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Abstract — In this second part of our two-part article, we present and discuss the corresponding
numerical results from implementations of the numerical algorithms described in the first part. With
these results, we observed that

• operator splitting applied to the associated time-dependent problem is suitable for solving only
the first eigenproblem,

• among those tried, the perturbation and arclength continuation approach was the sole effective
and robust approach for solving higher eigenproblems,

• on the eigenproblems for which (undamped or damped) Newton’s method converged, it was
without question the most efficient.

Keywords: numerical method, Lane, Emden, semilinear, elliptic, eigenproblem, operator splitting,
finite element, arclength continuation, least-squares, control, Newton’s method

1. INTRODUCTION

In this second part of our two-part article, we present the results of implementing the
numerical algorithms detailed in the first part. For simplicity, we take the computa-
tional domainΩ to be a right triangle whose sides have the ratios 3:4:5 (a “Fermat
triangle”), anticipating that with such a symmetry-breaking choice, all computed
eigenpairs will be simple (although we do not attempt to prove this). Figure 1 shows
this domain along with the finest (uniform) triangulation used in computations.

Starting with the principal eigenproblem, in§2 we present numerical results
from the operator splitting method applied to the time-dependent problem discussed
in Part (I),§2. Next, in§3, we present the numerical results from the perturbation
and arclength continuation methods discussed in Part (I),§3.1. Finally, in§4, we
present some numerical results from the application of Newton’s method discussed
in Part (I),§3.2.

∗Department of Mathematics, University of Houston, 4800 Calhoun Rd, Houston, TX 77204-3008.
This work was supported by NSF grant DMS 0412267.
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Figure 1. DomainΩ with finest triangulation.
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2. THE PRINCIPAL EIGENPROBLEM

Figure 2 shows the solutions of the initializing linear principal eigenproblem (2.21)-
(2.23) (top) and the nonlinear principal eigenproblem (1.1)-(1.3) (bottom). Figure 3
shows the convergence results with an initial guess of{u0,λ 1

0} = {w1,0} (top) and
the evolution of theH1

0(Ω) norms of the minimizing sequence elements generated
by the computational scheme (bottom). We can see that the reduction in norm oc-
curs mostly before about the 70th iteration. Finally, Figure 4 shows graphs of the
a posteriorinecessary upper bounds onτ computed using conditions (2.30) (solid)
and (2.32) (dashed), plotted as functions of the time stepn. Notice that the former
condition is always more restrictive. Attempts to use even aslightly largerτ than
the smallest necessary condition value resulted in failure.

3. HIGHER EIGENPROBLEMS

3.1. Arclength continuation results

3.1.1. Validation problems. For validation purposes, we include some computa-
tional results for two problems that have been studied previously. The first is the
extensively studiedBratu problemarising in the modelling of exothemic chemical
reactions and combustion phenomena. It is well known that this problem has an in-
teresting solution set that can be readily approximated andcomputed via arclength
continuation (cf. [10] and [8]). The statement of this problem is:

−∆u = λeu in Ω, (3.1)
u = 0 onΓ, (3.2)

whereλ is the so-calledArrhenius parameter. We formulated the arclength contin-
uation method for this problem on the “Fermat triangle” domain and implemented
the discretized version to obtain the following numerical results. The branch of so-
lutions continued forλ > 0 and initialized with(u0,λ0) = (0,0) and {u̇0, λ̇0} =
{

λ̇0û,
1√

1+(û,û)

}

satisfying the corresponding initializing Davidenko equations

(

−∆ −1
(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

, (3.3)

where−∆û= 1, is exhibited in the top graphic of Figure 5 while the bottomgraphic
shows the conjugate gradient convergence history along thebranch. The top graphic
of Figure 6 shows the approximatelimit (aka left turningor folding) point solution
occurring at(λ∗,‖u∗‖) = (23.0866,3.2824), while the bottom graphic of the same
figure shows the final continued solution computed along the top portion of the
solution branch.

