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Abstract — In this first part of our two-part article, we present someottetical background along
with descriptions of some numerical techniques for sohdargarticular semilinear elliptic eigenprob-
lem of Lane-Emden type on a triangular domain without angdiof symmetry. For solving the
principal (%Y eigenproblem, we describe an operator splitting methgdiegbto the corresponding
time-dependent problem. For solving higher eigenproblesmesdescribe an arclength continuation
method applied to a particular perturbation of the origiprablem, which admits solution branches
bifurcating from the trivial solution branch at eigenvadu its linearization. We then solve the orig-
inal eigenproblem by “jumping” to a point on the unperturlsattion branch from a "nearby” point
on the corresponding continued perturbed branch, thenalimimg the result. Finally, for compar-
ison, we describe a particular implementation of Newton&thod applied directly to the original
constrained nonlinear eigenproblem.

Keywords: numerical method, Lane, Emden, semilinear, elliptic, epyeblem, operator splitting,
finite element, arclength continuation, least-squarestrob Newton’s method

1. INTRODUCTION

Let Q be abounded, Lipschitz domain RY and denote its boundary 5y Consider
the following model nonlinear eigenproblem:

—Au=Au®  inQ, (1.1)
/ u*(x)dx=c, (1.3)
Q

wherec > 0 is a normalization constant (we assume hereaftecthdt). The choice
of theL* norm constraint (1.3) is natural and convenient, for if wdtiply equation
(1.1) by any solutioru (ignoring the natural existence question for the momenrd) an
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integrate, we immediately see that
/ Ou()2dx= A, (1.4)
Q

which, for one thing, shows that any eigenvalueorresponding to an eigenfunction
u must be positive. It is worth mentioning that fdr> 4, the unconstrained prob-
lem (1.1)-(1.2) has no nontrivial solutionf([13], §9.4.2), and thus the constrained
problem has no solution.

This problem falls into the class of nonlinear (more prdgjsemilinear) elliptic
eigenproblems, finding applications in, for example, thelgof stellar equilibrium
(e.g., the so-calletlane-Emden modetf. [7]). Within the extensive literature on
semilinear elliptic problems in general, some of the cbutions on, or related to,
such eigenproblems include [8], [11], [17], [23] [13], [19%], [24], [20], [2], [6],
[27], and further citations therein.

The most recent of these citations [27] is the first of threpepa that, as of
the final stages of this writing, are in various stages of pipéipation. In their first
paper, the authors summarize, rather well, the numerouswrstantial difficulties
encountered when attempting to characterize and solvdraored eigenproblems
in a Banach spacB arising asEuler-Lagrange systenwf the form

F'(u)=AG/'(u), (1.5)
G(u) =a, (1.6)

obtained via differentiation of the associaleagrangian functional
L(u,A)=F(u)—A(G(u)—a). (1.7)

The first paper focuses on the case when the component foalstie(-) andG(-)
possess what they refer to as tee-homogeneity propertyefined by the existence
of a positive integek = | such that

F/(tu) = t“F’(u) andG'(tu) =t'G'(u),vt > 0,u € B. (1.8)

The authors show that this property is sufficient to chareesigenpairs{u, A }
solving (1.5)-(1.6) as critical point and value paifg,J(u)} of the associated
Rayleigh quotienfunctional

J(u) := %,u € B\U, U := {u e B|G(u) = 0}. (1.9)

The authors then present a so-calletb(lified Local MiniMax (LMM) methodfor
finding multiple critical points ofl(-), constrained to the unit sphere and ordered by
their so-called Ipcal) MiniMax Index(MMI) and show how the method relates to
the established characterizations of Rayleigh-Ritz, @atdFischer, and Ljusternik-
Schnirelman. Finally, they implement the modified LMM medland use it to solve
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a nonlinearp-Laplacian eigenproblem on a<22 square with some interesting and
novel results. Although we have not seen their subsequerk, wte authors evi-
dently consider non iso-homogenous problems in their skpaper, of which our
model problem is a particular case as it satisfids-aBomogeneity propertyith
k=1andl =3.

In the earlier paper [20], the author discusses and impl&srerConstrained
Steepest Decent Method (CSDM) initializing a Constraineaulain Pass Algo-
rithm (CMPA) for solving constrained minimax problems argsas systems of vari-
ational functionals corresponding to various semilindigste equations, including
a particular case\(= 1) of problem (1.1)-(1.3) on the unit square. The detail$ef t
methodology are rather intricate, but it is our basic urtdexding that the method
first involves the finding of two suitable critical point stikns of the problem via
the CSDM that satisfy the conditions of a constrained varsidhe classical moun-
tain pass theorem. These two solutions are then used in tHRAG endpoints of
a path constructed (and possibly refined) in such a way aserse a so-called
“mountain pass”, from the “top” (i.e., local maximum poimt) which the CSDM
is used again to descend from this local maximum point aldhg fidge” of lo-
cal maxima to the new mountain pass-type critical pointiaghthe constrained
minimax problem.

In the present work, we discuss and implement some altgenatimerical
methods and explore their shortcomings and merits. Weigesturselves to the
numerical investigation of problem (1.1)-(1.3) on a patac domain, looking for
approximate variational solutions in a suitable Hilbedsp

In §2, we discuss the solution of problem (1.1)-(1.3) for thexgipal eigenpair
(u1,A1). Specifically, in§2.1, we prove that this problem is equivalent to energy
minimization on the uniL*(Q) sphere in the Sobolev spati(Q), and that the
latter formulation (hence the former) has a solutiorgja.2-2.3, we present a com-
putational algorithm for solving this problem based on thealledtime-dependent
approachandoperator splitting

In §3, we discuss the solution of the unconstrained problem)-(1.2) in the
setting ofarclength continuation theorwith the particular goal of finding higher
eigenmodes, treating the problem with constraint (1.3)seaial case. 1§3.1, we
present the general and problem-specific arclength cattoruframework. Within
this framework, we discuss two local correction method@edgn §63.1.1-3.1.2.

Finally, for completeness and comparison purposes, wageon 53.2 a direct
approach to solving (1.1)-(1.3) based on an applicaticaffafe covariant Newton'’s
method w/wo dampin@ la P. Deuflhard).

