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Abstract — In this first part of our two-part article, we present some theoretical background along
with descriptions of some numerical techniques for solvinga particular semilinear elliptic eigenprob-
lem of Lane-Emden type on a triangular domain without any lines of symmetry. For solving the
principal (1st) eigenproblem, we describe an operator splitting method applied to the corresponding
time-dependent problem. For solving higher eigenproblems, we describe an arclength continuation
method applied to a particular perturbation of the originalproblem, which admits solution branches
bifurcating from the trivial solution branch at eigenvalues of its linearization. We then solve the orig-
inal eigenproblem by “jumping” to a point on the unperturbedsolution branch from a ”nearby” point
on the corresponding continued perturbed branch, then normalizing the result. Finally, for compar-
ison, we describe a particular implementation of Newton’s method applied directly to the original
constrained nonlinear eigenproblem.

Keywords: numerical method, Lane, Emden, semilinear, elliptic, eigenproblem, operator splitting,
finite element, arclength continuation, least-squares, control, Newton’s method

1. INTRODUCTION

Let Ω be abounded, Lipschitz domainin Rd and denote its boundary byΓ. Consider
the following model nonlinear eigenproblem:

−∆u = λu3 in Ω, (1.1)

u = 0 onΓ, (1.2)
∫

Ω
u4(x)dx= c, (1.3)

wherec> 0 is a normalization constant (we assume hereafter thatc≡ 1). The choice
of theL4 norm constraint (1.3) is natural and convenient, for if we multiply equation
(1.1) by any solutionu (ignoring the natural existence question for the moment) and
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integrate, we immediately see that
∫

Ω
|∇u(x)|2 dx= λ , (1.4)

which, for one thing, shows that any eigenvalueλ corresponding to an eigenfunction
u must be positive. It is worth mentioning that ford > 4, the unconstrained prob-
lem (1.1)-(1.2) has no nontrivial solution (cf. [13], §9.4.2), and thus the constrained
problem has no solution.

This problem falls into the class of nonlinear (more precisely, semilinear) elliptic
eigenproblems, finding applications in, for example, the study of stellar equilibrium
(e.g., the so-calledLane-Emden model, cf. [7]). Within the extensive literature on
semilinear elliptic problems in general, some of the contributions on, or related to,
such eigenproblems include [8], [11], [17], [23] [13], [19], [5], [24], [20], [2], [6],
[27], and further citations therein.

The most recent of these citations [27] is the first of three papers that, as of
the final stages of this writing, are in various stages of prepublication. In their first
paper, the authors summarize, rather well, the numerous andsubstantial difficulties
encountered when attempting to characterize and solve constrained eigenproblems
in a Banach spaceB arising asEuler-Lagrange systemsof the form

F ′(u) = λG′(u), (1.5)

G(u) = α , (1.6)

obtained via differentiation of the associatedLagrangian functional

L(u,λ ) = F(u)−λ (G(u)−α). (1.7)

The first paper focuses on the case when the component functionalsF(·) andG(·)
possess what they refer to as theiso-homogeneity propertydefined by the existence
of a positive integerk = l such that

F ′(tu) = tkF ′(u) andG′(tu) = t l G′(u),∀t > 0,u∈ B. (1.8)

The authors show that this property is sufficient to characterize eigenpairs{u,λ}
solving (1.5)-(1.6) as critical point and value pairs{u,J(u)} of the associated
Rayleigh quotientfunctional

J(u) :=
F(u)

G(u)
,u∈ B\U, U := {u∈ B|G(u) = 0}. (1.9)

The authors then present a so-called (modified) Local MiniMax (LMM) methodfor
finding multiple critical points ofJ(·), constrained to the unit sphere and ordered by
their so-called (local) MiniMax Index(MMI) and show how the method relates to
the established characterizations of Rayleigh-Ritz, Courant-Fischer, and Ljusternik-
Schnirelman. Finally, they implement the modified LMM method and use it to solve
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a nonlinearp-Laplacian eigenproblem on a 2×2 square with some interesting and
novel results. Although we have not seen their subsequent work, the authors evi-
dently consider non iso-homogenous problems in their second paper, of which our
model problem is a particular case as it satisfies abi-homogeneity propertywith
k = 1 andl = 3.

In the earlier paper [20], the author discusses and implements a Constrained
Steepest Decent Method (CSDM) initializing a Constrained Mountain Pass Algo-
rithm (CMPA) for solving constrained minimax problems arising as systems of vari-
ational functionals corresponding to various semilinear elliptic equations, including
a particular case (λ = 1) of problem (1.1)-(1.3) on the unit square. The details of the
methodology are rather intricate, but it is our basic understanding that the method
first involves the finding of two suitable critical point solutions of the problem via
the CSDM that satisfy the conditions of a constrained version of the classical moun-
tain pass theorem. These two solutions are then used in the CMPA as endpoints of
a path constructed (and possibly refined) in such a way as to traverse a so-called
“mountain pass”, from the “top” (i.e., local maximum point)of which the CSDM
is used again to descend from this local maximum point along “the ridge” of lo-
cal maxima to the new mountain pass-type critical point solving the constrained
minimax problem.

In the present work, we discuss and implement some alternative numerical
methods and explore their shortcomings and merits. We restrict ourselves to the
numerical investigation of problem (1.1)-(1.3) on a particular domain, looking for
approximate variational solutions in a suitable Hilbert space.

In §2, we discuss the solution of problem (1.1)-(1.3) for the principal eigenpair
(u1,λ1). Specifically, in§2.1, we prove that this problem is equivalent to energy
minimization on the unitL4(Ω) sphere in the Sobolev spaceH1

0(Ω), and that the
latter formulation (hence the former) has a solution. In§§2.2-2.3, we present a com-
putational algorithm for solving this problem based on the so-calledtime-dependent
approachandoperator splitting.

In §3, we discuss the solution of the unconstrained problem (1.1)-(1.2) in the
setting ofarclength continuation theorywith the particular goal of finding higher
eigenmodes, treating the problem with constraint (1.3) as aspecial case. In§3.1, we
present the general and problem-specific arclength continuation framework. Within
this framework, we discuss two local correction methodologies in§§3.1.1-3.1.2.

Finally, for completeness and comparison purposes, we provide in §3.2 a direct
approach to solving (1.1)-(1.3) based on an application ofaffine covariant Newton’s
method w/wo damping(à la P. Deuflhard).

2. THE PRINCIPAL EIGENPROBLEM

2.1. Theoretical background

In this section, we present some of the supporting existence/uniqueness theory for
problem (1.1)-(1.3), focussing on theprincipal, or minimal, eigenproblem. It is nat-
ural to look forweak solutionsof this problem in the Sobolev spaceH1

0(Ω)×R. The



4 F. J. Foss, II, R. Glowinski, R. H. W. Hoppe

weak formulationof (1.1)-(1.3) is: Find{u,λ} ∈ H1
0(Ω)×Rsuch that

∫

Ω
∇u(x) ·∇w(x)dx−λ

∫

Ω
u3(x)w(x)dx = 0, for all w∈ H1

0(Ω), (2.1)
∫

Ω
u4(x)dx−1 = 0. (2.2)

Consider the following variational problem:

Findu∈ E4 := H1
0(Ω)∩S4 such thatJ(u) 6 J(v),∀v ∈ E4, (2.3)

whereJ(v) := 1
2

∫

Ω |∇v(x)|2dx andS4 := {v ∈ L4(Ω) | ∫Ω v4(x)dx = 1}. It is easy
to see that, for any pair{u,λ} solving (2.3), the weak formulation (2.1)-(2.2) com-
prises the so-calledfirst-order necessary optimality conditionsresulting from dif-
ferentiation of theLagrangian functionalL : H1

0(Ω)×R+→ R defined by

L(v,µ) := J(v)− µ
4

(

∫

Ω
v4(x)dx−1

)

