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Abstract

Consequences of different discretizations of the two-dimensional Dirac

operator on low energy properties (e.g., the number of nodes) and their

relations to gauge properties are discussed. Breaking of the gauge in-

variance was suggested in a recent work by M. Bocquet, D. Serban,

and M.R. Zirnbauer [cond-mat/9910480] in order to destroy an inter-

mediate metallic phase of lattice Dirac fermions with random mass. It

is explained that such a procedure is inconsistent with the underlying

lattice physics. Previous results point out that the logarithmic growth

of the slope of the average density of states with the system size, ob-

tained in the field-theoretical calculation of M. Bocquet et al., could

be a precursor for the appearence of an intermediate metallic phase.

I. INTRODUCTION

Two-dimensional (2D) Dirac (Majorana) fermions can be derived in statistical
physics (2D Ising model [1]) and in models of condensed matter systems (quasi-
particles in d-wave superconductors [2,3], in the resonant valence bond state of the
two-dimensional Heisenberg model [4], or in the quantum Hall effect [5,6,7,8]) al-
ways from lattice models. The relation of all these lattice models and 2D Dirac
fermions is based on the agreement of their low-energy properties on certain length
scales. Using continuous Dirac fermions, which have a linear dispersion, their k = 0
node is identified with one of the nodes of the original lattice model. However,
there are technical reasons to study a discrete (lattice) version of the Dirac operator
because of problems related to the unrestricted spectrum of the continuum model.
In the presence of randomness there is also the particular problem of correlations
on a characteristic length scale which restricts the use of the unrealistic white noise
randomness. In the renormalization group approach [1] or in the saddle-point ap-
proximation [9] it is sufficient to specify the lattice by a cutoff of the wavevector,
assuming that only the k = 0 node is important. For a more detailed discussion of
the model one must define the lattice structure explicitly. The simplest case would
be a nearest neighbor (NN) discretization of the lattice difference operator
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∇jf(r) =
1



Eπ = ±
√



Hr1,r±e12 = Hr2,r±e11 = ±i

Hr1,r±e22 = Hr2,r∓e21 = ±1

which represents a Hamiltonian with flux π. Adding NNN terms to ∇j changes
this flux because the new terms have the same phase factors as the NN terms but
on links which are twice as large as those of the NN hopping terms. This leads
to an inconsistency in the model because particles would experience a magnetic
field whose strength depends on the length of the hops. Moreover, the invariance
property [H,Sσ3]− = 0, which is the gauge invariance on sublattice Λ2, is violated
by the NNN hopping term.

It is possible to add NNN hopping terms to H which are consistent with the
node structure of the π flux discretization. The simplest is

hnnn = H2

0 = (i∇1σ1 + i∇2σ2)
2.

It preserves the gauge field of the NN term. Another one is

h′
nnn = H2

0σ3 = (i∇1σ1 + i∇2σ2)
2σ3

which does not preserve the gauge field because it contributes a positive hopping
element for α = 1 but a negative hopping element for α = 2. Nevertheless, both
NNN terms obey the condition

[hnnn, Sσ3]− = [h′
nnn, Sσ3]− = 0, (3)

but only h′
nnn satisfies the defining symmetry of class D of Altland and Zirnbauer

[19]

h′
nnn = −σ1h

′
nnn

T
σ1.

Property (3) can be used to estimate the non-vanishing average DOS at E = 0, as
demonstrated in Refs. [10,11].
The discussion of the DOS requires only the diagonal part of the one-particle Green’s
function Grr,aa = (H ± iǫσ0)

−1
rr,aa, which can be represented by a sum over closed

random walks [18] beginning at r and returning to it with the same Dirac index. For-
mally, the random walk representation can be obtained from the hopping expansion
of the Green’s function

(H0 +mσ3 + iǫσ0)
−1 = (mσ3 + iǫσ0)

−1
∑

l≥0

[

H0(mσ3 + iǫσ0)
−1

]l
.