2. THE PRINCIPAL EIGENPROBLEM

2.1. Theoretical background

In this section, we present some of the supporting existanicpieness theory for
problem (1.1)-(1.3), focussing on tpeincipal, or minimal eigenproblemlt is nat-
ural to look forweak solution®f this problem in the Sobolev spakeg(Q) x R. The
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weak formulatiorof (1.1)-(1.3) is: Find{u,A } € H}(Q) x Rsuch that
/QDu(x) - Ow(x) dx— A /Qu3(x)w(x)dx = 0, forallwe H}(Q), (2.1)
/Qu“(x)dx— 1 = 0 (2.2)
Consider the following variational problem:
Findu € &4 := H3(Q) N84 such thatl(u) < J(v), Vv € &4, (2.3)
whereJ(v) := 3 [, |[Ov(x)[2dx and S, := {v € LYQ)| Jouv*(x)dx = 1}. It is easy
to see that, for any paiu, A } solving (2.3), the weak formulation (2.1)-(2.2) com-

prises the so-callefirst-order necessary optimality conditiomesulting from dif-
ferentiation of the_Lagrangian functionall : H&(Q) x Rt — Rdefined by

L(v,u) = J(v)—%(/év“(x)dx—l)

= %/va(x)ﬁdx—% </Qv4(x)dx— 1>. (2.4)

The first equation in the first-order necessary optimalistey is the weak form of
the Euler-Lagrange equatiodefined by

(L0 (u,A),w) = (J'(u),w) — A /Qu3(x)w(x)dx: 0, (2.5)

where we see that the eigenvalliégs theLagrange multipliercorresponding to the
constraint defined by the second equation

L0 (uA) = —% </Q u(x) dx— 1) =0. (2.6)

Thus, we see that any solutienof (2.3) is an eigenfunction corresponding to the
eigenvalue), the pair{u, A } necessarily solving (2.1)-(2.2). Since &H&(Q) func-
tion is continuously imbedded i (Q) (Sobolev imbedding theorg¢nwe may nor-
malize any nonzerda-l&(Q) function so that it lies irB4 (so €4 is nonempty) and
then define the@rincipal eigenvalue\; as theminimum value

M= inf [ |Do()2dx= inf 23(v), 2.7)
Q

v684 v684

and aprincipal eigenfunction yas a corresponding minimizer solving Problem
(2.3), with theprincipal eigenpair{u;, A1} solving (2.1)-(2.2). We now show

Proposition 2.1. Problem(2.3) has a solution.
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Proof. SinceH3(Q)is, in fact, compactly imbedded Lf(Q) (Rellich-Kondrachov
imbedding theorejnand since the functiondl (being half the square of the equiv-
alent energy nornfj - || = | - |12.0 on H(Q)) is continuous, coercive, and bounded
below by zero orH3(Q), and so also or€4, there exists aninimizing sequence
{vk}ken In €4 such that

lim J(v) = inf J(v). (2.8)
k—00 vEEY
Since{J(vk) }ken is bounded irR*, {vx}ken Mmust be bounded iki}(Q) (by coer-
civity), and sinceH(}(Q) is a Hilbert space, whence reflexive, it follows that there
existsN' C N andu € H}(Q) such that the subsequengeg }w < convergesveakly
to uin HY(Q), that is, (f,ve) — (f,u) ask’ — oo, for all f € H=1(Q), or equiva-
lently (by theRiesz representation theorgmy, Ow - Ouw dx — [ Ow- Oudx for
all we H}(Q). Now,

0< }/ 0(ve — u)(x)[Pdx = }/ | Do (X)[? dx— / Ou(x) - O (x) dX
2Ja 2Ja Q
+}/ Ou(x)[2dx VK € NV,
2J)a

and thus, upon taking the limit & — «, we see thad(u) < inf,c¢, J(v), which
becomes an equality if we can show thiat €4. But this follows from the compact
imbedding ofH3(Q) in L*(Q), since then the weak convergence{of }xcn in
H&(Q) implies its strong convergence irt(Q), and since|vg [lo.4q = 1 for all K,
it follows that ||U||0.4’Q =1. ]

Remark 2.1. It is evident that if{u;,A1} is a principal eigenpair, then so
is {—u1,A1}. For higher eigenproblems, the nonuniqueness is lessilttivan a
sign change and depends, at least, on the geomety (af. [28]). Although the
nonuniqueness question is itself an interesting and irapbdne, we do not explore
it further herein. )

2.2. Approximating the principal eigenproblem

Problem (1.1)-(1.3) is really a parameterized family ofistaary nonlinear Dirichlet
problems. Here, we are looking for the first (as a functionhef parameter) such
solution and the corresponding value of the parameter. lgenaral discussion of,
and some additional references for, some methods usedtostationary nonlinear
Dirichlet problems, see [15], Chapter V§3. One such method discussed there, and
which we employ here, is the so-calléohe-dependent approacihe general idea

of this approach is to first introduce tlparabolic initial value problenassociated
with stationary problem (1.1)-(1.3), namely

% —Au=Au® inQx(0,+w), (2.9)
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u=0 onl x (0,+4o0), (2.10)
/Qu“(x,-)dx: 1, te(0,+m), 2.11)
u(-,0) = up in Q. (2.12)

For a particular choice of initial data, we then discretize this problem in time and
at each time step solve the (weak form of) the resulting s#strete problem in
H&(Q). The only twist here is that we are solving not only for an updiau, but also

in A, at each time step, and therefore we need to initializs well. With the proper
time discretization and initialization (discussed belgtlg resulting approximating
sequence of iteratgal" } ,cy Will be a monotonically norm-decreasing, minimizing
sequence converging to a steady state solving the prineigahproblem for (1.1)-
(1.3). To see that the sequence is monotonically norm-dsicrg, multiply (2.9) by

Jdu . :
ot and integrate ove® to obtain

- (Au(x,t)\? " d (1 " du(x,t) du(xt)
/Q< o > dx+/QE <§|Du(x,t)|z> dx—/r S g s
:/\/Q%Gu“(x,t)> dx  (2.13)

Now, the boundary integral vanishes si o =0onl (from (2.10)). Also, we may

interchange the order of time differentiation and spacegiration to obtain (using
(2.11))

duxt)\? . 1d 2o Ad [y, B
/g)(T) dx+§a/§z\ﬂu(x,t)] dx_za/Qu (x,t)dx=0, (2.14)

and thus

1d 2 ©Au(x,t)\?
e =— 0 <O0. .
o Q|Du(x,t)| dx /Q< ot > dx<0 (2.15)

This shows that the function— |ju(-,t)|| is decreasing, and thus the approximat-
ing sequence of iteratga"} will be monotonically norm-decreasing provided the
discretization is consistent with this exact property 09J42.12).

