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Abstract

The Hubbard model is used to study an electronic system at half

filling. Starting from a functional integral representation the spin-

up Grassmann field is integrated out. It is shown that the resulting

spinless fermion theory has an instantaneous cluster interaction, and

that the spinless fermions are coupled to thermally fluctuating Ising

spins. The coupling parameter of the spinless fermion interaction is

a product of the Hubbard interaction and the hopping rate. As an

example the strongly metallic as well as the strongly insulating regime

are investigated in terms of the effective Ising statistics.
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I. INTRODUCTION

The Hubbard model was originally constructed to describe a metal-insulator tran-
sition for spin-dependent fermions in a simple way [1–5]. This transition reflects
the competition between potential (static) energy and kinetic energy. The model
is defined on a lattice, where the potential energy consists of a chemical potential
and an on-site repulsion of fermions with opposite spin. The kinetic energy is given
by a nearest neighbor hopping. It turned out from a number of calculations that
this model has a rich structure because of the complicated interplay of charge and
spin degrees of freedom. For instance, mean-field calculations for a magnetic order
parameter indicate para-, ferro- and antiferromagnetic states for the half-filled sys-
tem [2]. Thus, the magnetic properties of the model became a central subject of
investigations in solid state physics.

The metal-insulator transition was discussed originally by Hubbard using self-
consistent approximations [1], later in terms of a variational approach [6,7], and in
the limit of an infinite dimensional lattice [8,9,5]. Very interesting investigations
were obtained from computer simulations which indicate an insulating phase at
half filling for sufficiently strong fermion interaction [10,11]. However, the detailed
mechanism and the properties of the transition are not entirely clear.

To study the metal-insulator transition one can, in principle, start either from
the metallic or from the insulating side. As the simplest approximations one could
use non-interacting fermions on the metallic side or the local limit on the insulat-
ing side, where the hopping rate is zero. Unfortunately, neither of these starting
points is very useful in order to understand the interacting Hubbard model: Non-
interacting fermions are unstable against an arbitrarily weak interaction [2], and the
local limit is completely degenerate with respect to the spin. Therefore, an arbitrar-
ily weak hopping rate would lift the degeneracy leading to a new state which might
be magnetically ordered [12]. The basic idea of the present work is to start from the
extreme insulating as well as from the extreme metallic state at low temperatures
and to construct a perturbation theory without analyzing its magnetic order. The
latter is a restriction which simplifies the calculations significantly because the spin
degree of freedom can be ignored.

In this work a grand canonical ensemble is considered, where on average one
fermion per site (half-filled system) is assumed. The non-interacting fermions as
well as the static fermions (i.e. fermions without a hopping term) have a 2M -
degeneracy (M is the number of lattice sites) because each site can accomodate a
fermion with spin-up or one with spin-down. Consequently, a perturbation theory
around one of these limiting states is plagued by the degeneracies. For instance, a
perturbation around the static state is a spontaneous hop of a fermion from any site
to its nearest neighbor site. As a consequence, the fermion spontaneously creates
a doubly occupied site and an empty site. The doubly occupied site may decay
after some time again into two singly occupied sites. The resulting state is two-fold
degenerate because of the possible two spin orientations. The unperturbed state can
be an antiferromagnetic (Néel) state. A hopping process at a time t1 can exchange
two neighboring fermions which leads to two pairs of neighboring fermions with
parallel spins. At time t2 the inverse hopping process can re-create the original
antiferromagnetic state. Therefore, the two hopping processes are not independent.
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Moreover, the intermediate state between time t1 and t2 has the same energy as the
antiferromagnetic state. This implies a constant interaction in time. Consequently,
the linked cluster theorem cannot be applied, since it works only for independent
clusters or clusters which interact with a decaying interaction [13,14]. The central
point of the present work is a concept which deals with this degeneracy.

In order to control this exponential degeneracy it is natural to eliminate one
spin orientation. This can be achieved formally by integrating out one of the spin
orientation in the functional integral representation of the Hubbard model. The re-
sult of this operation reveals an important structure of the effective spinless fermion
model which is formally an expansion of the model in terms of the degeneracy: the
expansion terms are not degenerate and the perturbation expansion can be applied
independently to each of them. It turns out that the expansion is equivalent to the
summation over the 2M states of thermal Ising spins which are coupled to the spin-
less fermions. After an approximation which is applicable for the strongly metallic
and the strongly insulating regime of the Hubbard model, the fermionic degrees of
freedom can be integrated out. Thus, the physics is described by the Ising spins:
The strongly metallic regime is characterized by a ferromagnetic Ising structure
in which the fermions can freely move at low temperatures. On the contrary, the
strongly insulating regime is characterized by an antiferromagnetic Ising structure
which creates a gap for the fermions, in formal analogy to a Peierls instability.