Remark 3.1. In numerical testing, we found that the efficiency of the conjugate
gradient solver used for the correction step in the arclength continuation algorithm



4 F. J. Foss, II, R. Glowinski, R. H. W. Hoppe

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−∆ w = µ w in Ω , w = 0 on Γ , µ = 67.1713 , ∫Ω w4 dx = 1 , h
1
= 1/128 , h

2
=3/4*h

1

1.
99

4
1.

79
46

1.
59

52
1.

39
58

1.
19

64
0.

99
69

8
0.

79
75

9
0.

59
81

9
0.

39
87

9

0.
19

94

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−∆ u = λ u3 in Ω , u = 0 on Γ , ∫Ω (un+1/2)4 dx = 1 , λ = 20.8115 = ∫Ω ∇ un+1 ⋅ ∇ un+1/2 dx ,

 n = 625 , τ=0.001 , h
1
= 1/128 , h

2
=3/4*h

1

2.
22

49
2.

00
24

1.
77

99
1.

55
74

1.
33

49
1.

11
25

0.
88

99
7

0.
66

74
7

0.
44

49
8

0.
22

24
9

Figure 2. Principal linear eigenpair{w1,µ1} solving problem (2.21)-(2.23) (top) and
nonlinear eigenpair{u1,λ1} solving problem (1.1)-(1.3) (bottom).



Numerical methods for a Lane-Emden type eigenproblem 5

0 100 200 300 400 500 600 700
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Convergence history of un+1−un

n

|(
un+

1 −
un )/

λn+
1 | 1,

2

10
0

10
1

10
2

10
3

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7

4.75

Evolution of |un|
1,2

n

|u
n | 1,

2
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Figure 5. Continued solution branch (top) and conjugate gradient convergence be-
havior (bottom) for the Bratu problem (3.1)-(3.2).
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was very sensitive to the precision with which the linesearch problems were solved
for the descent parameters. For example, for the Bratu validation problem we found
that using a 10−6 rather than a 10−8 convergence threshold for the linesearch prob-
lems resulted in anorder of magnitude increase, from 7 to 70, in the number of
CG iterations required to resolve the approximate turning point along the continued
solution branch. Since we employ a Newton solver for the linesearch problems, the
computational cost of requiring more precision in these linesearches was negligible
compared with that incurred in the conjugate gradient iteration by not doing so.♣

The second problem is a model problem that can be found in the users’ guide
for the NETLIB software packagePLTMG (cf. [5]). The statement of this model
problem is

−∆u = λ sinu in Ω, (3.4)

u = 0 onΓ, (3.5)

It is evident that{{0,λ}}, λ ∈ R, is a trivial branch of solutions and that, from the
Davidenko equations

(

−∆−λ 0
(u̇0, ·) λ̇0

)(

u̇
λ̇

)

=

(

0
1

)

(3.6)

evaluated along this trivial branch, there are nontrivial branches of solutions bifur-
cating at each eigenvalueλ = µn, n = 1,2, . . . , of the linear eigenproblem (2.21)-
(2.22). Formulating the arclength continuation method forthis problem on our “Fer-
mat triangle” domain and implementing the discretized version, the branches of so-

lutions initialized with{u0,λ0} = {0,µn} and {u̇0, λ̇0} =
{

λ̇0wn,
1√

1+µn

}

, where

{wn,µn} is the nth eigenpair solving the normalized linear eigenproblem (2.21)-
(2.23), are exhibited in the top graphics of Figure 7 forn = 1 (top) respectively
n = 2 (bottom), while Figures 8 and 9 show the respective conjugate gradient con-
vergence histories and final continued solutions along these same two branches of
solutions.

3.1.2. Main problem. Despite the relative ease with which we were able to pro-
duce results for the validation problems discussed in the previous section, our initial
experiences with the pseudo-arclength continuation computational framework ap-
plied to the perturbed formulation (3.18) of our main problem were rather puzzling.
Since we already found a solution of the 2nd (unperturbed) nonlinear eigenproblem
using other methods, it was natural and desirable (as an independent verification of
these earlier results) to first attempt to find the nontrivialsolution branch for the
2nd perturbed nonlinear eigenproblem with the ultimate goal (after sufficient con-
tinuation) of “jumping” to the corresponding unperturbed branch. Initial efforts to
continue this nontrivial solution branch met with failure.

