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We study the optical conductivity in the low-energy regime of gapped mono- and bilayer graphene.
A scaling relation is found, in which the four parameters frequency, gap, Fermi energy and tem-
perature appear only as combination of three independent parameters. The ratio of the optical
conductivity of bilayer and mononlayer graphene is exactly 2.

I. INTRODUCTION

Monolayer and bilayer graphene are semimetals with good conducting properties [1–3]. Moreover,
in the presence of a microwave field the related optical conductivity is constant over a large regime of
frequencies. This has been found in theoretical calculations [4–8] and was also observed experimentally
[9, 10]. The reason for this behavior is the existence of at least two bands in both materials, where at
Fermi energy EF = 0 (i.e. graphene without a gate potential) the lower band is occupied and the upper
band is unoccupied. As consequence, the absorption of photons of energy h̄ω from the microwave field
creates electron-holes pairs due to the excitation of electrons from the lower band at energy −h̄ω/2 to
the unoccupied upper band at energy h̄ω/2. This mechanism applies also to gated graphene which has
a shifted Fermi energy EF 6= 0. However, in this case photons can only be absorbed if h̄ω/2 > EF (for
EF > 0), since all the states in the upper band are occupied up to the energy EF . Correspondingly, a
photon can only be absorbed for −h̄ω/2 < EF if EF < 0. This means that electron-hole creation by a
microwave field is only possible if h̄ω > |EF |
It has been found in a number of recent experiments that the creation of a gap in the semimetallic

band structure of monolayer graphene (MLG) is possible by absorption of hydrogen [11] or in bilayer
graphene (BLG) by applying a double gate [12]. In both cases an electron-holes pair can also be created
but this requires a photon energy larger than the band gap ∆ (cf. Fig. 1).
Once electron-holes pairs have been created they will contribute to a current in the material, where the

latter is related to the strength of the external microwave field by the optical conductivity σµµ(ω). This
quantity can be measured experimentally and characterizes the electronic properties of the material. In
particular, it can be used to determine the band gap ∆, since it vanishes for h̄ω ≤ ∆. BLG, in contrast to
MLG, has two low- and two high-energy bands. As a result, there are several gaps that lead to electron-
hole pair creations on different energy scales with a more complex behavior of the optical conductivity
[13–15].
In the following the optical conductivity shall be evaluated via the Kubo formalism for the low-energy

bands in MLG and BLG at nonzero temperature T . This avoids electron-hole pair creation from higher
energy bands and van Hove singularities. An important question in this context is the role of the low-
energy quasiparticle spectrum on the optical conductivity. In order to focus on simple spectral properties,
we consider only non-interacting electrons in a periodic tight-binding model. Thus disorder, electron-
electron interaction and electron-phonon interaction are not taken into account.

II. MODEL CALCULATION

The low-energy quasiparticle states in MLG with a gap ∆ = 2m are described by the massive two-
dimensional Dirac equation

HM

(

Ψ↑

Ψ↓

)

=

(

−E +m i∂x + ∂y
i∂x − ∂y −E −m

)(

Ψ↑

Ψ↓

)

= 0 . (1)

For simplicity, we have set the Fermi velocity vF = 1 because this parameter will not appear in the final
results for the conductivity. A similar equation exists for the low-energy quasiparticle states of BLG
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FIG. 1: Schematic picture of the creation of an electron-hole pair in gapped mono- or bilayer graphene by the
absorption of a photon with energy h̄ω. For this process the photon energy must be larger than the band gap
∆ = 2m.

[16, 17]:

HB

(

Ψ↑

Ψ↓

)

=

(

−E +m (i∂x + ∂y)
2

(i∂x − ∂y)
2 −E −m

)(

Ψ↑

Ψ↓

)

= 0 . (2)

With the plane-wave ansatz Ψ↓(x, y) = Ψ↓e
ikxx+ikyy we obtain for MLG the following relations

Ψ↓(x, y) =
kx + iky
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current matrix elements: The commutator in the current operator is for Dirac fermions the Pauli
matrix σµ: [HM , rµ] = iσµ (MLG) and for BLG in Fourier representation

[HB, x] = i
∂HB
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FIG. 2: The current matrix element |〈E|[H, x]| − E〉|2 as a function of the angle ϕ between the wave vector k

and the direction of the current operator. The left panel is the matrix element for E = 2 without gap (m = 0)
and the right panel is the matrix element with gap (∆ = 2m = 2). Full (dashed) curves are for BLG (MLG).
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FIG. 3: Optical conductivity of BLG as a function of βω for βm = 5 and βEF = 0, 4, 6, 10 with decreasing
conductivity. These curves have to be multiplied by 1/2 to get the corresponding values for MLG.

Our model assumption of taking into account only the low-energy bands of BLG restricts the photon
energies h̄ω to less than 0.8eV, which is the gap between the low-energy and the high-energy bands in
BLG [13, 14]. This restriction also avoids stronger deviations from the Dirac theory of MLG and van
Hove singularities. Taking into account high-energy bands does not change this picture qualitatively,
since it would lead to additional jumps of the optical conductivities as soon as the photon energies exceed
the gap energies. A van Hove singularity would appear as an additional peak. The effect of the gap is a
global enhancement by m2, where for BLG the situation is more complex than for MLG.
In conclusion, focusing on the low-energy dispersion of gapped monolayer and bilayer graphene, we

have found simple expressions for the optical conductivities. They agree for all parameters up to a factor
2. This is remarkable because the current-matrix elements of both graphene systems are rather different.
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