abelian chiral symmetry

eÛĤeÛ = Ĥ . (11)

Moreover, we notice that det(H̄+H̄1+iǫ) = det(H̄−H̄1+iǫ). Then we obtain for the graded determinant
[8]

detg(Ĥ + iǫ) = detg(eÛ ) = 1 .

Eventually, there is a relation between advanced and retarded Green’s function:

Û(Ĥ + iǫ)−1Û−1 = (−Ĥ + iǫ)−1 = −(Ĥ − iǫ)−1 . (12)

Eqs. (10) and (11) are a non-Abelian generalization of Eqs. (1) and (2), respectively. The symmetry
transformation in Eq. (9) depends on the free parameters ϕj , ϕ

′

j . For the special case of a random
Hamiltonian they are Grassmann variables (cf. Appendix A and Refs. [5, 8, 11]). This can be understood
as if the upper block matrix (the lower block matrix) of the Hamiltonian (8) acts on bosons (fermions).

Consequently, the off-diagonal blocks in the transformation matrix Û transform bosons into fermions and
vice versa. This requires that the parameters ϕj , ϕ

′

j are Grassmann variables.

Remark: The construction of the Hamiltonian Ĥ would work for H = 0. This implies that we could
obtain the non-Abelian chiral symmetry even for a one-body Hamiltonian with only one band. The
reason is that H̄ is a two-body Hamiltonian with chiral symmetry.
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IV. SPONTANEOUS SYMMETRY BREAKING

The main question is whether or not the non-Abelian chiral symmetry in Eq. (11) is spontaneously

broken for the average Green’s function 〈(Ĥ+iǫ)−1〉 after sending ǫ → 0. This can be studied by employing
the self-consistent Born approximation (SCBA), which is equivalent to the saddle-point approximation of
the functional integral in (A3). For this purpose we introduce the (complex) self-energy η to approximate
the average Green’s function by

〈(Ĥ + iǫ)−1〉 ≈ (〈Ĥ〉+ iǫ+ iη)−1 ≡ Ĝ0 . (13)

η satisfies the self-consistent (or saddle-point) equation for disorder strength g

η = g

∫

k

z
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For z 6= 0 we can rewrite (19) as

λ2 = z2
(

e2/sge2iµ/sgz − 1
)

. (20)

Thus, the imaginary part of the right-hand side must vanish and its real part must be λ2. There is
no closed solution of these equations but for µ ∼ 0 we can expand the exponential function for the
asymmetric solution and obtain a quadratic expression for the right-hand side

η =

(

1− β
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We consider the Green’s functions or products of Green’s functions, averaged over a Gaussian distri-
bution of some physical quantity inside the Hamiltonian Ĥ . For simplicity we focus here on a random
chemical potential and study 〈(Ĥ + iǫ)−1〉, where we use the notation for the average

〈(Ĥ + iǫ)−1
r,r〉 =

1
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