To explain this failure, we refer to Figure 10. Each beginning branch segment
shown in this figure was initialized with the trivial branch point {u0,λ0} = {0,

µ2
δ },
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1st (top) and 2nd (bottom) linear eigenpair initialization.



Numerical methods for a Lane-Emden type eigenproblem 11

0 1000 2000 3000 4000 5000 6000
0

20

40

60

80

100

120

140

160

continuation step, n

nu
m

be
r 

of
 r

eq
ui

re
d 

P
ol

ak
−

R
ib

ie
re

 C
G

 it
er

at
io

ns
, m

 

Polak−Ribiere CG convergence behavior during continuation.  Convergence criterion:  J
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Figure 8. Conjugate gradient convergence behavior forPLTMG problem (3.4)-(3.5)
resulting from 1st (top) and 2nd (bottom) linear eigenpair initialization.
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whereµ2 is the 2nd eigenvalue solving the linear eigenproblem (2.21)-(2.22)(for
simplicity we fixed the perturbation parameterδ ≡ 1). Three choices for the initial
tangent were used in turn. Because the nontrivial nonlinearsolution branches for
all eigenmodes are symmetric about the trivial branch, our first and theoretically-

consistent choice for the initial tangent was{u̇0, λ̇0} =
{

w2√µ2
,0

}

. This choice pro-

duced the dashed curve shown in Figure 10. The computed solution branch is re-
turning to the trivial solution branch! Initially thinkingthat this unfortunate devel-
opment had something to do with the fact that we were initializing with λ̇0 = 0, we
next derived a first-order approximation (in∆s) of the solution along the nontrivial

branch, which turned out to be given by{u0
1,λ 0

1} ≈
{

w2
|w2|1,2

,
µ2
δ − ∆s

δ 2|Ω|

}

∆s. We used

this approximation in the correction step and for the first-order tangent approxima-
tion (3.11) at the corrected solution branch point. The resulting computed solution
branch essentially retraced the one resulting from our firsttangent choice (dotted
curve overlaying the dashed curve in Figure 10). The third initial tangent was cho-
sen using (3.24) withn= 2, takingλ̇0 =− 1√

1+µ2
which in turn givesc2 =±λ̇0. This

choice produced the dashed-dotted curve shown in Figure 10.Again, the computed
solution branch eventually starts returning to the trivialsolution branch.

The remedy for this undesirable behavior turned out to be therenormalization
of the tangent pair{u̇1, λ̇1} (via solution of the Davidenko equations (3.28)) when,
after enough updates using the tangent approximation (3.11), a simple monitor, test-
ing whether or not the computed arclength fell within a smallneighborhood of unity,
was violated. The manifestation of this continuation with the tangent approximation
followed by tangent renormalization is shown in the solid curve of Figure 10. This
computed solution branch was initialized as with the dashedcurve (so they initially
overlay), but at some point the tangent renormalization criteria was satisfied and the
renormalization performed, giving the subsequent abrupt change in the direction of
the solution branch seen in the figure. Subsequent renormalizations were required
as well, although the directional corrections were substantially less dramatic than
the first. This renormalization was enough to admit the following of the nontrivial
solution branch instead of returning to the trivial branch.

After resolving the mystery of the computed nontrivial solution branch returning
to the trivial branch, we successfully continued nontrivial solution branches for the
perturbed (δ = 1) eigenproblem (3.18) as well as the “jump” to the corresponding
unperturbed (δ = 0) solution branches for seven eigenproblems corresponding to
the eigenpairs{un,λn},n∈{1,2,3,4,5,10,20}. These results are displayed in seven
figures, each corresponding to one of the selected eigenproblems. For brevity, we
only explain the results for one eigenproblem, the explanation for the remaining
eigenproblems being similar.