=
1
2

∫

Ω
|∇v(x)|2 dx− µ

4

(

∫

Ω
v4(x)dx−1

)

. (2.4)

The first equation in the first-order necessary optimality system is the weak form of
theEuler-Lagrange equationdefined by

〈

L
′
v
(u,λ ),w

〉

:=
〈

J′(u),w
〉

−λ
∫

Ω
u3(x)w(x)dx= 0, (2.5)

where we see that the eigenvalueλ is theLagrange multipliercorresponding to the
constraint defined by the second equation

L
′
µ(u,λ ) :=−1

4

(

∫

Ω
u4(x)dx−1

)

= 0. (2.6)

Thus, we see that any solutionu of (2.3) is an eigenfunction corresponding to the
eigenvalueλ , the pair{u,λ} necessarily solving (2.1)-(2.2). Since anyH1

0(Ω) func-
tion is continuously imbedded inL4(Ω) (Sobolev imbedding theorem), we may nor-
malize any nonzeroH1

0(Ω) function so that it lies inS4 (so E4 is nonempty) and
then define theprincipal eigenvalueλ1 as theminimum value

λ1 := inf
v∈E4

∫

Ω
|∇v(x)|2 dx≡ inf

v∈E4

2J(v), (2.7)

and aprincipal eigenfunction u1 as a corresponding minimizer solving Problem
(2.3), with theprincipal eigenpair{u1,λ1} solving (2.1)-(2.2). We now show

Proposition 2.1. Problem(2.3)has a solution.
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Proof. SinceH1
0(Ω) is, in fact, compactly imbedded inL4(Ω) (Rellich-Kondrachov

imbedding theorem), and since the functionalJ (being half the square of the equiv-
alent energy norm‖ · ‖ ≡ | · |1,2,Ω on H1

0(Ω)) is continuous, coercive, and bounded
below by zero onH1

0(Ω), and so also onE4, there exists aminimizing sequence
{vk}k∈N in E4 such that

lim
k→∞

J(vk) = inf
v∈E4

J(v). (2.8)

Since{J(vk)}k∈N is bounded inR+, {vk}k∈N must be bounded inH1
0(Ω) (by coer-

civity), and sinceH1
0(Ω) is a Hilbert space, whence reflexive, it follows that there

existsN
′⊆N andu∈H1

0(Ω) such that the subsequence{vk′}k′∈N′ convergesweakly
to u in H1

0(Ω), that is,〈 f ,vk′〉 → 〈 f ,u〉 ask′ → ∞, for all f ∈ H−1(Ω), or equiva-
lently (by theRiesz representation theorem),

∫

Ω ∇w ·∇vk′ dx→ ∫

Ω ∇w ·∇udx, for
all w∈ H1

0(Ω). Now,

0 6
1
2

∫

Ω
|∇(vk′ −u)(x)|2 dx =

1
2

∫

Ω
|∇vk′(x)|2 dx−

∫

Ω
∇u(x) ·∇vk′(x)dx

+
1
2

∫

Ω
|∇u(x)|2 dx,∀k′ ∈ N

′,

and thus, upon taking the limit ask′ → ∞, we see thatJ(u) 6 infv∈E4 J(v), which
becomes an equality if we can show thatu∈ E4. But this follows from the compact
imbedding ofH1

0(Ω) in L4(Ω), since then the weak convergence of{vk′}k′∈N′ in
H1

0(Ω) implies its strong convergence inL4(Ω), and since‖vk′‖0,4,Ω = 1 for all k′,
it follows that‖u‖0,4,Ω = 1. �

Remark 2.1. It is evident that if{u1,λ1} is a principal eigenpair, then so
is {−u1,λ1}. For higher eigenproblems, the nonuniqueness is less trivial than a
sign change and depends, at least, on the geometry ofΩ (cf. [28]). Although the
nonuniqueness question is itself an interesting and important one, we do not explore
it further herein. ♣

2.2. Approximating the principal eigenproblem

Problem (1.1)-(1.3) is really a parameterized family of stationary nonlinear Dirichlet
problems. Here, we are looking for the first (as a function of the parameter) such
solution and the corresponding value of the parameter. For ageneral discussion of,
and some additional references for, some methods used to solve stationary nonlinear
Dirichlet problems, see [15], Chapter VII,§3. One such method discussed there, and
which we employ here, is the so-calledtime-dependent approach. The general idea
of this approach is to first introduce theparabolic initial value problemassociated
with stationary problem (1.1)-(1.3), namely

∂u
∂ t
−∆u = λu3 in Ω× (0,+∞), (2.9)
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u = 0 onΓ× (0,+∞), (2.10)
∫

Ω
u4(x, ·)dx= 1, t ∈ (0,+∞), (2.11)

u(·,0) = u0 in Ω. (2.12)

For a particular choice of initial datau0, we then discretize this problem in time and
at each time step solve the (weak form of) the resulting semi-discrete problem in
H1

0(Ω). The only twist here is that we are solving not only for an update inu, but also
in λ , at each time step, and therefore we need to initializeλ as well. With the proper
time discretization and initialization (discussed below), the resulting approximating
sequence of iterates{un}n∈N will be a monotonically norm-decreasing, minimizing
sequence converging to a steady state solving the principaleigenproblem for (1.1)-
(1.3). To see that the sequence is monotonically norm-decreasing, multiply (2.9) by
∂u
∂ t

and integrate overΩ to obtain

∫

Ω

(

∂u(x, t)
∂ t

)2

dx+
∫

Ω

∂
∂ t

(

1
2
|∇u(x, t)|2

)

dx−
∫

Γ

∂u(x, t)
∂n

∂u(x, t)
∂ t

ds

= λ
∫

Ω

∂
∂ t

(

1
4

u4(x, t)

)

dx. (2.13)

Now, the boundary integral vanishes since
∂u
∂ t

= 0 onΓ (from (2.10)). Also, we may

interchange the order of time differentiation and space integration to obtain (using
(2.11))

∫

Ω

(

∂u(x, t)
∂ t

)2

dx+
1
2

d
dt

∫

Ω
|∇u(x, t)|2 dx=

λ
4

d
dt

∫

Ω
u4(x, t)dx≡ 0, (2.14)

and thus
1
2

d
dt

∫

Ω
|∇u(x, t)|2 dx=−

∫

Ω

(

∂u(x, t)
∂ t

)2

dx6 0. (2.15)

This shows that the functiont 7→ ‖u(·, t)‖ is decreasing, and thus the approximat-
ing sequence of iterates{un} will be monotonically norm-decreasing provided the
discretization is consistent with this exact property of (2.9)-(2.12).

2.3. Numerical algorithm and discretization

For the time discretization of problem (2.9)-(2.12), we usethe operator splitting the-
ory of Lie as applied in the time-dependent PDE setting by Yanenko and Marchuk
(cf. [16], Chapters II & VII, and references therein), one possible implementation of
which results in the following time-discrete system:

(1) u0 = u0 is given. (2.16)
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For n > 0 until convergence, solve

(2)
un+ 1

2 −un

τ
= λ n+1

(

un+ 1
2

)3
in Ω, (2.17)

∫

Ω

(

un+ 1
2

)4
(x)dx= 1. (2.18)

(3)
un+1−un+ 1

2

τ
−∆un+1 = 0 in Ω, (2.19)

un+1 = 0 onΓ. (2.20)

To transition from time stepn to n+1, the nonlinear subproblem in Step (2) of this
scheme requires the simultaneous solution of coupled cubicand integral equations
defined onΩ to find the pair{un+ 1

2 ,λ n+1}. The subproblem in Step (3) is a linear el-
liptic boundary value problem inun+1 involving the solution found in Step (2). We
discretize both subproblems in space using a standard piecewise linear finite ele-
ment approximation of the variational forms inH1

0(Ω) on a uniform, geometrically-
conforming mesh and solve the linear subproblem using a direct method.