2.3. Numerical algorithm and discretization

For the time discretization of problem (2.9)-(2.12), we thmeoperator splitting the-
ory of Lie as applied in the time-dependent PDE setting byevio and Marchuk
(cf.[16], Chapters Il & VII, and references therein), one possiimplementation of
which results in the following time-discrete system:

(1) W =upis given. (2.16)
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Forn > 0 until convergence, solve

n+3 _n 3
2) % _ Al (u“+%> in Q. 2.17)
4
/ () (dx=1 (2.18)
Q
n+1 _ n+3
@ U AMi_0inQ, (2.19)
T
u*t=0onr. (2.20)

To transition from time step to n+ 1, the nonlinear subproblem in Step (2) of this
scheme requires the simultaneous solution of coupled @rudntegral equations

defined o to find the pair{u”+% ,A™11 The subproblem in Step (3) is a linear el-
liptic boundary value problem ia"** involving the solution found in Step (2). We
discretize both subproblems in space using a standardwisdinear finite ele-
ment approximation of the variational formsHtj(Q) on a uniform, geometrically-
conforming mesh and solve the linear subproblem using atdinethod.

chooseug to be the principal eigenfunction; satisfying the following constrained
linear eigenproblem

—AwW = uw in Q, (2.21)

w=0 onl, (2.22)

/ WAx)dx= 1, (2.23)
Q

which can be solved variationally #H2(Q) for the minimal eigenpaifwa, 1 } us-
ing theinverse power methoftf. [16], Chapter VII,§36.3). Once we have its solu-
tion wy, we simply renormalize via division bjws || 4 to satisfy the unit.? norm
constraint (2.23) and take to be this result.

We solve the nonlinear subproblem in Step (2) of this scheematively using
two nested scalar implementations of Newton’s method. ipalty, at each stefx
of the outer implementation (which solves the coupled cabitintegral equations),
the inner implementation solves the set of scalar cubictemsa

Or(Up) == TAUS —Up+ Uy =0, pE Zop, (2.24)

in up at every nodep in the approximating interior finite element meEhy, as-
suming the current outer iterate af= )\l?+1 is given anduy is known from the
previous time step. The justification for solvigg(u) = 0 pointwise is a combina-
tion of the fact that we initialize the scheme with a smoothction up (the linear
eigenfunctionwy solving (2.21)-(2.23)) and use the trapezoidal rule foragimat-
ing the integrals in the associated weak form of the equatibirch diagonalizes the
otherwise coupled set of nonlinear equations.
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The integral constraint
He(A) = / Uy (x)dx—1=0 (2.25)
Q

is then used for the Newton update of the implicitly-defiredising the newly
computed iterately =y o5, Up®p Solving (2.24) pointwise oixon, Where thepy
are the finite element nodal basis functions.

Explicitly, then, we have the following algorithm for sohg the problem in Step
(2) for each time step:

(1)  AFTt=0o0rAlTt = py. (2.26)
Fork > 0 until convergence,
(22) at every mesh nodp € Zgp,

1 2 1
2 take [u' 2| € [0,2———=—— 2.27
( 21) p,k,0 3 \/ﬁ ( )
k
Forl > 0 until convergence,
n+3 n+i gT(Uer%l)
(22 Upies = Upid = —— (2.28)
9z (Upt)
He(Ag ™)
(23) Atk (2.29)
k+1 k H{(A;Jrl)

Concerning the choice af, we notice immediately thay, (up) = 37A u[% —1, show-

ing that critical points ofj; occur atug = i\/% with corresponding critical values
Or (i\/%) = Uy F 525 Sincegy(up) = 6TAup, we see thatl, = 0 is an inflec-
tion point with corresponding inflection valge(0) = uy. For a given outer Newton

iterate A = /\l?+ 1 in order for there to be a root between the two critical moint
near the inflection point and most recently computed salutiy the critical val-
ues must have opposite signs (or one must itself be zero, ichvdase the critical
point is a double root, a situation that we would like to ayoithis means that we

must haveull| < :% 3T1A”+1 (from which we deduce the upper bound in (2.27)), or
k

T < Tpkn .= 5, for all p € Zgp, for all k andn. Equivalently, we have the

-4
27A(un)
following necessary constraint on the time step

4
T<Tyi= 5, forall n. (2.30)

n+1 n
27ma(07) ( mex (1))
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Unfortunately, this constraint is implicit im since)\l?Jrl andup depend ort in a
rather complicated way through the two Newton iteratiorcpeses involving; (-),
H:(-) and their derivatives. Thus, it is only useful as amosteriori monitor of
whether or not the chosanis satisfactory with respect to this condition.

The calculation oH/(-) is straightforward but more involved. First, singgis

a function ofA through equation (2.24), we have upon differentiation witbpect
3

to A thattu® +31AU2U, — U, =0sothaty, = — 2
A ATA A A 1-31A8

. Using this result we

find that
4148 (X)

=/ —A - 2.31
o 1-31AU3(X) (2.31)

HI(A) = /Q4u§(x)u’A (x)dx

1
From this expression fdd.(-), with A = A2 andu, = uE+2 we see that another
a posteriorinecessary condition onis that

1
1 n+l 2
3max{ A" [ max{|u,.,?
ot A7 max(ipid) )

From numerical experiments, this condition appears to bsistently less restric-
tive than condition (2.30), and thus one would use the lattenonitor the choice
of 1.

It is well known (cf. [16], Chapter VI) that the Marchuk-Yanenko scheme is at
most first-order accurate, and its stability and converggmoperties depend heav-
ily on the operators appearing in each subproblem and theeshbr. It is important
to note that the necessary constraints aerived above are by no means sufficient
for overall convergence of scheme (2.16)-(2.20). Inddezke constraints anonly
guarantee the solvability of equation (2.24) and well-posss of theH,(-) inte-
gral (2.31). The final choice af must also be consistent with overall stability and
convergence of the operator splitting scheme. Finallypnfrmmerical experiments,
it is our experience that extreme care must be used whengttento adaptively
modify T in this case.

For the results of the numerical experiments with our im@etation of this
method, we refer the reader to Part (B2, of our article.

T<Ty:= , forall n. (2.32)

3. HIGHER EIGENPROBLEMS

Attempts to adapt the methodology used to solve the priheiganproblem for use

in solving even the ® eigenproblem (let alone higher ones) were not entirely suc-
cessful for a variety of reasons. Although we implemented foethods that were
successful at solving the first two eigenproblemtfs[(4]), only one of these proved
robust enough (without further fine-tuning) to solve th& &nd higher eigenprob-
lems. All of the implementations that failed to solve eigerippems beyond the"d
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were based on solving an approximating linear formulatibthe original semi-
linear problem (although this fact alone doesn't accounttifie failures of these
methods). The one method robust enough to solve the highengioblems pre-
serves the original semilinear structure of the problemiandrporates it into the
solution strategy together with a particular perturbatienm that gives rise to a nat-
ural initialization of the numerical scheme. The approashsithe machinery of the
classical technique d@rclength continuatior{cf. [21] and [22]) and that of its sub-
sequent application to the efficient numerical solutioneaskt-squares formulations
of some nonlinear boundary value probleros [(L7]).