Since none of the other methods attempted were successful atfinding the 3rd

eigenpair, we focus our discussion on these results shown inFigures 17-19. The
top graphic of Figure 17 shows the continued branch{(λ1, |u1|)n}, n=0,1,. . . , of
perturbed solutions as well as the “jump” to the corresponding unperturbed branch
for the 3rd semilinear eigenproblem. The bottom graphic shows the corresponding
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conjugate gradient convergence history, i.e., the number of CG iterations required
for convergence to a solution on the branch at each step of thecontinuation. Note
that we omit these CG convergence history results for the 4th and 5th eigenpairs
since the number of CG iterations in each case oscillated between one and two for
all continuation steps, resulting in rather uninterestinggraphs.

Since the initializing trivial solution along the solutionbranch of the 3rd per-
turbed eigenproblem is rather uninteresting, we show for comparison purposes the
linear eigenpair{w3,µ3} solving (2.21)-(2.23) in the top graphic of Figure 18. We
then show, in the bottom graphic of this same figure, the last solution obtained via
continuation along the perturbed (δ = 1) solution branch, starting from the bifur-
cation point{0,µ3}, whereµ3 is the 3rd linear eigenvalue solving the linear eigen-
problem (2.21)-(2.22). The top graphic of Figure 19 shows the unconstrained eigen-
pair {u3,λ3} obtained by “jumping” from this last perturbed solution to the unper-
turbed (δ = 0) solution branch. The bottom graphic of this figure shows the unit
L4(Ω) norm constrained eigenpair{u3,λ3} solving the original constrained semi-
linear eigenproblem (1.1)-(1.3).

Finally, Figure 31 superimposes the continued perturbed, “jump”, and continued
unperturbed branches for all eigenmodes investigated witharclength continuation.
This shows the relative orientation of the solution branches for all eigenmodes re-
vealed in this study. Additionally, the “×”s mark the unitL4(Ω) norm constrained
solution points along the unperturbed branches.

It is important to note that, compared with other solution methods, the pertur-
bation and arclength continuation approach proved to be themost computationally
reliable, predictable, and effective in capturing eigenmodes of the model problem,
particularly the higher ones. In fact, at the expense of someglobal efficiency (lo-
cally, at each continuation step, it is extremely efficient), it was the only method we
tried that was able to capture eigenmodes beyond the 2nd one.
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Figure 13. Continued principal eigenpair{u1,λ1} solving the unperturbed (δ = 0)
semilinear eigenproblem (3.18)-(3.19) (top) and normalized principal eigenpair
{u1,λ1} solving the original constrained semilinear eigenproblem(1.1)-(1.3) (bot-
tom).
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Figure 14. Continued perturbed solution branch with jump to unperturbed branch
(top) and conjugate gradient convergence behavior (bottom) for 2nd semilinear
eigenproblem.
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Figure 15. 2nd eigenpair{w2,µ2} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued 2nd eigenpair{u2,λ2} solving the perturbed (δ = 1) semilinear eigen-
problem (3.18)-(3.19) (bottom).
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Figure 16. Continued 2nd eigenpair{u2,λ2} solving the unperturbed (δ = 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalized 2nd eigenpair{u2,λ2} solving
the original constrained semilinear eigenproblem (1.1)-(1.3) (bottom).
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Figure 17. Continued perturbed solution branch with jump to unperturbed branch
(top) and conjugate gradient convergence behavior (bottom) for 3rd semilinear
eigenproblem.
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Figure 18. 3rd eigenpair{w3,µ3} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued 3rd eigenpair{u3,λ3} solving the perturbed (δ = 1) semilinear eigen-
problem (3.18)-(3.19) (bottom).
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Figure 19. Continued 3rd eigenpair{u3,λ3} solving the unperturbed (δ = 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalized 3rd eigenpair{u3,λ3} solving
the original constrained semilinear eigenproblem (1.1)-(1.3) (bottom).
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branches for 4th (top) and 5th (bottom) semilinear eigenproblems.
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Figure 21. 4th eigenpair{w4,µ4} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued 4th eigenpair{u4,λ4} solving the perturbed (δ = 1) semilinear eigen-
problem (3.18)-(3.19) (bottom).
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Figure 22. Continued 4th eigenpair{u4,λ4} solving the unperturbed (δ = 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalized 4th eigenpair{u4,λ4} solving
the original constrained semilinear eigenproblem (1.1)-(1.3) (bottom).
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Figure 23. 5th eigenpair{w5,µ5} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued 5th eigenpair{u5,λ5} solving the perturbed (δ = 1) semilinear eigen-
problem (3.18)-(3.19) (bottom).
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Figure 24. Continued 5th eigenpair{u5,λ5} solving the unperturbed (δ = 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalized 5th eigenpair{u5,λ5} solving
the original constrained semilinear eigenproblem (1.1)-(1.3) (bottom).
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Polak−Ribiere CG convergence behavior during continuation.  
Convergence criterion:  J