Although there is more than one way to choose the initialization in (2.16), we
chooseu0 to be the principal eigenfunctionw1 satisfying the following constrained
linear eigenproblem

−∆w = µw in Ω, (2.21)

w = 0 onΓ, (2.22)
∫

Ω
w4(x)dx= 1, (2.23)

which can be solved variationally inH1
0(Ω) for the minimal eigenpair{w1,µ1} us-

ing theinverse power method(cf. [16], Chapter VII,§36.3). Once we have its solu-
tion w1, we simply renormalize via division by‖w1‖0,4 to satisfy the unitL4 norm
constraint (2.23) and takeu0 to be this result.

We solve the nonlinear subproblem in Step (2) of this scheme iteratively using
two nested scalar implementations of Newton’s method. Specifically, at each stepk
of the outer implementation (which solves the coupled cubicand integral equations),
the inner implementation solves the set of scalar cubic equations

gτ(up) := τλu3
p−up +un

p = 0, p∈ Σ0,h, (2.24)

in up at every nodep in the approximating interior finite element meshΣ0,h, as-
suming the current outer iterate ofλ = λ n+1

k is given andun
p is known from the

previous time step. The justification for solvinggτ(u) = 0 pointwise is a combina-
tion of the fact that we initialize the scheme with a smooth function u0 (the linear
eigenfunctionw1 solving (2.21)-(2.23)) and use the trapezoidal rule for approximat-
ing the integrals in the associated weak form of the equation, which diagonalizes the
otherwise coupled set of nonlinear equations.
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The integral constraint

Hτ(λ ) :=
∫

Ω
u4

λ (x)dx−1 = 0 (2.25)

is then used for the Newton update of the implicitly-definedλ using the newly
computed iterateuλ = ∑p∈Σo,h

upϕp solving (2.24) pointwise onΣ0,h, where theϕp

are the finite element nodal basis functions.
Explicitly, then, we have the following algorithm for solving the problem in Step

(2) for each time step:

(21) λ n+1
0 = 0 or λ n+1

0 = µ1. (2.26)
For k > 0 until convergence,

(22) at every mesh nodep∈ Σ0,h,

(221) take

∣

∣

∣

∣

u
n+ 1

2
p,k,0

∣

∣

∣

∣

∈



0,
2
3

1
√

3τλ n+1
k



 . (2.27)

For l > 0 until convergence,

(222) u
n+ 1

2
p,k,l+1 = u

n+ 1
2

p,k,l −
gτ(u

n+ 1
2

p,k,l )

g′τ(u
n+ 1

2
p,k,l )

. (2.28)

(23) λ n+1
k+1 = λ n+1

k − Hτ(λ n+1
k )

H ′τ(λ n+1
k )

. (2.29)

Concerning the choice ofτ , we notice immediately thatg′τ(up) = 3τλu2
p−1, show-

ing that critical points ofgτ occur atu±p =± 1√
3τλ

with corresponding critical values

gτ

(

± 1√
3τλ

)

= un
p∓ 2

3
1√
3τλ

. Sinceg′′τ (up) = 6τλup, we see thatup = 0 is an inflec-

tion point with corresponding inflection valuegτ (0) = un
p. For a given outer Newton

iterateλ = λ n+1
k , in order for there to be a root between the two critical points

near the inflection point and most recently computed solution un
p, the critical val-

ues must have opposite signs (or one must itself be zero, in which case the critical
point is a double root, a situation that we would like to avoid). This means that we
must have|un

p| < 2
3

1√
3τλn+1

k

(from which we deduce the upper bound in (2.27)), or

τ < τp,k,n := 4

27λn+1
k (un

p)
2 , for all p∈ Σ0,h, for all k andn. Equivalently, we have the

following necessary constraint on the time stepτ :

τ < τn :=
4

27max
k
{λ n+1

k }
(

max
p∈Σ0,h

{|un
p|}
)2 , for all n. (2.30)
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Unfortunately, this constraint is implicit inτ sinceλ n+1
k andun

p depend onτ in a
rather complicated way through the two Newton iteration processes involvinggτ(·),
Hτ(·) and their derivatives. Thus, it is only useful as ana posteriori monitor of
whether or not the chosenτ is satisfactory with respect to this condition.

The calculation ofH ′τ(·) is straightforward but more involved. First, sinceuλ is
a function ofλ through equation (2.24), we have upon differentiation withrespect

to λ that τu3
λ + 3τλu2

λ u′λ − u′λ = 0 so thatu′λ =
τu3

λ
1−3τλu2

λ
. Using this result we

find that

H ′τ(λ ) =
∫

Ω
4u3

λ (x)u′λ (x)dx=
∫

Ω

4τu6
λ (x)

1−3τλu2
λ (x)

dx. (2.31)

From this expression forH ′τ(·), with λ = λ n+1
k anduλ = u

n+ 1
2

k we see that another
a posteriorinecessary condition onτ is that

τ < τn :=
1

3max
k

{

λ n+1
k

(

max
p∈Σ0,h

{|un+ 1
2

p,k |}
)2
} , for all n. (2.32)

From numerical experiments, this condition appears to be consistently less restric-
tive than condition (2.30), and thus one would use the latterto monitor the choice
of τ .

It is well known (cf. [16], Chapter VI) that the Marchuk-Yanenko scheme is at
most first-order accurate, and its stability and convergence properties depend heav-
ily on the operators appearing in each subproblem and the choice ofτ . It is important
to note that the necessary constraints onτ derived above are by no means sufficient
for overall convergence of scheme (2.16)-(2.20). Indeed, these constraints onτ only
guarantee the solvability of equation (2.24) and well-posedness of theH ′τ(·) inte-
gral (2.31). The final choice ofτ must also be consistent with overall stability and
convergence of the operator splitting scheme. Finally, from numerical experiments,
it is our experience that extreme care must be used when attempting to adaptively
modify τ in this case.

For the results of the numerical experiments with our implementation of this
method, we refer the reader to Part (II),§2, of our article.

3. HIGHER EIGENPROBLEMS

Attempts to adapt the methodology used to solve the principal eigenproblem for use
in solving even the 2nd eigenproblem (let alone higher ones) were not entirely suc-
cessful for a variety of reasons. Although we implemented four methods that were
successful at solving the first two eigenproblems (cf. [14]), only one of these proved
robust enough (without further fine-tuning) to solve the 3rd and higher eigenprob-
lems. All of the implementations that failed to solve eigenproblems beyond the 2nd
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were based on solving an approximating linear formulation of the original semi-
linear problem (although this fact alone doesn’t account for the failures of these
methods). The one method robust enough to solve the higher eigenproblems pre-
serves the original semilinear structure of the problem andincorporates it into the
solution strategy together with a particular perturbationterm that gives rise to a nat-
ural initialization of the numerical scheme. The approach uses the machinery of the
classical technique ofarclength continuation(cf. [21] and [22]) and that of its sub-
sequent application to the efficient numerical solution of least-squares formulations
of some nonlinear boundary value problems (cf. [17]).

In the sequel, we focus our discussion on the implementationof the arclength
continuation method. For completeness and comparison purposes, however, we also
offer some results obtained from the implementations of so-callederror-oriented, or
affine covariant, undampedanddamped Newton iterations, discussed in a general
setting by P. Deuflhard in [12]. In contrast to the methods previously discussed,
these Newton methods are applied directly to the original constrained semilinear
eigenproblem (1.1)-(1.3).

3.1. The arclength continuation framework

For a fairly detailed account of the theory of arclength continuation applied to the
least squares formulation of general, and some specific, nonlinear boundary value
problems, we refer the reader to Glowinski,et al. ([17]). In this section, we summa-
rize the presentation found there in the context of the current problem.