In the sequel, we focus our discussion on the implementatiaghe arclength
continuation method. For completeness and comparisoropesp however, we also
offer some results obtained from the implementations afatederror-oriented or
affine covariantundampedanddamped Newton iterationsliscussed in a general
setting by P. Deuflhard in [12]. In contrast to the methods/iptesly discussed,
these Newton methods are applied directly to the originaktrained semilinear
eigenproblem (1.1)-(1.3).

3.1. Thearclength continuation framework

For a fairly detailed account of the theory of arclength ouardtion applied to the
least squares formulation of general, and some specifidinean boundary value
problems, we refer the reader to Glowinsial. ([17]). In this section, we summa-
rize the presentation found there in the context of the atipeoblem.

The general idea behind the use of arclength continuatiosolging a nonlinear
problem, sayS(u,A) = 0 with uin a (real, in this case) Hilbert spac¥, (-,-)) and
A € R, is to adjoin a so-calledrclength constraint(u, A, s) = O that parameterizes
solution branche${u(s),A(s)}} in terms of an arclength parameterRecall that
any parameterized solution branffu(s),A(s)}} C V x Ris said to beparameter-
ized by arclengttprovided||u(s)|? + A (s)|? — 1 = 0,Vs, that is, the tangent vector
{u(s),A(s)} has unit length for als, and is the natural candidate for the arclength
constraint. We then employ thamplicit function theorenandbifurcation theoryin
order to assert, depending on the behavior of the respqudiiel derivatives ofs
andl with respect to the variablasandA, the local existence and unigueness of so-
lution branches in the neighborhood of a known solutiof Ao} := {u(s),A (%)}
Note that along any branch of solutions, the derivative$ wéispect to arclength
must vanish since the functions are identically zero thEnés leads to the so-called
Davidenko equationfr the tangent vectofu, A } along the branch. If we know or
can solve for a corresponding tangent vedtas, Ao} := {U(%),A (S)} at s, then
we may predict to first order the location of the next iterdd@@ the branch and use
it to solve for another nearby solution on the same branatguesn appropriate non-
linear solver, and thus (theoretically anyway) produceethire branch via iteration
(cf. [21]).

More concretely, to solve the system

SuA) = 0 (3.1)
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[(uA,s) = 0, (3.2)

along a branch of solution§(u(s),A(s))} in V x R parameterized by arclength
one particular arclength continuation process is the viotig predictor-corrector
method

Step 0: Initialization

Assume a regular poifiup, Ao} := {u(s0),A (S)} on, and a tan-

gent{Up, Ao} := {U(%0),A (%)} to, a solution branch (3.1)-(3.2)
are known.

Step 1: Continuation
Step 1.1: Tangent line prediction
Set
{U2,22} = {uo, Ao} + {0, Ao} Ao (3.3)
for a suitably chosen arclength stag, .= s; — .

Step 1.2: Correction

Solve for{ug, A1} :={u(s1),A(s1) } on the solution branch via
Newton’s method

S(USAD  SI(UGA) A\ (=S AR (3.4)
lu(U§,Af 1) T (U5 A8,s1) )\ AAS —I(U§, A5, 31) '

{UTE ALY = (UG ALY + (AU, A0 L), (3.5)
fork=0,1,....
Step 2: Update

Solve the Davidenko equations (which arise from diffelaidn
with respect te along the solution branch)

S"(u ’)\ ) S (U 7A ) U _ 0
< |u(U1,]}\1,]él) ) ()\u171}\17131) > < ,\i > = ( —lg(Uy, A1, S1) > (3.6)
for {ty, A1} := {u(sy), A (1)}

Setso =S, {Uo,)\o} = {Ul,)\l}, {Uo,)\o} = {L.Jl,}\l}, and return
to Step 1.



12 F. J. Foss, Il, R. Glowinski, R. H. W. Hoppe

Remark 3.1. As a practical matter, the system in the correction steplisedo
via the particular equivalerchur complemerstystem

(5 s g (8) = (e
1 - 1 ) .
0 L=lS*'S J|jgarsy A 1SS )| ks
while from the Davidenko equations in the update step we teate
Uy = A10, whereu'solvesS,(ug, A1)l = —S, (g, A1), (3.8)

and depending on the form of the second equation in (316)3 found either from
that equation as
3 _IS(uly)\lasl)
A= ~ , 3.9
Y 1u(ug, Az s1)G41 (Ug, Ag, sy) (3.9)
or from the arclength constraint (3.2) via the solution (@f,A1,s) = 0, for exam-
ple the natural arclength constraint (3.13) gives

YT S (3.10)

1= —.
V14|02

Finally, it may only be necessary to solve the Davidenko gguos.in the update step
periodically through the continuation process to “rendimed the tangent. Other-
wise, it is sufficient to approximate the tangent via

Uy — Ug )\1—)\0}

, (3.11)
S-S S-S

{01,A1} = {
In [21], it is mentioned that imposing the arclength coristré3.2) periodically is
good policy so that more uniform steps are taken during timtimaeation process.
In fact, we shall see later that failure to renormalize theyéant via the Davidenko
equations can result in the arclength step becoming tool smedo large, leading
to the failure of the method to continue the desired nortivranch of solutionsé

Let us now apply this general arclength continuation framrwo our particu-
lar problem. Casting the original (unconstrained) eigebj@m (1.1)-(1.2) in this
framework, the augmented problem we wish to solve is

Su,A) = —Au—-Aud=0, (3.12)
l(u,A) == [Ju>+]A?P=1=0, (3.13)

in H3(Q) x R (note that does not depend explicitly cs).