n+1
(un,m,λn,m) <= 1e−07

Figure 25. Continued perturbed solution branch with jump to unperturbed branch
(top) and conjugate gradient convergence behavior (bottom) for 10th semilinear
eigenproblem.
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Figure 26. 10th eigenpair{w10,µ10} solving the linear eigenproblem (2.21)-(2.23)
(top) and continued 10th eigenpair{u10,λ10} solving the perturbed (δ = 1) semilin-
ear eigenproblem (3.18)-(3.19) (bottom).
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Figure 27. Continued 10th eigenpair{u10,λ10} solving the unperturbed (δ = 0) semi-
linear eigenproblem (3.18)-(3.19) (top) and normalized 10th eigenpair{u10,λ10}
solving the original constrained semilinear eigenproblem(1.1)-(1.3) (bottom).
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Polak−Ribiere CG convergence behavior during continuation.  Convergence criterion:  J
n+1

(un,m,λn,m) <= 1e−07

Figure 28. Continued perturbed solution branch with jump to unperturbed branch
(top) and conjugate gradient convergence behavior (bottom) for 20th semilinear
eigenproblem.
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Figure 29. 20th eigenpair{w20,µ20} solving the linear eigenproblem (2.21)-(2.23)
(top) and continued 20th eigenpair{u20,λ20} solving the perturbed (δ = 1) semilin-
ear eigenproblem (3.18)-(3.19) (bottom).
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Figure 30. Continued 20th eigenpair{u20,λ20} solving the unperturbed (δ = 0) semi-
linear eigenproblem (3.18)-(3.19) (top) and normalized 20th eigenpair{u20,λ20}
solving the original constrained semilinear eigenproblem(1.1)-(1.3) (bottom).
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Figure 31. Continued perturbed solution branches with jump to, and additional con-
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20th semilinear eigenproblems. “×”s mark the solution points of the respective unit
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To complete the analysis and discussion of the results obtained thusfar, we in-
clude Figures 32-34, each graphic of which highlights, withcontrasting symbols,
the regions in the domainΩ within which the respective eigenfunctions have one
sign. The boundaries between these regions constitute the so-callednodal sets, de-
fined as the closure of the sets of interior zero crossings of the eigenfunctions. The
geometry of these nodal sets withinΩ as well as their proximity to∂Ω for various
domain geometries continue to attract a fair amount of attention (cf. [2]). It is ev-
ident from the figures that, for the eigenfunctions computedherein, the nodal sets
that intersect∂Ω do so orthogonally (within computational resolution).

4. NEWTON’S METHOD RESULTS

Our experience with the implementation of the damped Newtonalgorithm discussed
in Part (I),§3.2, as applied to problem (1.1)-(1.3), proved rather fascinating despite
being only partially successful. Specifically, we found that although we were able
to successfully solve for the first two nonlinear eigenpairswith breathtaking ef-
ficiency, we failed in our many attempts to solve for the 3rd nonlinear eigenpair.
Even the successful outcomes in the cases of the first two eigenpairs were obtained
through nothing short of pure luck in “stumbling on” good initial guesses{u0,λ 0}.
We were not so lucky in the case of the 3rd eigenpair. Indeed, it was our experience
that the performance of the method was extremely sensitive to the choice of initial
guess, even among the “natural” although relatively small set of choices provided
by the one-dimensional linear eigenmanifolds. Other than the trivial solution man-
ifold, which is useless as a source of initial guesses, the linear eigenmanifolds are
really the only “natural” sources of initial guesses that readily present themselves
a priori in this case. If “good” initial guesses cannot be found easily within these
sets, then without further modification (some suggestions for which can be found
in [7], Chap. 8), the method is of limited practical use for this particular semilinear
problem.