The general idea behind the use of arclength continuation for solving a nonlinear
problem, sayS(u,λ ) = 0 with u in a (real, in this case) Hilbert space(V,(·, ·)) and
λ ∈ R, is to adjoin a so-calledarclength constraint l(u,λ ,s) = 0 that parameterizes
solution branches{{u(s),λ (s)}} in terms of an arclength parameters. Recall that
any parameterized solution branch{{u(s),λ (s)}} ⊂V×R is said to beparameter-
ized by arclengthprovided‖u̇(s)‖2 + |λ̇ (s)|2−1 = 0,∀s, that is, the tangent vector
{u̇(s), λ̇ (s)} has unit length for alls, and is the natural candidate for the arclength
constraintl . We then employ theimplicit function theoremandbifurcation theoryin
order to assert, depending on the behavior of the respectivepartial derivatives ofS
andl with respect to the variablesu andλ , the local existence and uniqueness of so-
lution branches in the neighborhood of a known solution{u0,λ0} := {u(s0),λ (s0)}.
Note that along any branch of solutions, the derivatives with respect to arclength
must vanish since the functions are identically zero there.This leads to the so-called
Davidenko equationsfor the tangent vector{u̇, λ̇} along the branch. If we know or
can solve for a corresponding tangent vector{u̇0, λ̇0} := {u̇(s0), λ̇ (s0)} at s0, then
we may predict to first order the location of the next iterate along the branch and use
it to solve for another nearby solution on the same branch using an appropriate non-
linear solver, and thus (theoretically anyway) produce theentire branch via iteration
(cf. [21]).

More concretely, to solve the system

S(u,λ ) = 0 (3.1)
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l(u,λ ,s) = 0, (3.2)

along a branch of solutions{(u(s),λ (s))} in V ×R parameterized by arclengths,
one particular arclength continuation process is the following predictor-corrector
method:

Step 0: Initialization

Assume a regular point{u0,λ0} := {u(s0),λ (s0)} on, and a tan-
gent{u̇0, λ̇0} := {u̇(s0), λ̇ (s0)} to, a solution branch (3.1)-(3.2)
are known.

Step 1: Continuation

Step 1.1: Tangent line prediction

Set

{u0
1,λ 0

1}= {u0,λ0}+{u̇0, λ̇0}∆s0 (3.3)

for a suitably chosen arclength step∆s0 := s1−s0.

Step 1.2: Correction

Solve for{u1,λ1} := {u(s1),λ (s1)} on the solution branch via
Newton’s method
(

Su(uk
1,λ k

1) Sλ (uk
1,λ k

1)
lu(uk

1,λ k
1 ,s1) lλ (uk

1,λ k
1 ,s1)

)(

∆uk
1

∆λ k
1

)

=

(

−S(uk
1,λ k

1)
−l(uk

1,λ k
1 ,s1)

)

(3.4)

{uk+1
1 ,λ k+1

1 }= {uk
1,λ k

1}+{∆uk
1,∆λ k

1}, (3.5)

for k = 0,1, . . . .

Step 2: Update

Solve the Davidenko equations (which arise from differentiation
with respect tosalong the solution branch)

(

Su(u1,λ1) Sλ (u1,λ1)
lu(u1,λ1,s1) lλ (u1,λ1,s1)

)(

u̇1

λ̇1

)

=

(

0
−ls(u1,λ1,s1)

)

(3.6)

for {u̇1, λ̇1} := {u̇(s1), λ̇ (s1)}.

Sets0 = s1, {u0,λ0} = {u1,λ1}, {u̇0, λ̇0} = {u̇1, λ̇1}, and return
to Step 1.
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Remark 3.1. As a practical matter, the system in the correction step is solved
via the particular equivalentSchur complementsystem
(

Su Sλ
0 lλ − luS−1

u Sλ

)∣

∣

∣

∣

{uk
1,λ

k
1 ,s1}

(

∆uk
1

∆λ k
1

)

=

(

−S
−l + luS−1

u S

)∣

∣

∣

∣

{uk
1,λ

k
1 ,s1}

, (3.7)

while from the Davidenko equations in the update step we havethat

u̇1 = λ̇1û, whereû solvesSu(u1,λ1)û =−Sλ (u1,λ1), (3.8)

and depending on the form of the second equation in (3.6),λ̇1 is found either from
that equation as

λ̇1 =
−ls(u1,λ1,s1)

lu(u1,λ1,s1)û+ lλ (u1,λ1,s1)
, (3.9)

or from the arclength constraint (3.2) via the solution ofl(u1,λ1,s1) = 0, for exam-
ple the natural arclength constraint (3.13) gives

λ̇1 =± 1
√

1+‖û‖2
. (3.10)

Finally, it may only be necessary to solve the Davidenko equations in the update step
periodically through the continuation process to “renormalize” the tangent. Other-
wise, it is sufficient to approximate the tangent via

{u̇1, λ̇1}=

{

u1−u0

s1−s0
,
λ1−λ0

s1−s0

}

. (3.11)

In [21], it is mentioned that imposing the arclength constraint (3.2) periodically is
good policy so that more uniform steps are taken during the continuation process.
In fact, we shall see later that failure to renormalize the tangent via the Davidenko
equations can result in the arclength step becoming too small or too large, leading
to the failure of the method to continue the desired nontrivial branch of solutions.♣

Let us now apply this general arclength continuation framework to our particu-
lar problem. Casting the original (unconstrained) eigenproblem (1.1)-(1.2) in this
framework, the augmented problem we wish to solve is

S(u,λ ) := −∆u−λu3 = 0, (3.12)

l(u,λ ) := ‖u̇‖2 + |λ̇ |2−1 = 0, (3.13)

in H1
0(Ω)×R (note thatl does not depend explicitly ons).
From equation (3.12), it is clear that{{0,λ}} is a trivial branch of solutions.

Concerning the existence of nontrivial branches of solutions, it is natural to wonder
if there are any bifurcating from the trivial branch. We can determine whether or
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not this is the case by examining the linearization of system(3.12)-(3.13). Upon
differentiating with respect tos, we have that
(

Su(u,λ ) Sλ (u,λ )
lu(u,λ ,s) lλ (u,λ ,s)

)

=

(

−∆−3λu2 −u3

2(u̇, d
ds ·) 2λ̇ d

ds

)

and ls(u,λ ,s) = 0,

(3.14)
so along any branch of solutions{{u(s),λ (s)}}, the Davidenko equations (3.6) must
be satisfied and therefore we must have

(

−∆−3λu2 −u3

2(u̇, d
ds·) 2λ̇ d

ds

)(

u̇
λ̇

)

=

(

0
0

)

. (3.15)

Along the trivial branch of solutions this reduces to
( −∆ 0

2(u̇, d
ds·) 2λ̇ d

ds

)(

u̇
λ̇

)

=

(

0
0

)

. (3.16)

SinceSu(0,λ ) = −∆ : H1
0(Ω)→ H−1(Ω) is an (isometric) isomorphism (cf. [10],

pp. 348-349), we see from the first equation in system (3.16) that the trivial branch
of solutions{{0,λ}} is isolated, i.e., for noλ along the trivial branch can ˙u 6= 0,
so we cannot possibly have a bifurcation from this branch. Thus, we cannot hope to
continue along a nontrivial solution branch starting from atrivial solution. Notice
that the second equation in system (3.16) (or (3.15)) is equivalent to(u̇, ü)+ λ̇ λ̈ =

0, which is simply a statement of the fact that the (unit) tangent vector{u̇, λ̇}t is
orthogonal to the (principal) normal vector{ü, λ̈}t in H1

0(Ω)×Ralong the solution
branch, which is always true.