From equation (3.12), it is clear th&{0,A }} is a trivial branch of solutions.
Concerning the existence of nontrivial branches of sohgtidt is natural to wonder
if there are any bifurcating from the trivial branch. We carteitmine whether or



Numerical methods for a Lane-Emden type eigenproblem 13

not this is the case by examining the linearization of sys{g8rh2)-(3.13). Upon
differentiating with respect tg, we have that

S(UA) S ~A-3A2 —u?
(mdmgu%,%>:<2m%J a%> and Is(u,A,s) =0,
(3.14)

so along any branch of solutiofi$u(s), A (s)} }, the Davidenko equations (3.6) must
be satisfied and therefore we must have

—A—3A% -8 u 0
(awiy 22)(3)-(5) @19

Along the trivial branch of solutions this reduces to

( 2(@?%-) z'Aodis > ( ; > = ( 8 > (3.16)

SinceS,(0,A) = —A : H}(Q) — H~1(Q) is an (isometric) isomorphisnef; [10],
pp. 348-349), we see from the first equation in system (3Ha)the trivial branch
of solutions{{0,A }} is isolated, i.e., for na along the trivial branch can # 0,
so we cannot possibly have a bifurcation from this branchusTtwve cannot hope to
continue along a nontrivial solution branch starting frorriaal solution. Notice
that the second equation in system (3.16) (or (3.15)) isvetgnt to(u, U) +)\)\ =
0, which is simply a statement of the fact that thif) tangent vectoqu, )\}t is
orthogonal to thegrincipal) normal vector{ti, A }! in H}(Q) x Ralong the solution
branch, which is always true.

Since there is no nontrivial solution branch bifurcatingnfrthe trivial solution
branch, we still need an initializing solution for the arg¢h continuation process
along a nontrivial branch. In this case, however, even if n@Xka solution of (3.12)
on a notrivial branch, then we would have the solution sgtigfthe unitL* norm
constraint (1.3) as well and there would be no need to coatfatther along this
branch. To see this, suppo$e, A} is a known nontrivial solution of (3.12). Take

o = ||ul|o.4 and definduy,Aq } := {g, aA } Then itis easy to verify thdtuy,Aq }
satisfies the origindl* norm constrained eigenproblem (1.1)-(1.3).

Remark 3.2. For problem (3.12) (and similar problems), we can obtainesom
gualitative information about the behavior of the soluts@h simply by looking at a
one dimensional analog having the same differential behavithe state variable as
the infinite dimensional problem. Sine€Au is linear inu, we can model this term
in the one dimensional case with a linear term and therefonsider the solution
sets for

X—AxC =0. (3.17)
Other than the trivial solution branch{0,A}}, we see that nontrivial solution

. 1 . . .
branches satisfx? = T and therefore there are no bifurcations from the trivial
branch except at infinity. &
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At this point, it would seem that we have a major dilemma wheoines to us-
ing arclength continuation, as it is currently formulat&d,solving problem (3.12)-
(3.13) directly. On the one hand, we need to have a knownisnldtig, Ao} on
a nontrivial branch of solutions to initialize the contitioa process, but if we had
such a solution, no continuation would be necessary becahilo an appropriate
normalization, the original problem would be solved.

To overcome this dilemma and salvage the technique, insitpdrsuing the
one-step strategy:

1. Continue along a nontrivial solution branch startingrfra known nontrivial
solution,

we pursue the two-step strategy:

1. Formulate and solve a perturbation of problem (3.12) dlakmnits perturbed
nontrivial solution branches bifurcating from the trivi@anch and which are
asymptotic to the corresponding unperturbed nontrivialtsm branches.

2. On any of these perturbed solution branches, continue poirt “close
enough” to the corresponding unperturbed solution braheh it becomes
possible to “jump” from this point to a point on the unperteabranch.

Note that in the second step of the two-step strategy, “cdoseigh” means inside
the radius of convergence of the nonlinear solver applieti¢aunperturbed prob-
lem, and “jump” means convergence to a point on the corrguerdarbed branch in
a single step using the “close enough” perturbed branch psian initial guess in
the nonlinear solver.

With these ideas in mind, consider the following alterrativthe system (3.12)-
(3.13):

Su,A,8) := —Au— A (U3+du) =0, (3.18)
[(u,A,S) := (U, u— Ug) + Ao(A — Ag) — (S— So) = O, (3.19)

whered is a perturbation parameter (which we henceforth suppreteinotation)
and the form of the perturbation was inspired by a third-pajgroximation to a
model problem posed in the NETLIB software pack&yd M see53.1.1). Notice
that this perturbed system has the trivial branch in commitimtive original system,
and we have replaced the natural arclength consttamth a pseudo-arclength
constraintl that depends explicitly osand is based on a first-order approximation
of | at 5. Specifically,| defines the lengtls — s of the {ug, A¢}—projection (i.e.
tangent projection) of the first-order differenfie— up, A — Ag}. A nice explanation
of this choice can be found in [22].
Differentiating with respect tg, we have that

(2R (0)=(8) e
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which along the trivial branch reduces to

<_ﬁl;-/;5 /\Oo><;>:<2> (3.21)

Sinceéu(o,)\) = —A—AJdis singular whenevemn := A J is an eigenvalue of the lin-
ear eigenproblem (2.21)-(2.22), we have bifurcation anqgc{io,% along the triv-

ial branch. Let{wy, u,} be thent" eigenpair solving the linear eigenproblem (2.21)-
(2.22), wherew, is normalized to have unit?> norm (recall that these eigenpairs
form an orthonormal basis &(Q)). Then, choosing the poiro, Ao} = {0, &5}
along the trivial branch to initialize the continuation pess along the'" bifurcat-
ing nontrivial branch and, assuming we have simple bifumoaat this point (our
tacit assumption here because of the choice of our symrbedaking domain), we
have from the first equation in (3.21) thag = c,w,, wherec, is a constant, and
from the second equation thatandAo satisfycau, +A§ = 1, which is the equation
of a{Ao, cn}-€llipse on which the choice df determines, and conversely. Taking
Ao =0 givesc, = iﬁ, which is the theoretically-consistent choice for initiaig
the continuation of the nontrivial solution branch (seetnearagraph). Alterna-
tively, we could take\g = iﬁ (a la equation (3.10)), which giveg = £Aq. If

we takeAg = +1, thenc, = 0, which results in an initial step along the trivial branch
(not a very good start if we are trying to produce the nordtitranch).

From an implementational point of view, our ability to, ar taccuracy with
which we, resolve the beginning portion of the nontrivialusion branch depends
on the initial tangent choice. With this in mind, it is somewlisconcerting that
the specification of the initial tangefit,wn, Ao} can only be narrowed down to the
parameterizing ellipse defined bgu, +AZ = 1. In theory, this fact can be resolved
by restricting ourselves to the distinaiots of the quadratic bifurcation equation
defining the pair{Ao,c,}, which in this case (following the development in [21])
can be shown to reduce to the purely bilinear equation

—28nCnAo = O. (3.22)

The two canonical distinct roots of this equation ékg,c,} = {1,0} and{Ag,c,} =
{0,1}, which define, respectively, tangents parallel and orthagto the trivial so-
lution branch. This shows that the bifurcating nontrivialugion branch is orthogo-
nal to the trivial solution branch and tangent to the linegeemanifold at the trivial
solution point{0, %}, so in this case, tangent line prediction from this pointhie t
orthogonal direction produces a point on the linear eigarifola from which we
correct to the nonlinear solution branch.