To support this empirical assessment, we provide computational results for the
1st-3rd eigenproblems. We first applied the method to, and thus focusour discussion
on, the 2nd eigenproblem. After many unsuccessful tests of damped (using various
damping factors) and undamped Newton’s methods, taking theeigenpair{w2,µ2}
solving the unitL4(Ω) norm constrained linear eigenproblem (2.21)-(2.23) as ini-
tial guess (the most “natural” choice), we literally stumbled upon a “good” initial
guess by scaling the linear eigenfunction by a factor of 0.5.With this lucky scaling,
the method converged in 12 iterations without damping and 9-10 iterations with
damping (depending on the damping factor used)! Compared with the overall con-
vergence rates of any of the other previously used methods, this is a truly remarkable
benefit of either method.

The costs of this remarkable performance come in the forms of1) a fairly nar-
row window of choices for “good” initial guesses as well as 2)extreme sensitivity
of the behavior of the Newton sequence to the choice of initial guess. As we men-
tioned, we got lucky with the choice of{0.5w2,µ2} as our second initial guess,
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Figure 32. Signed regions of 2nd (top) and 3rd (bottom) eigenfunctions solving the
original constrained semilinear eigenproblem (1.1)-(1.3). “+” marks regions where
u > 0 and “·” marks regions whereu < 0.
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Figure 33. Signed regions of 4th (top) and 5th (bottom) eigenfunctions solving the
original constrained semilinear eigenproblem (1.1)-(1.3). “+” marks regions where
u > 0 and “·” marks regions whereu < 0.
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Figure 34. Signed regions of 10th (top) and 20th (bottom) eigenfunctions solving the
original constrained semilinear eigenproblem (1.1)-(1.3). “+” marks regions where
u > 0 and “·” marks regions whereu < 0.
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which resulted in the spectacular convergence behavior indicated above for the cor-
responding damped and undamped Newton sequences. However,the sensitivity of
the Newton sequence behavior to a simple scaling of the linear eigenfunction ini-
tial guess is extreme. Without damping, convergence occurswhen the scale factor
falls within a rather small neighborhood of 0.5, e.g., one just containing the interval
[0.4875,0.50625]. With damping, this neighborhood is broadened to one just con-
taining [0.39375,0.525]. Furthermore, the delineation ofthese intervals of “good”
scale factors was only possible because of our good fortune in guessing the value 0.5
within the intervals to begin with as opposed to a systematicor algorithmic search.
Without a “good” initial guess, the damped Newton method stagnates without con-
verging (due to the ultimate failure of the monotonicity test even with vanishingly
small damping factors) and the undamped Newton method simply diverges. Unfor-
tunately, “good” initial guesses for the 3rd nonlinear eigenproblem were very elusive
indeed (we did not find any).

Figures 35-37 show the results for the 2nd eigenproblem. Figure 35 shows sev-
eral converging Newton sequences(|uk|,λ k) (note thatλ k is plotted on the horizon-
tal axis and|uk| on the vertical axis, marked by “×”s), along with the corresponding
undamped (dotted line) and several damped (solid line) approximate Newton path
segments connecting the iterates. A circle marks the solution point(|u∗|,λ ∗). The
top graphic shows the entire sequences while the bottom graphic shows a zoomed
subset in a neighborhood of the solution point. The intersection of the dotted and
solid segments marks the initial guess(|u0|,λ 0). Note the dramatic difference be-
tween the undamped and damped approximate Newton paths. Thedamping has the
effect of changing both the magnitude and direction of the first and subsequent New-
ton increments to improve convergence. In the undamped case, it is interesting that
the first Newton step, taken from the initial guess within thelinear eigenmanifold, is
consistently to a point further away from the solution point, from which subsequent
iterates then approach the solution point. This already suggests that the linear eigen-
manifold may be a problematic source of initial guesses, butwhat other “natural”
choices are there?