Since there is no nontrivial solution branch bifurcating from the trivial solution
branch, we still need an initializing solution for the arclength continuation process
along a nontrivial branch. In this case, however, even if we knew a solution of (3.12)
on a notrivial branch, then we would have the solution satisfying the unitL4 norm
constraint (1.3) as well and there would be no need to continue further along this
branch. To see this, suppose{u,λ} is a known nontrivial solution of (3.12). Take

α = ‖u‖0,4 and define{uα ,λα} :=
{ u

α
,α2λ

}

. Then it is easy to verify that{uα ,λα}
satisfies the originalL4 norm constrained eigenproblem (1.1)-(1.3).

Remark 3.2. For problem (3.12) (and similar problems), we can obtain some
qualitative information about the behavior of the solutionset simply by looking at a
one dimensional analog having the same differential behavior in the state variable as
the infinite dimensional problem. Since−∆u is linear inu, we can model this term
in the one dimensional case with a linear term and therefore consider the solution
sets for

x−λx3 = 0. (3.17)

Other than the trivial solution branch{{0,λ}}, we see that nontrivial solution

branches satisfyx2 =
1
λ

, and therefore there are no bifurcations from the trivial

branch except at infinity. ♣



14 F. J. Foss, II, R. Glowinski, R. H. W. Hoppe

At this point, it would seem that we have a major dilemma when it comes to us-
ing arclength continuation, as it is currently formulated,for solving problem (3.12)-
(3.13) directly. On the one hand, we need to have a known solution {u0,λ0} on
a nontrivial branch of solutions to initialize the continuation process, but if we had
such a solution, no continuation would be necessary because, modulo an appropriate
normalization, the original problem would be solved.

To overcome this dilemma and salvage the technique, insteadof pursuing the
one-step strategy:

1. Continue along a nontrivial solution branch starting from a known nontrivial
solution,

we pursue the two-step strategy:

1. Formulate and solve a perturbation of problem (3.12) thatadmits perturbed
nontrivial solution branches bifurcating from the trivialbranch and which are
asymptotic to the corresponding unperturbed nontrivial solution branches.

2. On any of these perturbed solution branches, continue to apoint “close
enough” to the corresponding unperturbed solution branch that it becomes
possible to “jump” from this point to a point on the unperturbed branch.

Note that in the second step of the two-step strategy, “closeenough” means inside
the radius of convergence of the nonlinear solver applied tothe unperturbed prob-
lem, and “jump” means convergence to a point on the correct unperturbed branch in
a single step using the “close enough” perturbed branch point as an initial guess in
the nonlinear solver.

With these ideas in mind, consider the following alternative to the system (3.12)-
(3.13):

S̃(u,λ ,δ ) :=−∆u−λ (u3 + δu) = 0, (3.18)

l̃(u,λ ,s) := (u̇0,u−u0)+ λ̇0(λ −λ0)− (s−s0) = 0, (3.19)

whereδ is a perturbation parameter (which we henceforth suppress in the notation)
and the form of the perturbation was inspired by a third-order approximation to a
model problem posed in the NETLIB software packagePLTMG(see§3.1.1). Notice
that this perturbed system has the trivial branch in common with the original system,
and we have replaced the natural arclength constraintl with a pseudo-arclength
constraintl̃ that depends explicitly onsand is based on a first-order approximation
of l at s0. Specifically, l̃ defines the lengths− s0 of the {u̇0, λ̇0}–projection (i.e.
tangent projection) of the first-order difference{u−u0,λ −λ0}. A nice explanation
of this choice can be found in [22].

Differentiating with respect tos, we have that
(

−∆−λ (3u2 + δ ) −(u3 + δu)

(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

, (3.20)
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which along the trivial branch reduces to
(

−∆−λδ 0
(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

. (3.21)

SinceS̃u(0,λ ) =−∆−λδ is singular wheneverµ := λδ is an eigenvalue of the lin-
ear eigenproblem (2.21)-(2.22), we have bifurcation at points

{

0, µ
δ
}

along the triv-
ial branch. Let{wn,µn} be thenth eigenpair solving the linear eigenproblem (2.21)-
(2.22), wherewn is normalized to have unitL2 norm (recall that these eigenpairs
form an orthonormal basis ofL2(Ω)). Then, choosing the point{u0,λ0} = {0, µn

δ }
along the trivial branch to initialize the continuation process along thenth bifurcat-
ing nontrivial branch and, assuming we have simple bifurcation at this point (our
tacit assumption here because of the choice of our symmetry-breaking domain), we
have from the first equation in (3.21) that ˙u0 = cnwn, wherecn is a constant, and
from the second equation thatcn andλ̇0 satisfyc2

nµn+ λ̇ 2
0 = 1, which is the equation

of a{λ̇0,cn}-ellipse on which the choice ofλ̇0 determinescn and conversely. Taking
λ̇0 = 0 givescn =± 1√µn

, which is the theoretically-consistent choice for initializing
the continuation of the nontrivial solution branch (see next paragraph). Alterna-
tively, we could takėλ0 =± 1√

1+µn
(à la equation (3.10)), which givescn =±λ̇0. If

we takeλ̇0 =±1, thencn = 0, which results in an initial step along the trivial branch
(not a very good start if we are trying to produce the nontrivial branch).

From an implementational point of view, our ability to, and the accuracy with
which we, resolve the beginning portion of the nontrivial solution branch depends
on the initial tangent choice. With this in mind, it is somewhat disconcerting that
the specification of the initial tangent{cnwn, λ̇0} can only be narrowed down to the
parameterizing ellipse defined byc2

nµn+ λ̇ 2
0 = 1. In theory, this fact can be resolved

by restricting ourselves to the distinctroots of the quadratic bifurcation equation
defining the pair{λ̇0,cn}, which in this case (following the development in [21])
can be shown to reduce to the purely bilinear equation

−2δ µncnλ̇0 = 0. (3.22)

The two canonical distinct roots of this equation are{λ̇0,cn}= {1,0} and{λ̇0,cn}=
{0,1}, which define, respectively, tangents parallel and orthogonal to the trivial so-
lution branch. This shows that the bifurcating nontrivial solution branch is orthogo-
nal to the trivial solution branch and tangent to the linear eigenmanifold at the trivial
solution point{0, µn

δ }, so in this case, tangent line prediction from this point in the
orthogonal direction produces a point on the linear eigenmanifold from which we
correct to the nonlinear solution branch.

Substituting these quantities computed for our specific problem into the previ-
ously stated general arclength continuation process, we obtain

Step 0: Initialization
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Take

{u0,λ0} =
{

0,
µn

δ

}

(3.23)

and{u̇0, λ̇0} = {cn(λ̇0)wn, λ̇0} (3.24)

where{wn,µn} is thenth eigenpair solving the linear eigenprob-
lem (2.21)-(2.22).

Step 1: Continuation

Step 1.1: Tangent line prediction

Set

{u0
1,λ 0

1}= {u0,λ0}+{u̇0, λ̇0}∆s0 (3.25)

for a suitably chosen arclength step∆s0 := s1−s0.

Step 1.2: Correction

Solve for{u1,λ1} := {u(s1),λ (s1)} on the solution branch via
Newton’s method
(

−∆−λ k
1(3(uk

1)
2 + δ ) −((uk

1)
3 + δuk

1)

(u̇0, ·) λ̇0

)(

vk
1

µk
1

)

=

(

−(−∆uk
1−λ k

1((uk
1)

3 + δuk
1)

−((u̇0,uk
1−u0)+ λ̇0(λ k

1 −λ0)− (s1−s0))

)

, (3.26)

{uk+1
1 ,λ k+1

1 }= {uk
1,λ k

1}+{vk
1,µk

1}, (3.27)

for k = 0,1, . . .

Step 2: Update

Solve the Davidenko equations
(

−∆−λ1(3u2
1 + δ ) −(u3

1 + δu1)

(u̇0, ·) λ̇0

)(

u̇1

λ̇1

)

=

(

0
1

)

, (3.28)

for {u̇1, λ̇1} := {u̇(s1), λ̇ (s1)}.