Substituting these quantities computed for our specifiblpra into the previ-
ously stated general arclength continuation process, ‘&b

Step 0: Initialization
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Take
{uo, Ao} = {0,%} (3.23)
and{Uo,Ao} = {Cn(Ao)Wn,Ao} (3.24)

where{wn, u,} is then" eigenpair solving the linear eigenprob-
lem (2.21)-(2.22).

Step 1: Continuation
Step 1.1: Tangent line prediction

Set
{U9, A9} = {uo, Ao} + {0, Ao} Aso (3.25)
for a suitably chosen arclength stag, := s; — .
Step 1.2: Correction

Solve for{ug, A1} :={u(s1),A (s1) } on the solution branch via
Newton’s method

( ~D=AfBU)?+8)  —((uf)>+ o) > < vy >
(007') Ao “Jlf

= — (B~ Af((Uf)° + o)
_< —((Uo,U'{—uO)lJr/\ol(/\fl_)\o)_(151_50)) > (3.26)

U A = (U AL + {of by, (3.27)
fork=0,1,...
Step 2: Update

Solve the Davidenko equations

< —A—E\Sfl;%w) —(u?}_;éul) > ( ;\Ji > _ < 2 ) (3.28)

for {Ug, A1} == {u(sy), A (s1)}.

Setsy = s1, {Ug, Ao} = {ug,A1}, {Uo,}\o} = {Ul,}\l}, and return
to Step 1.

The continuation process proceeds along the perturbetiohranch until an
attempt is made to “jump” to the unperturbed solution bramdfich entails setting
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o =0in (3.26) and attempting to correct to the unperturbed diranstead of the
perturbed branch in the correction step. If the “jump” to tmperturbed branch is
successful, we normalize the solution as indicated preWoso that theL* norm
constraint is satisfied, and we are done. Otherwise, weresdto its previous value
and proceed with the continuation process as before.

3.1.1. Newton’smethod correction. The particular Schur complement system of
interest corresponding to system (3.26) in Step 1.2 of tidirma@ation process is

< —A—AfB(U)Z+3)  —((U§)3+ o) ) ( ok )
0 Ao — (U0, Z) T

_ < ._Au|](._)\]|.<((u|](.)3+5u5) > (3 29)
(Uo,U§ — Uo) +Ao(Af = Ao) — (51— %)) — (U0, Vi + A1) )7 ™
whereyk andZ solve, respectively,
—DYE - AF(B(U)2+0)Ys = —Auk (3.30)
and — AZ - Af(3(U5)2+8)Z = —((U§)>+ ). (3.31)
The solution of this system is readily seen to be
o _ (0, Uf — (Uo+ Y +AZD) + Ao(Af — Ao) — (51— o)
wk = ! : (3.32)
(Uo,Zk) — )\o
andof = —(Vi+AZ+u7), (3.33)

provided the solutiony‘{ andz‘{ of the two elliptic problems (3.30) and (3.31) exist,

andAg # (Uo, z‘{). Because the elliptic operators in (3.30) and (3.31) amgusan and
indefinite, an iterative method that can handle such sys{ergs a preconditioned
minimum residual method) must be used to solve them. As annaltive to this
correction methodology, we elect to use a different apgrdhat we now describe.

3.1.2. Least-squares conjugate gradient correction. As an alternative to using
Newton’s method in the correction step to solve the systedP§d3.13) (or in this
case, the perturbed system (3.18)-(3.19)) directly, itasspble to correct via the
solution of an equivalent least-squares problem to whicbameapply theonjugate
gradient method . .

To begin, we note that for eaghu,A} € Hg(Q) x R, {S(u,A),I(u,A,s)} is in
H~1(Q) x R (thanks again, in part, to an appropriate Sobolev imbeddasglt).
Thus, the least-squares formulation of problem (3.18)9Bis:

Find {u,A} € H3(Q) x Rsuch that
Js(U,A) < (v, ), forall {v,u} € H3(Q) xR, (3.34)
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where the (homogeneous, in this casast-squares functional is defined by

~ 1 1-
(.1 = 5180, 021 + 510,19 (3.35)
where the dual norm il ~1(Q) is defined by||f||_1:=  sup M and

werz@\(op W]
the primal norm inH}(Q) is induced by the inner product id3(Q) defined by
(u,v) := [y Ou- Ovdx Henceforth, in our discussion of the functiordg) we sup-
press any explicit dependence on the arclength paramé&ienotational clarity.

It is clear that solving the least-squares formulation isiwent to solving the
original problem. The only difficulty with solving it as stat lies with the explicit
presence of the dual norm in the functional expression.uRately, we can over-
come this difficulty with some powerful theory that admitseformulation in terms
of the primal norm. In particular, from thRiesz representation theoreifor each
f € H71(Q), there exists a uniques € H}(Q) such that(f,w) = (v¢,w) for all
w € H}(Q), and furthermore||f||_1 = |jv¢||. On the other hand, we know that
—A is an isometric isomorphism dfi}(Q) onto H=1(Q) so that we may iden-
tify f with —Avs. Therefore, we see that for eadhe H=1(Q), there exists a
uniquevs € H3(Q) such that —Avs, w) = (v, w) = (f,w) for all w € H}(Q), and
| — Avt||-1 = ||ve| = || f||-1. Replacing each dfi3(Q) andH1(Q) by R, f by a,

v by a, w by b, and—A by 1, we have the same (rather pedantic and unnecessary)
argument for the scalar component. . B

Applying this general theory to the current setting, tékea } = {S(v, u),l (v, u,9)},
{vf,aq} = {0, 1}, and{w,b} = {W, V}. Then we have the following reformulation
of (3.35):

~ 1. 1.
(v, p) = S 18l1°+ SB[ (3.36)
2 2
where each of andfi is a function of{v, u} through

(0,W) = (S(v, 1), W) = (—Dv—p(v3+6v),W), forall e HF(Q), (3.37)

andfi =1(v,1,9) = (Uo,v—Uo)+Ao(K—Ao) — (5— o). (3.38)
The least-squares problem, posed in the primal norm, mayleedsusing a very
efficient quadratic solver, namely tle®njugate gradient methodavhich gives the
following alternative correction step for the arclengtmtiouation process:
Step 1.2: Correction

Step 1.2.0: Initialize the conjugate gradient direction

Solve(gd,w) = (J;(u},A?),w) for all we H3(Q), (3.39)
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setgy = Jj (uf,AD), (3.40)
and take{v?, ur} = {a0. 63 }, (3.41)

where J, and J; are the partial derivatives af(u,A)
with respect tau andA, respectively.