The article is organized as follows: In Sect. II the Hubbard model is defined in a
coherent state representation for a grand canonical ensemble of fermions. The static
limit (no hopping) of the Hubbard is briefly discussed in Sect. III. Then in Sect. IV
the integration over the spin-up component of the model is performed. The result-
ing model of spinless fermions, which has a complicated but instantaneous cluster
interaction, is analyzed in Sect. IV.A. In Sect. V the Ising spin representation of the
spinless fermion model is introduced and discussed. Finally, in Sect. V.A the weak-
coupling limit and in Sect. V.B the weak hopping limit are studied. Appendices A,
B, and C give details of the calculations.

II. THE HUBBARD MODEL

The Hubbard model describes fermions with spin σ =↓, ↑ on a d-dimensional
lattice λ. It is defined by the Hamiltonian [2,5]

H [c†σ(r), cσ(r)] = −t̄
∑

〈r,r′〉,σ

c†σ(r)cσ(r
′)+

∑

r

[

µ
∑

σ

c†σ(r)cσ(r)+Uc†↑(r)c↑(r)c
†
↓(r)c↓(r)

]

,

where c†σ(r), cσ(r) are fermion creation and annihilation operators, respectively.
t̄ ≥ 0 is the hopping rate. 〈r, r′〉 means pairs of nearest neighbor sites on the lattice.
µ is the chemical potential.

Using this Hamiltonian a grand canonical ensemble of fermions at the inverse
temperature β can be defined by the partition function, given in terms of a functional
integral (coherent state representation) on a Grassmann algebra [15]. For the latter
the integration over a complex Grassmann field (Ψσ(r, t), Ψ̄σ(r, t)) is given as a linear
mapping from a Grassmann algebra to the complex numbers. At a space-time point
(r, t) we have for integers k, l ≥ 0
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∫

[Ψ̄σ(r, t)]
k[Ψσ(r, t)]

ldΨσ(r, t)dΨ̄σ(r, t) = δk,1δl,1.

The partition function of the grand canonical ensemble of fermions then reads

Z =
∫

exp(−S)D[Ψ, Ψ̄]

with the action

S = i∆
∑

r,t

1



In the temperature formalism, where the time t is replaced by the imaginary time
through a Wick rotation, the weights w0, w1 and w2 are statistical weights. Then
the average number of particles per site is

n = w1 + 2w2.

At zero temperature (β ′ → ∞) this gives

n =







0 if 0 < µ′ < 1 +
√



(∂t)
−1 = ∂T

t , det(∂t) = 1.

We assume that the number of time slices β ′ is even such that det(−∂t) = det(∂t) = 1.
The matrix t̂r,r′ = τ if r, r′ are nearest neighbors and zero otherwise. Expressions
in the determinant which do not have a specified matrix structure are implicitly
multiplied by the corresponding unit matrix. For instance, µ̄ is multiplied by the
space-time unit matrix whereas t̂ is multiplied by the time-like unit matrix.

In the following subsets of the space-time lattice Λ = λ⊗ {∆, 2∆, ..., β} will be
considered. For a subset Λk ⊂ Λ we define the determinant of the the projected
matrix PkAPk as

detΛk
A ≡ detΛk

(PkAPk),

where Pk is the projector onto Λk.

A. Effective Cluster Action of Spinless Fermions

The partition function is now a functional integral of the spin-down Grassmann
field

Z =
∫

e−S↓det[− ∂t + µ̄ + t̂ − U ′Ψ̄↓Ψ↓]D[Ψ↓].

Formally, the determinant could be expressed as part of the action by using the
identity detA = exp[Tr(logA)]. However, this would be too naive because the term

Tr
[

log
(

− ∂t + µ̄ + t̂ − U ′Ψ̄↓Ψ↓

)]

has a complicated interaction of the Grassmann field in space and time. Moreover,
at least for t̄ = 0 the interaction has a long-range part in time which reflects the
degeneracy of the unperturbed system. Fortunately, there is a way to avoid these
difficulties: As shown in Appendix A, the determinant can be expanded in terms of
the partitions Λk ⊆ Λ of the space-time lattice Λ as

det[−∂t+µ̄+t̂−U ′Ψ̄↓Ψ↓] =
∑

Λk⊆Λ

detΛk
[−(µ̄+t̂)∂T

t ] exp
[

TrΛk
log

(

1−(t̂+µ̄)−1U ′Ψ̄↓Ψ↓

)]

.