Figure 36 shows the damped Newton solution{u∗,λ ∗} of the 2nd semilin-
ear eigenproblem (1.1)-(1.3) (bottom) compared with the initial guess{u0,λ 0} =
{0.5w2,µ2} (top), where{w2,µ2} is the 2nd eigenpair solving the unitL4(Ω) norm
constrained linear eigenproblem (2.21)-(2.23). The solution agrees with that ob-
tained using the arclength continuation method.

Figure 37 shows converging undamped (top) and various damped (bottom)
Newton sequences resulting from various initial guesses generated by different scal-
ingsαw2 of the 2nd linear eigenfunctionw2 together with the linear eigenvalueµ2,
i.e., various points in the 2nd linear eigenmanifold{{αw2,µ2}|α ∈ R}. With such
scalings, the initial guesses haveH1

0(Ω) norms scatter along the vertical lineλ = µ2,
as can be clearly seen in the damped case and barely seen in theundamped case. In
the damped case, solid Newton sequences converge while dotted ones do not. In the
undamped case, only solid converging Newton sequences are plotted (plotting di-
verging ones spoil the axes scaling for the converging ones). Note that we attempted
to find nearly extremal scalings admitting convergence so asto isolate windows of
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“good” initial guesses for both the damped and undamped methods. As can be seen
in the graphics, and as discussed previously, the “good” initial guess window in the
undamped case is extremely narrow indeed, with some significant widening in the
damped case.

Anticipating that both the damped and undamped Newton methods should per-
form even better on the 1st nonlinear eigenproblem, we repeated our experiments
for this case and confirm our prediction with the results shown in Figures 38 and 39,
which correpond to Figures 36 and 37 for the 2nd eigenproblem. Not only was the
solution of the 1st nonlinear eigenproblem found by both damped and undamped
Newton methods in fewer iterations than that of the 2nd, the windows of “good”
initial guesses within the 1st linear eigenmanifold are significantly wider in both
cases.

Unfortunately, despite a fair amount of effort (even with the benefit of know-
ing the desired outcome in advance), we failed to produce a damped or undamped
Newton sequence converging to the solution of the 3rd semilinear eigenproblem,
as can be seen be examining the top graphic of Figure 41 showing the damped
Newton sequences resulting from a large number of initial guesses in the 3rd linear
eigenmanifold. These represent some of the effort made to find a damped Newton
sequence converging to the solution point (marked with a circle). Figure 40 shows
the stagnation point (bottom) and corresponding initial guess (top) for one of the
best results obtained (i.e. nearest to the solution point).Comparing this stagnation
point with the actual solution at the bottom of Figure 41, we see that it is not very
good.

In conclusion, based on the experience with the damped and undamped New-
ton’s methods in this case, it would appear that despite the outstanding performance
of these methods when “good” initial guesses are used, the methods are not practical
if such initial guesses are difficult to find. This is somewhatdisappointing, since the
purpose of employing a damped Newton method is to globalize the ordinary New-
ton method in the sense of removing any restrictions on the initial guess. Further
investigation as to why the globalization fails in this casecould provide valuable
insight into both the methods themselves as well as the current problem to which
they are applied.

5. CONCLUSIONS

We have presented some numerical techniques for solving a particular semilinear
elliptic eigenproblem, each with its own strengths and weaknesses with respect to
algorithmic complexity, robustness for solving higher eigenproblems, and compu-
tational efficiency.

Operator splitting applied to the associated time-dependent problem proved ef-
fective and fairly efficient for solving the principal (1st) eigenproblem.

For higher eigenproblems, we have shown that, among the methods used herein,
the most robust in terms of resolving the most eigenmodes is the so-called arclength
continuation method. We successfully applied this method to a perturbation of the
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Figure 35. Various undamped and damped Newton sequences converging tothe 2nd

eigenpair{u2,λ2} solving the original semilinear eigenproblem (1.1)-(1.3)resulting
from the initial guess{0.5w2,µ2} (top), where{w2,µ2} solves the linear eigenprob-
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Figure 36. Comparison of 2nd eigenpair{u2,λ2} solving the original semilinear
eigenproblem (1.1)-(1.3) (bottom) resulting from a Newton’s method initial guess
{0.5w2,µ2} (top), where{w2,µ2} solves the linear eigenproblem (2.21)-(2.23).