Sets0 = s1, {u0,λ0} = {u1,λ1}, {u̇0, λ̇0} = {u̇1, λ̇1}, and return
to Step 1.

The continuation process proceeds along the perturbed solution branch until an
attempt is made to “jump” to the unperturbed solution branch, which entails setting
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δ = 0 in (3.26) and attempting to correct to the unperturbed branch instead of the
perturbed branch in the correction step. If the “jump” to theunperturbed branch is
successful, we normalize the solution as indicated previously so that theL4 norm
constraint is satisfied, and we are done. Otherwise, we restoreδ to its previous value
and proceed with the continuation process as before.

3.1.1. Newton’s method correction. The particular Schur complement system of
interest corresponding to system (3.26) in Step 1.2 of the continuation process is

(

−∆−λ k
1(3(uk

1)
2 + δ ) −((uk

1)
3 + δuk

1)

0 λ̇0−
(

u̇0,zk
1

)

)(

vk
1

µk
1

)

=−
(

−∆uk
1−λ k

1((uk
1)

3 + δuk
1)

(u̇0,uk
1−u0)+ λ̇0(λ k

1−λ0)− (s1−s0))−
(

u̇0,yk
1 + λ k

1zk
1

)

)

, (3.29)

whereyk
1 andzk

1 solve, respectively,

−∆yk
1−λ k

1

(

3(uk
1)

2 + δ
)

yk
1 = −∆uk

1 (3.30)

and−∆zk
1−λ k

1

(

3(uk
1)

2 + δ
)

zk
1 = −

(

(uk
1)

3 + δuk
1

)

. (3.31)

The solution of this system is readily seen to be

µk
1 =

(u̇0,uk
1− (u0 +yk

1+ λ k
1zk

1))+ λ̇0(λ k
1 −λ0)− (s1−s0)

(u̇0,zk
1)− λ̇0

(3.32)

andvk
1 = −(yk

1 + λ k
1zk

1 + µk
1zk

1), (3.33)

provided the solutionsyk
1 andzk

1 of the two elliptic problems (3.30) and (3.31) exist,
andλ̇0 6= (u̇0,zk

1). Because the elliptic operators in (3.30) and (3.31) are singular and
indefinite, an iterative method that can handle such systems(e.g. a preconditioned
minimum residual method) must be used to solve them. As an alternative to this
correction methodology, we elect to use a different approach that we now describe.

3.1.2. Least-squares conjugate gradient correction. As an alternative to using
Newton’s method in the correction step to solve the system (3.12)-(3.13) (or in this
case, the perturbed system (3.18)-(3.19)) directly, it is possible to correct via the
solution of an equivalent least-squares problem to which wecan apply theconjugate
gradient method.

To begin, we note that for each{u,λ} ∈ H1
0(Ω)×R,

{

S̃(u,λ ), l̃ (u,λ ,s)
}

is in
H−1(Ω)×R (thanks again, in part, to an appropriate Sobolev imbeddingresult).
Thus, the least-squares formulation of problem (3.18)-(3.19) is:

Find{u,λ} ∈ H1
0(Ω)×Rsuch that

J̃s(u,λ ) 6 J̃s(v,µ), for all {v,µ} ∈ H1
0(Ω)×R, (3.34)
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where the (homogeneous, in this case)least-squares functional̃Js is defined by

J̃s(v,µ) :=
1
2
‖S̃(v,µ)‖2−1 +

1
2
|l̃(v,µ ,s)|2, (3.35)

where the dual norm inH−1(Ω) is defined by‖ f‖−1 := sup
w∈H1

0 (Ω)\{0}

| 〈 f ,w〉 |
‖w‖ , and

the primal norm inH1
0(Ω) is induced by the inner product inH1

0(Ω) defined by
(u,v) :=

∫

Ω ∇u·∇vdx. Henceforth, in our discussion of the functionalJ̃s, we sup-
press any explicit dependence on the arclength parameters for notational clarity.

It is clear that solving the least-squares formulation is equivalent to solving the
original problem. The only difficulty with solving it as stated lies with the explicit
presence of the dual norm in the functional expression. Fortunately, we can over-
come this difficulty with some powerful theory that admits a reformulation in terms
of the primal norm. In particular, from theRiesz representation theorem, for each
f ∈ H−1(Ω), there exists a uniquev f ∈ H1

0(Ω) such that〈 f ,w〉 = (v f ,w) for all
w ∈ H1

0(Ω), and furthermore,‖ f‖−1 = ‖v f‖. On the other hand, we know that
−∆ is an isometric isomorphism ofH1

0(Ω) onto H−1(Ω) so that we may iden-
tify f with −∆v f . Therefore, we see that for eachf ∈ H−1(Ω), there exists a
uniquev f ∈ H1

0(Ω) such that
〈

−∆v f ,w
〉

= (v f ,w) = 〈 f ,w〉 for all w∈ H1
0(Ω), and

‖−∆v f‖−1 = ‖v f ‖= ‖ f‖−1. Replacing each ofH1
0(Ω) andH−1(Ω) by R, f by α ,

v by a, w by b, and−∆ by 1, we have the same (rather pedantic and unnecessary)
argument for the scalar component.

Applying this general theory to the current setting, take{ f ,α}= {S̃(v,µ), l̃ (v,µ ,s)},
{v f ,aα}= {ṽ, µ̃}, and{w,b} = {w̃, ν̃}. Then we have the following reformulation
of (3.35):

J̃(v,µ) :=
1
2
‖ṽ‖2 +

1
2
|µ̃ |2, (3.36)

where each of ˜v andµ̃ is a function of{v,µ} through

(ṽ,w̃) =
〈

S̃(v,µ),w̃
〉

=
〈

−∆v−µ(v3 + δv),w̃
〉

, for all w̃∈ H1
0(Ω), (3.37)

andµ̃ = l̃(v,µ ,s) = (u̇0,v−u0)+ λ̇0(µ−λ0)− (s−s0). (3.38)

The least-squares problem, posed in the primal norm, may be solved using a very
efficient quadratic solver, namely theconjugate gradient method, which gives the
following alternative correction step for the arclength continuation process:

Step 1.2: Correction

Step 1.2.0: Initialize the conjugate gradient direction

Solve(g0
u,w) =

〈

J̃′u(u
0
1,λ 0

1 ),w
〉

for all w∈ H1
0(Ω), (3.39)



Numerical methods for a Lane-Emden type eigenproblem 19

setg0
λ = J̃′λ (u0

1,λ 0
1 ), (3.40)

and take{v0
1,µ0

1}= {g0
u,g

0
λ}, (3.41)

where J̃′u and J̃′λ are the partial derivatives of̃J(u,λ )
with respect tou andλ , respectively.