Compute {u1+1 )\k+1} {gk‘*l,g‘f’l}, (k+17ui<+1) from
{U A1} {06 g5} {vf, g} via

Step 1.2.1: Compute optimal step size for descent
Find py such that

(Ut — pevf, AL — i) < J(Uf— pof, AL — ppf) Vo e R (3.42)

Step 1.2.2: Update and test for convergence

(UL AR = (U5 — peo, MK — peptk) (3.43)
If J(U AR < e, take{u, A} = {ufT,A[1) and
stop; else

Step 1.2.3: Update conjugate gradient direction

Solve(gktt,w) = <J(k+l/\k+l) >foral|we H(Q), (3.44)

setgh™ = Jj (Ut AL, (3.45)
k+1 _ 4K qkt+1 k+1 k+1
computey, (a5 gu,gukl (9,\2 gk )df . (3.46)
llg[2+ | |
and take{v¥™t, i} = {g&™ o) 4wk, s} (3.47)

k «+— k+1 and return to Step 1.2.1

For the implementation of this method, we must elaboratenandetails. First, we
need to compute thieréchet derivativef the least squares functlonaa(lu )\) Dif-
ferentiating (3.36) (noting that, for ea¢h, u} in H}(Q) x R, J'(v, 1) € L(H(Q) x

R R)), we have

(J (0, 10), {w,v}) = (& (v, ) {w, v}, 5 (v, 1)) + (' (0, 1), W, v} fi(o, 1), (3.48)

where, from (3.37)-(3.38) (v, 1) € L(H(Q) x R H(Q)) and [/ (v, 1) € L(HE(Q) x
R R) are defined by

(@ (0. w vy W) = (S(v,u){wv}W)
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= (—Aw— (302 + 8)w— (v*+ dv)v,W), (3.49)
for all W € H}(Q), and

(B (v, 1), W v}) = (T (0, 1,9), W) + T3 (v, 1,9V = (Uo,W) + AoV (3.50)
On the other hand,
(J (0, 1), (Wv)) = (v, ), W) + 33 (v, 1)V (3.51)

forall {w,v} € H(Q) x R, so from (3.49)-(3.51) we deduce that the partial deriva-
tives ofJ satisfy

(F(o, 1), W)y = (—Aw— p(3v?+ &)W, ) + (Uo, W)l (3.52)
F(o,u) = (—(w®+08v),5) + Aol (3.53)

for all {w,v} € H3(Q) x R. We use these expressions in the implementation.

Next, we need to solve the one-dimensional minimizatiorblem in Step 1.2.1
for the optimal step sizpi for descent. Although there is more than one method that
can be used for this, we have cho$éswton’s methodor which we give the details
now. Definer : R— H}(Q) x R: p — {v—pw, i — pv} and takep (p) := I(r (p)).
Taking {v, u} = {U§,AK} and {w,v} = {vX uk}, we solve (3.42) for the optimal
step sizepy by applying Newton’s method to the derivatigé in order to find the
root corresponding to the (unique in this case) minimizep ofiving

n+1__ ~n_ ¢/(pl?) 3.54
P« Px ¢//(p|?)’ (3.54)

forn=0,1,... until convergence, where calculation gives
¢'(p) = (J(r(p)),r"(p)) = —(J(v—pw,u— pv),{w,v}) (3.55)

and
¢"(p) = (J"(r(P)r'(p),r'(p)) = (3"(v— pw,pt — pv){w, v}, {w,v}). (3.56)

For initialization, we takepi? to be the optimal descent step size found inkReCG
iteration, if it exists, during the arclength continuatigrocess for the most recently
found solution along the solution branch. If there wasktaCG iteration required
for the previously found solution, we s.q? =1 (afull step in the descent direction).

The explicit form of¢’(p) for our problem may be found from equations (3.48)-
(3.50) by replacind v, u} by {v — pw, u — pv}, which gives

¢'(p) = (—w—(u—pv)(3(v—pw)*+dw
—((v—pw)*+8(v — pW))v, (v — pW, L — pV))



Numerical methods for a Lane-Emden type eigenproblem 21

+(U0>W)+>\OV)[1(U—PW>U—PV)a (357)
where from (3.37)-(3.38)

((v—pwW.p— pv), W) = (—Av — pw) — (u—pV)((v—pW)3+5(v—PW))(éV~V5>é)
for all W € HA(Q), and '

fi(v —pw,p — pv) = (Uo,v — PW—Ug) + Ag(H — pV —Ag) — (S— ). (3.59)

To find the explicit form ofg”(p) for our problem, we need the second derivative
mappingd” of J (more precisely, its action). Differentiating (3.48), wetain

<‘T//(v7u){W27V2}7{W17V1}> = (~//( ){Wz,Vz}{Wl,Vl},ﬁ(U,[.l))

( (2} U){W17V1}75/(’U7H){W2,Vz})

<I] /( ){W2>V2}7{W1>V1}>[1(U7’J)

+ (| (0, 1), {wa, vi}) ({1’ (v, ), {2, v2} ) (3.60)
where, from (3.49)-(3.50)," v, 1) € L(H&(Q) x RL(HL(Q) x R, H&(Q))) and
(v, ) € L(HO(Q) xR L(H}Q)xRR) ) are defined by

(0" (v, ) {Wo, Vol {wy,v1}, W) = < p){Wa, Vo {wa,vi},W)
= (—6UUWW — (3v? 6)w2v1— (3v? +O)vowy, W), (3.61)

for all W € H}(Q) (note there is nw; v, term becaus&(v, 1) is linear inp), and

<I~1N(Uall){W27V2}7{W17V1}> = <i7/ (’U H, S)W27W1>+<I~g)\ (U7“75)V27W1>
130, 1, 9)Wavs + 17, (0, 4, 9)vavy = 0. (3.62)

Taking {wa, vo} = {wy,v1} = {w, v}, replacing{v, u} with {v —pw, u— pv} in
(3.60), and using (3.49)-(3.50) and (3.61)-(3.62), we Knabtain that

9"(p) = (~6(u—pv)(v—pWW —2(3(v — pw)*+ B)Wv, (v — pW, i — pV))
+[[ (v — pw, = pv) (W, ) [[>+ | (Uo, W) + AoV, (3.63)

whereuv{v— pw, u —pv) andfi(v — pw, 4 — pv) are again defined by (3.58)-(3.59).