The partitions include the empty set which gives det∅A = 1. This expansion is the
most important step for the treatment of the Hubbard model in this work. The first
consequence is that the partition function Z is now given by an expansion in terms
of Λk as Z =

∑

Λk
ZΛk

with

ZΛk
= detΛk

[−(µ̄+ t̂)∂T
t ]

∫

exp(−SΛk
)D[Ψ↓] (4)

and the action

SΛk
= Ψ̄↓ · (∂t − µ̄ − t̂)Ψ↓ − TrΛk

log
(

1− (t̂ + µ̄)−1U ′Ψ̄↓Ψ↓

)

.

The second term of SΛk
can be expanded in powers of the Grassmann field. This

yields an instantaneous cluster interaction
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Si =
∑

l≥1

U ′l



Consequently, the determinant can be expressed as

[detλk
(µ̄+ t̂)]β

′

=
[

detλ(1+ Iλk
[µ̄+ t̂− 1]Iλk

)
]β′

. (5)

The interaction can also be written in terms of the projection operator:

Si =
∑

l≥1

U ′l



det(−∂t + µ̄− uI + t̂) ≈ exp[
∫

Θ(|κ| − 1) log(κ)ddk] exp[β ′h
∑

r

(1 + Sr)].

with the effective magnetic field

h =
u



spin Sr = (−1)r1+···+rd. The partition function in Eq. (6) reads with the staggered
Ising spin structure

ZI ≈ 2µ̄β′M/2det(−∂t + VAFM + t̂),

where VAFM is the staggered antiferromagnetic potential

VAFM = µ̄ − u



antiferromagnetic (staggered) Ising spin configuration because of the effective Ising
spin interaction

t̄2
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APPENDIX A

The space-time determinant on the r.h.s. of Eq. (3) can also be written as

det[− ∂t + µ̄+ t̂− U ′Ψ̄↓Ψ↓] = det(1+ A) ≡
∑

π

(−1)π
∏

(r,t)∈Λ

[

δπ(r,t),(r,t) + Ar,t;π(r,t)

]

with the matrix A = −(µ̄+ t̂−U ′Ψ̄↓Ψ↓)∂
T
t . The product over the lattice sites gives

a sum over all subsets Λk ⊆ Λ of the space Λ and their complements Λ′
k = Λ \ Λk

∑

Λk⊆Λ

∑

π

(−1)π
[

∏

(r,t)∈Λk

Ar,t;π(r,t)

][

∏

(r,t)∈Λ′
k

δπ(r,t),(r,t)
]

.

The Kronecker delta δπ(r,t),(r,t) on Λ′
k implies π(r, t) ∈ Λk for (r, t) ∈ Λk. Therefore,

only that part of the matrix A contributes which is projected onto Λk. This implies
an expansion of the determinant in terms of all partitions of the space-time lattice
Λ as

det[− ∂t + µ̄+ t̂− U ′Ψ̄↓Ψ↓] =
∑

Λk⊆Λ

detΛk
(PkAPk) ≡

∑

Λk⊆Λ

detΛk
A (10)

with det∅A = 1 for an empty set Λk. The projected determinant is

detΛk

(

− (µ̄+ t̂− U ′Ψ̄↓Ψ↓)∂
T
t

)

= detΛk
[−(µ̄ + t̂)∂T

t ]detΛk

(

1− (µ̄+ t̂)−1U ′Ψ̄↓Ψ↓)
)

,

where the second second determinant reads

exp
[

TrΛk
log

(

1− (t̂ + µ̄)−1U ′Ψ̄↓Ψ↓

)]

.
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APPENDIX B

Expanding the second determinant of ZI up to first order in δV̂ yields

det(−∂t + µ̄+ δV̂ + t̂) ≈ det(−∂t + µ̄+ t̂) exp
(

Tr[δV̂ (−∂t + µ̄+ t̂)−1]
)

.

The trace term can be written as

β ′h
∑

r

(1 + Sr),

where

h =
u