Compute {uk+1
1 ,λ k+1

1 }, {gk+1
u ,gk+1

λ }, (vk+1
1 ,µk+1

1 ) from
{uk

1,λ k
1}, {gk

u,g
k
λ}, {vk

1,µk
1} via

Step 1.2.1: Compute optimal step size for descent

Find ρk such that

J̃(uk
1−ρkv

k
1,λ k

1 −ρkµk
1) 6 J̃(uk

1−ρvk
1,λ k

1 −ρµk
1),∀ρ ∈ R. (3.42)

Step 1.2.2: Update and test for convergence

{uk+1
1 ,λ k+1

1 }= {uk
1−ρkv

k
1,λ k

1−ρkµk
1} (3.43)

If J̃(uk+1
1 ,λ k+1

1 ) 6 ε , take{u1,λ1} = {uk+1
1 ,λ k+1

1 } and
stop; else

Step 1.2.3: Update conjugate gradient direction

Solve(gk+1
u ,w) =

〈

J̃′u(u
k+1
1 ,λ k+1

1 ),w
〉

for all w∈H1
0(Ω), (3.44)

setgk+1
λ = J̃′λ (uk+1

1 ,λ k+1
1 ), (3.45)

computeγk =
(gk+1

u −gk
u,g

k+1
u )+ (gk+1

λ −gk
λ )gk+1

λ
‖gk

u‖2 + |gk
λ |2

, (3.46)

and take{vk+1
1 ,µk+1

1 } = {gk+1
u ,gk+1

λ }+ γk{vk
1,µk

1}. (3.47)

k← k+1 and return to Step 1.2.1

For the implementation of this method, we must elaborate on two details. First, we
need to compute theFréchet derivativeof the least squares functionalJ̃(u,λ ). Dif-
ferentiating (3.36) (noting that, for each{v,µ} in H1

0(Ω)×R, J̃′(v,µ)∈L(H1
0(Ω)×

R,R)), we have
〈

J̃′(v,µ),{w,ν}
〉

=
(

ṽ′(v,µ){w,ν}, ṽ(v,µ)
)

+
〈

µ̃ ′(v,µ),{w,ν}
〉

µ̃(v,µ), (3.48)

where, from (3.37)-(3.38), ˜v′(v,µ)∈L(H1
0(Ω)×R,H1

0(Ω)) andµ̃ ′(v,µ)∈L(H1
0(Ω)×

R,R) are defined by
(

ṽ′(v,µ){w,ν},w̃
)

=
〈

S̃′(v,µ){w,ν},w̃
〉
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=
〈

−∆w−µ(3v2+ δ )w− (v3+ δv)ν ,w̃
〉

, (3.49)

for all w̃∈ H1
0(Ω), and

〈

µ̃ ′(v,µ),{w,ν}
〉

=
〈

l̃ ′u(v,µ ,s),w
〉

+ l̃ ′λ (v,µ ,s)ν = (u̇0,w)+ λ̇0ν . (3.50)

On the other hand,
〈

J̃′(v,µ),(w,ν)
〉

=
〈

J̃′u(v,µ),w
〉

+ J̃′λ (v,µ)ν (3.51)

for all {w,ν} ∈ H1
0(Ω)×R, so from (3.49)-(3.51) we deduce that the partial deriva-

tives of J̃ satisfy
〈

J̃′u(v,µ),w
〉

=
〈

−∆w−µ(3v2+ δ )w, ṽ
〉

+(u̇0,w)µ̃ (3.52)

J̃′λ (v,µ) =
〈

−(v3 + δv), ṽ
〉

+ λ̇0µ̃ (3.53)

for all {w,ν} ∈H1
0(Ω)×R. We use these expressions in the implementation.

Next, we need to solve the one-dimensional minimization problem in Step 1.2.1
for the optimal step sizeρk for descent. Although there is more than one method that
can be used for this, we have chosenNewton’s method, for which we give the details
now. Definer : R→ H1

0(Ω)×R : ρ 7→ {v−ρw,µ−ρν} and takeϕ(ρ) := J̃(r(ρ)).
Taking {v,µ} = {uk

1,λ k
1} and{w,ν} = {vk

1,µk
1}, we solve (3.42) for the optimal

step sizeρk by applying Newton’s method to the derivativeϕ ′ in order to find the
root corresponding to the (unique in this case) minimizer ofϕ , giving

ρn+1
k = ρn

k −
ϕ ′(ρn

k )

ϕ ′′(ρn
k )

, (3.54)

for n = 0,1, . . . until convergence, where calculation gives

ϕ ′(ρ) =
〈

J̃′(r(ρ)),r′(ρ)
〉

=−
〈

J̃′(v−ρw,µ−ρν),{w,ν}
〉

(3.55)

and

ϕ ′′(ρ) =
〈

J̃′′(r(ρ))r′(ρ),r′(ρ)
〉

=
〈

J̃′′(v−ρw,µ−ρν){w,ν},{w,ν}
〉

. (3.56)

For initialization, we takeρ0
k to be the optimal descent step size found in thekth CG

iteration, if it exists, during the arclength continuationprocess for the most recently
found solution along the solution branch. If there was nokth CG iteration required
for the previously found solution, we setρ0

k = 1 (a full step in the descent direction).
The explicit form ofϕ ′(ρ) for our problem may be found from equations (3.48)-

(3.50) by replacing{v,µ} by {v−ρw,µ−ρν}, which gives

ϕ ′(ρ) =
〈

−∆w− (µ−ρν)(3(v−ρw)2+ δ )w

−((v−ρw)3+ δ (v−ρw))ν , ṽ(v−ρw,µ−ρν)
〉
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+
(

u̇0,w)+ λ̇0ν
)

µ̃(v−ρw,µ−ρν), (3.57)

where from (3.37)-(3.38)

(ṽ(v−ρw,µ−ρν),w̃) =
〈

−∆(v−ρw)− (µ−ρν)((v−ρw)3+ δ (v−ρw)),w̃
〉

,
(3.58)

for all w̃∈ H1
0(Ω), and

µ̃(v−ρw,µ−ρν) = (u̇0,v−ρw−u0)+ λ̇0(µ−ρν−λ0)− (s−s0). (3.59)

To find the explicit form ofϕ ′′(ρ) for our problem, we need the second derivative
mappingJ̃′′ of J̃ (more precisely, its action). Differentiating (3.48), we obtain
〈

J̃′′(v,µ){w2,ν2},{w1,ν1}
〉

=
(

ṽ′′(v,µ){w2,ν2}{w1,ν1}, ṽ(v,µ)
)

+
(

ṽ′(v,µ){w1,ν1}, ṽ′(v,µ){w2,ν2}
)

+
〈

µ̃ ′′(v,µ){w2,ν2},{w1,ν1}
〉

µ̃(v,µ)

+
〈

µ̃ ′(v,µ),{w1,ν1}
〉〈

µ̃ ′(v,µ),{w2,ν2}
〉

,(3.60)

where, from (3.49)-(3.50), ˜v′′(v,µ) ∈ L

(

H1
0(Ω)×R,L

(

H1
0(Ω)×R,H1

0(Ω)
)

)

and

µ̃ ′′(v,µ) ∈ L

(

H1
0(Ω)×R,L

(

H1
0(Ω)×R,R

)

)

are defined by

(

ṽ′′(v,µ){w2,ν2}{w1,ν1},w̃
)

=
〈

S̃′′(v,µ){w2,ν2}{w1,ν1},w̃
〉

=
〈

−6µvw2w1− (3v2 + δ )w2ν1− (3v2 + δ )ν2w1,w̃
〉

, (3.61)

for all w̃∈ H1
0(Ω) (note there is noν1ν2 term becauseS(v,µ) is linear inµ), and

〈

µ̃ ′′(v,µ){w2,ν2},{w1,ν1}
〉

=
〈

l̃ ′′uu(v,µ ,s)w2,w1
〉

+
〈

l̃ ′′uλ (v,µ ,s)ν2,w1
〉

+l̃ ′′λu(v,µ ,s)w2ν1 + l̃ ′′λλ (v,µ ,s)ν2ν1≡ 0. (3.62)

Taking {w2,ν2} = {w1,ν1} = {w,ν}, replacing{v,µ} with {v− ρw,µ − ρν} in
(3.60), and using (3.49)-(3.50) and (3.61)-(3.62), we finally obtain that

ϕ ′′(ρ) =
〈

−6(µ−ρν)(v−ρw)w2−2(3(v−ρw)2+ δ )wν , ṽ(v−ρw,µ−ρν)
〉

+‖ṽ′(v−ρw,µ−ρν)(w,ν)‖2 + |(u̇0,w)+ λ̇0ν |2, (3.63)

whereṽ(v−ρw,µ−ρν) andµ̃(v−ρw,µ−ρν) are again defined by (3.58)-(3.59).