3.2. Newton’smethod applied directly to the original eigenproblem

Before presenting the formulation for our specific problera,summarize the gen-
eral framework for the damped Newton method. EefX — Y be aC! map between
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Banach spaces such thatx) = 0 has at least one solution. Under suitable regular-
ity restrictions orF and for a suitable initial gues8, it can be shown thairdinary
Newton’s method

F/(X)AXK = —F (XX, (3.64)
XL = XK AXK, (3.65)

converges to a solutiox* of F(x) = 0. Note that this method i®cal in the sense
that its convergence depends on having a suitable initieégd. The rationale for
damping theordinary Newton increment&x¥ is to remove any restrictions o
and in this sensglobalizethe method. Such damping typically utilize&?rder
information available in the problem to restrict the sizéshe steps taken in the
sequentiaNewton directionsdx*/||AxX||, which are initial tangent directions to the
sequentiaNewton pathslefined by the sequenti@lavidenko IVPLcf. [26], §7.5
for a summary of Davidenko’s work and references)

F'(x(0))x(0) +F(x(0)) =0, (3.66)

x(0) = X, x(1) = X", (3.67)
which in turn are derived by differentiating each link in teequentiahomotopy

chain
D(x,0) i =F(X)—(1—0)F(X¥)=0,k=0,1,2,.... (3.68)

Damping the ordinary Newton increments simply involvestiplying them by cor-
respondinglamping factorsy in the interval(0, 1]. The derivation of theoretically-
optimal damping factors, and their computationally-aalié estimates, is technical
and for which we refer the curious reader to [12]. We simplyoke such esti-
mates in the following general error-oriented damped Navalgorithm adapted
from Deuflhard ¢f. [12], Algorithm NLEQ-ERR, pp.148-149):

Step 0: Initialization
GuessC.

For k=0,1,..., until convergence, comput&" from X via:
Step 1: Natural level function descent
Step 1.1: Compute ordinary Newton increment.

Solve
F/(X)AXK = —F (xXX). (3.69)

Step 1.2: Test for convergence.
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If ||AXK|| < €, takex" = x¥ + Ax¥ and stop; else
Step 1.3: Predict Newton increment damping factor.

If k=0, setog < 1;

else

Step 1.3.1: Compute a priori local trial Lipschitz constastimate.

Define

BX — axk|
[a)k = ——
O |k [BX|

(3.70)

Step 1.3.2: Compute predicted damping factor from a priocil
trial Kantorovich quantity estimate.

Set

. 1
Ok = mm{l,m}. (3.71)

Step 1.4: Regularity test
If 0k < Omins Stop (o convergence);
else

Step 1.5: Update damped Newton iterate and compute trial
simplified Newton increment.
Set
XL = 5K 4 geaxk, (3.72)

then solve

F (XA = —F (3. (3.73)

Step 1.6: Correct Newton increment damping factor.

Step 1.6.1: Compute a posteriori local trial Kantorovichaa
tity estimate.

Define

2B (- gn|

d: (0[]

(3.74)
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Step 1.6.2: Restricted natural monotonicity test

If

—k+1 B % K
1B > (1= ) e (3.75)
(failed restricted monotonicity test), set
(1 1
Ok = = Ok, — 3.76
Ok mln{zdk, i } (3.76)

correct: seoy = Oy,
and return to Step 1.4;
else

(passed restricted monotonicity test) set

Tk = min{l,[h—lk]}. (3.77)

If ok > 40y
correct: seoy = O,
and return to Step 1.5;
else
fox=0c=1
If A < &
takex* = X1 + AX"* and stop.
setxk = X1 k — k+1 and return.

Applying this general framework to our constrained nordinelliptic eigen-
problem, we define

A A8
X= < )L\J ), andF (u,A) = ( fQu%l(Jx)d);u—l ), (3.78)

and a quick calculation gives

A a2 .3
A—3Au u >’ (3.79)

Fi(uA) = < 4[ou3(x)-dx 0
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where the iteration takes placetiid (Q) x Rusing the corresponding product norm.
Steps 1.1 and 1.5 take the respective forms

_A—3)\k(uk)2 _ (uk)3 K\ - —Auk—}\k(uk)3
( af, ()% dx 0 ( 1 ) = o (500) dx- 1 (3.80)

and
() N (U R W
( 4fn () -dx 0 < I >
_ _AUkJrl —A k+1 (uk+1)3
- ( Jo (UF2()) *dx—1 ) ’ (3.81)
where

k+1 k k
(£)-($)ea(s) o

The solutions of systems (3.80) and (3.81) may be foundye&sim the corre-
spondingSchur complemergystems

—A—3AK(U9)? —(u)® ok
( 0 —4 o (WK(x)) *Z(x) dx ( H )

- < —AUK— AK (Uk)3 ) (3.83)

and
—A—3AK(U9)? —(u)® <6”1>
0 —4fy (X)) Z X dx |\ ECY
CAKHEL  akL (k1) 3
T kLA A )|\< gu +)1 kt+1k+1 , (3.84)
Jo (UFH00) "dx—1—4 fo (U¥(x)) ™ (Y1 4+ AKHZ241) (x) dx
where, forj = k. k+ 1,y solves
—Ay—3)\k(u")2y:—Auj inQ, (3.85)
y=0 onl, (3.86)
andz solves
—NAz— 3\ u")zz:—(uj)3 inQ, (3.87)

z=0 onl. (3.88)
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The solutions of (3.83) and (3.84) are readily seen to be

o= — (Y2 )2 (3.89)

and
T <yk+1+}\k+1zk+1 +Hk+12k) 7 (3.90)

where
Lk = Jo () dx—1-4, (uk(x))3 (Y$+AKZ) (x) dx (3.9
4 Jo (UK(x))* 2(x) dx '

and

g Ja (U () dx— 1= 4 fq (UK(9) (Y2 AR L2 (x) X o)

4 [ (Uk(x)) () dx

From this discussion, we see that the solvability of theesyst (3.80) and (3.81)
boils down to the solvability of the four (two each fpe= k and j = k+ 1) elliptic
boundary value problems (3.85)-(3.86) and (3.87)-(3.88)all k. In turn, as dis-
cussed before i§3.1.1 in the context of similar problems, the solvabilitytbése
problems hinges on the consistency of the systems as spebifithe Fredholm
alternative and the application of an appropriate solver.
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