This expansion is convergent for sufficiently large ǫ. After averaging over the random
mass one can perform an analytic continuation to arbitrarily small ǫ > 0. The loops
experience an effective gauge field because of complex hopping elements. An example
is a simple plaquette (Fig. 1). In general the flux per plaquette is φ = π, in units of
the flux quantum φ0. An important property of the random walks follows from

G(−m, iǫ) = σ2G
T (m, iǫ)σ2

because this means that the random walks are reversed by the change of the sign
of the mass. An interpretation is that the currents in the model can be reversed by
reversing the sign of the mass, which is related to the change of the sign of the Hall
conductivity σxy with m [5].
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A. Hall Conductivity

A quantity which is sensitive to the type of discretization but robust against disorder
is the Hall conductivity σxy. It can be measured as the linear response to an external
gauge field [5]. In a pure system (m = const.) with Hamiltonian H = mσ3 + h1σ1 +
h2σ2 it reads [8]

σxy =
m



with 2∆f(r) = f(r+e1)+f(r−e1)+f(r+e2)+f(r−e2). Obviously, this Hamiltonian
violates the sublattice gauge-invariance condition:

∆σ3S = −σ3S∆.

Without randomness (i.e. m = 0) the dispersion is

E1(k1, k2) = ±
√



H → −σ3Hσ3 (4)

for the ensemble and, therefore, for the average one-particle Green’s function. More-
over, there is a symmetry under the discrete transformation

H → −σ1H
Tσ1, (5)

which defines class D of Ref. [19]. It holds for each realization of the model with
Hamiltonian H . hnnn and h′

nnn, both break symmetry (4) whereas only hnnn breaks
symmetry (5).

From the symmetry point of view alone it is not entirely clear under which
conditions a vanishing average DOS at E = 0 exist. The competition of different
nodes (i.e. different length scales) cannot be described only by global symmetries
but requires more detailed knowledge. However, there is a simple argument in terms
of the hopping expansion which indicates that the number of independent random
terms in the Dirac Hamiltonian H is crucial for the behavior of the average DOS
around E = 0. Taking the zero-dimensional limit of H , i.e. the leading order of the
hopping expansion, there is a power law

〈ρ(E)〉 ∼ ρ0|E|α,

where α = 0 (random mass) and α = 1 (two-component random vector potential).
The latter, of course, violates also the symmetry (5).

The non-vanishing DOS for the class D model in d = 2 with a diffusive behavior
was recently discussed by Senthil and Fisher [16] and Read and Green [17] in terms
of the RG flow of a non-linear sigma model. Although this approach was criticized
by Bocquet et al. [13], its result is in agreement with that obtained with a different
approach [12]. The appearence of the intermediate phase is quite natural for the 2D
Dirac fermions, since the pure model has a singular “metallic” phase at E = m = 0
with conductivity e2/hπ. This phase is robust against a random vector potential,
where the value of the conductivity remains unchanged [8]. A random mass has
apparently a stronger effect because it reduces the conductivity at m = 0 by a
factor 1/(1 + g/π), where g is the variance of the random mass [12]. Moreover, it
broadens the singular phase at m = 0 to an interval −mc < m < mc with non-
vanishing DOS. In terms of the random bond Ising model the non-vanishing DOS
reflects the existence of the Griffiths-McCoy-Wu phase, which cannot be seen in the
perturbative RG approach [20].

The occurence of vortex-like excitations might be an important effect, as sug-
gested in Refs. [13,16,17]. Using the π flux discretization, these vortices can be
created by local edge currents in areas where the sign of the random mass changes:
An area with a positive mass has a positive Hall conductivity whereas the sur-
rounding area with negative mass has a Hall conductivity with opposite sign. The
resulting edge currents can have a long-range interaction. An effective model for this
behavior can be found in terms of the Q matrix field theory of Ref. [12], in which
the random mass is replaced by a matrix field. Details will be published separately.

In conclusion, the change of the discretization has a strong effect on the node
structure of the Dirac Hamiltonian. The correct discretization is determined by
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the effective gauge field which the Dirac fermions experience. In the case of Dirac
fermions with random mass, however, the average DOS at low energies is relatively
robust against the change of the discretization. In particular, the k ≈ 0 modes
have a substantial contribution to the average DOS. This indicates that also the
intermediate metallic phase of the Dirac fermions with random mass and π flux
discretization should be robust under a change of the discretization.
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FIG. 1. Simple plaquettes are created from the Hamiltonian H0 with nearest neighbor

discretization. They enclose a flux φ = π which gives eiφ = −1. The sublattice gauge

transformation H → HSσ3 does not change this property.
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