3.2. Newton’s method applied directly to the original eigenproblem

Before presenting the formulation for our specific problem,we summarize the gen-
eral framework for the damped Newton method. LetF : X 7→Y be aC1 map between
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Banach spaces such thatF(x) = 0 has at least one solution. Under suitable regular-
ity restrictions onF and for a suitable initial guessx0, it can be shown thatordinary
Newton’s method

F ′(xk)∆xk =−F(xk), (3.64)

xk+1 = xk + ∆xk, (3.65)

converges to a solutionx∗ of F(x) = 0. Note that this method islocal in the sense
that its convergence depends on having a suitable initial guessx0. The rationale for
damping theordinary Newton increments∆xk is to remove any restrictions onx0

and in this senseglobalize the method. Such damping typically utilizes 2nd order
information available in the problem to restrict the sizes of the steps taken in the
sequentialNewton directions∆xk/‖∆xk‖, which are initial tangent directions to the
sequentialNewton pathsdefined by the sequentialDavidenko IVPs(cf. [26], §7.5
for a summary of Davidenko’s work and references)

F ′(x(σ))ẋ(σ)+F(x(0)) = 0, (3.66)

x(0) = xk,x(1) = x∗, (3.67)

which in turn are derived by differentiating each link in thesequentialhomotopy
chain

Φk(x,σ) := F(x)− (1−σ)F(xk)≡ 0,k = 0,1,2, . . . . (3.68)

Damping the ordinary Newton increments simply involves multiplying them by cor-
respondingdamping factorsσk in the interval(0,1]. The derivation of theoretically-
optimal damping factors, and their computationally-available estimates, is technical
and for which we refer the curious reader to [12]. We simply invoke such esti-
mates in the following general error-oriented damped Newton algorithm adapted
from Deuflhard (cf. [12], Algorithm NLEQ-ERR, pp.148-149):

Step 0: Initialization

Guessx0.

For k = 0,1, . . . , until convergence, compute xk+1 from xk via:

Step 1: Natural level function descent

Step 1.1: Compute ordinary Newton increment.

Solve

F ′(xk)∆xk =−F(xk). (3.69)

Step 1.2: Test for convergence.



Numerical methods for a Lane-Emden type eigenproblem 23

If ‖∆xk‖6 ε , takex∗ = xk + ∆xk and stop; else

Step 1.3: Predict Newton increment damping factor.

If k = 0, setσ0 6 1;

else

Step 1.3.1: Compute a priori local trial Lipschitz constantestimate.

Define

[ωk] :=
‖∆x

k−∆xk‖
σk−1‖∆xk−1‖ · ‖∆x

k‖
. (3.70)

Step 1.3.2: Compute predicted damping factor from a priori local
trial Kantorovich quantity estimate.

Set

σk = min

{

1,
1

[ωk]‖∆xk‖

}

. (3.71)

Step 1.4: Regularity test

If σk < σmin, stop (no convergence);

else

Step 1.5: Update damped Newton iterate and compute trial
simplified Newton increment.

Set

xk+1 = xk + σk∆xk, (3.72)

then solve

F ′(xk)∆x
k+1

=−F(xk+1). (3.73)

Step 1.6: Correct Newton increment damping factor.

Step 1.6.1: Compute a posteriori local trial Kantorovich quan-
tity estimate.

Define

[hk] :=
2‖∆x

k+1− (1−σk)∆xk‖
(σk)

2‖∆xk‖
. (3.74)
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Step 1.6.2: Restricted natural monotonicity test

If

‖∆x
k+1‖>

(

1− σk

4

)

‖∆xk‖ (3.75)

(failed restricted monotonicity test), set

σk = min

{

1
2

σk,
1

[hk]

}

, (3.76)

correct: setσk = σk,

and return to Step 1.4;

else

(passed restricted monotonicity test) set

σ k = min

{

1,
1

[hk]

}

. (3.77)

If σk > 4σk

correct: setσk = σ k,

and return to Step 1.5;

else

If σ k = σk = 1

If ‖∆x
k+1‖6 ε

takex∗ = xk+1 + ∆x
k+1

and stop.

setxk = xk+1, k← k+1 and return.

Applying this general framework to our constrained nonlinear elliptic eigen-
problem, we define

x =

(

u
λ

)

, andF(u,λ ) =

(

−∆u−λu3
∫

Ω u4(x)dx−1

)

, (3.78)

and a quick calculation gives

F ′(u,λ ) =

(

−∆−3λu2 −u3

4
∫

Ω u3(x) · dx 0

)

, (3.79)
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where the iteration takes place inH1
0(Ω)×Rusing the corresponding product norm.

Steps 1.1 and 1.5 take the respective forms
(

−∆−3λ k
(

uk
)2 −

(

uk
)3

4
∫

Ω
(

uk(x)
)3 · dx 0

)

(

vk

µk

)

=−
(

−∆uk−λ k
(

uk
)3

∫

Ω
(

uk(x)
)4

dx−1

)

(3.80)

and
(

−∆−3λ k
(

uk
)2 −

(

uk
)3

4
∫

Ω
(

uk(x)
)3 · dx 0

)

(

vk+1

µk+1

)

=−
(

−∆uk+1−λ k+1
(

uk+1
)3

∫

Ω
(

uk+1(x)
)4

dx−1

)

, (3.81)

where
(

uk+1

λ k+1

)

=

(

uk

λ k

)

+ σk

(

vk

µk

)

. (3.82)

The solutions of systems (3.80) and (3.81) may be found easily from the corre-
spondingSchur complementsystems
(

−∆−3λ k
(

uk
)2 −

(

uk
)3

0 −4
∫

Ω
(

uk(x)
)3

zk(x)dx

)

(

vk

µk

)

=−
(

−∆uk−λ k
(

uk
)3

∫

Ω
(

uk(x)
)4

dx−1−4
∫

Ω
(

uk(x)
)3(

yk + λ kzk
)

(x)dx

)

(3.83)

and
(

−∆−3λ k
(

uk
)2 −

(

uk
)3

0 −4
∫

Ω
(

uk(x)
)3

zk(x)dx

)

(

vk+1

µk+1

)

=−
(

−∆uk+1−λ k+1
(

uk+1
)3

∫

Ω
(

uk+1(x)
)4

dx−1−4
∫

Ω
(

uk(x)
)3(

yk+1 + λ k+1zk+1
)

(x)dx

)

, (3.84)

where, for j = k,k+1, y j solves

−∆y−3λ k
(

uk
)2

y =−∆u j in Ω, (3.85)
y = 0 onΓ, (3.86)

andzj solves

−∆z−3λ k
(

uk
)2

z=−
(

u j
)3

in Ω, (3.87)

z= 0 onΓ. (3.88)
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The solutions of (3.83) and (3.84) are readily seen to be

vk =−
(

yk + λ kzk + µkzk
)

(3.89)

and
vk+1 =−

(

yk+1 + λ k+1zk+1 + µk+1zk
)

, (3.90)

where

µk =

∫

Ω
(

uk(x)
)4

dx−1−4
∫

Ω
(

uk(x)
)3(

yk + λ kzk
)

(x)dx

4
∫

Ω (uk(x))3zk(x)dx
(3.91)

and

µk+1 =

∫

Ω
(

uk+1(x)
)4

dx−1−4
∫

Ω
(

uk(x)
)3(

yk+1 + λ k+1zk+1
)

(x)dx

4
∫

Ω (uk(x))3zk(x)dx
. (3.92)

From this discussion, we see that the solvability of the systems (3.80) and (3.81)
boils down to the solvability of the four (two each forj = k and j = k+ 1) elliptic
boundary value problems (3.85)-(3.86) and (3.87)-(3.88),for all k. In turn, as dis-
cussed before in§3.1.1 in the context of similar problems, the solvability ofthese
problems hinges on the consistency of the systems as specified by the Fredholm
alternative and the application of an appropriate solver.
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