Numerical methods for a Lane-Emden type eigenproblem 45

0 100 200 300 400 500 600 700
2

4

6

8

10

12

14

16

18

20

λk

|u
k |

Undamped Newton sequences with various initial guesses converging to 2nd eigenpair solving 
−∆ u = λ u3 in Ω, u = 0 on Γ. , λ = 45.4443 , ∫Ωu4 dx = 1  Newton initial guess = (α w

2
,µ

2
) , 

where α∈{0.4875,0.5,0.50625}

converging seq.
solution

0 20 40 60 80 100 120 140
2

3

4

5

6

7

8

λk

|u
k |

Damped Newton sequences with various initial guesses approximating 2nd eigenpair solving −∆ u = λ u3 in Ω, u = 0 on Γ.  
Newton initial guess = (α w

2
,µ

2
) , where α∈ {0.3,0.35,0.375,0.3875,0.39375,0.4,0.5,0.525,0.55,0.6}

solution
converges
doesn’t converge

Figure 37. Converging undamped (top) and various damped (bottom) Newton se-
quences resulting from initial guesses{αw2,µ2}, where{w2,µ2} solves the linear
eigenproblem (2.21)-(2.23), for variousα ∈ [0.3,0.6].
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Figure 38. Comparison of 1st eigenpair{u1,λ1} solving the original semilinear
eigenproblem (1.1)-(1.3) (bottom) resulting from a Newton’s method initial guess
{0.5w1,µ1} (top), where{w1,µ1} solves the linear eigenproblem (2.21)-(2.23).
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Figure 39. Converging undamped (top) and various damped (bottom) Newton se-
quences resulting from initial guesses{αw1,µ1}, where{w1,µ1} solves the linear
eigenproblem (2.21)-(2.23), for variousα ∈ [0.25,1.0].



48 F. J. Foss, II, R. Glowinski, R. H. W. Hoppe

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Newton’s method initial guess (α w
3
,µ

3
), α=0.5235 , 

where (w
3
,µ

3
) solves −∆ w = µ w in Ω , w = 0 on Γ , ∫Ω w4 dx = 1 , µ

3
 = 177.6291 , h

1
=1/128 , h

2
=3/4*h

1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
−3

−2

−1

0

1

2

3

Final stagnant damped Newton iterate approximating solution of −∆ u = λ u3 in Ω, u = 0 on Γ , ∫Ωu4 dx = 1 , 

λ = 53.5815 , ∫Ω|∇ u|2 dx = 56.3947 , ∫Ωu4 dx = 1.1258 , damped Newton initial guess = (0.5235*w
3
,µ

3
) , 

initial damping factor σ
0
0 =1 , iterations before regularity test fails:  n = 9 , h

1
=1/128 , h

2
=3/4*h

1

Figure 40. Comparison of damped Newton stagnation point{uk,λ k} approximately
solving the 3rd semilinear eigenproblem (1.1)-(1.3) (bottom) resulting from the ini-
tial guess{0.5235w3,µ3} (top), where{w3,µ3} solves the linear eigenproblem
(2.21)-(2.23).
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Figure 41. Various stagnating damped Newton sequences (top) resulting from initial
guesses{αw3,µ3}, where{w3,µ3} solves the linear eigenproblem (2.21)-(2.23),
for variousα ∈ [0.35,0.6]. Desired 3rd eigenpair solving the original semilinear
eigenproblem (1.1)-(1.3) as obtained from arclength continuation.
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original unconstrained nonlinear eigenproblem for the purpose of generating seg-
ments of nontrivial solution branches bifurcating from a trivial solution branch
whose endpoints serve to initialize “jumps” to corresponding solution branches of
the original eigenproblem. To increase the overall efficiency of the method, the ar-
clength continuation process can be optimized via automatic updating of the ar-
clength stepsize∆s and tangent renormalization, based on second-order informa-
tion in S(·, ·) and the conditioning of the Davidenko system (cf. [11], pp. 88-89),
and/or adjusting/continuing in the perturbation parameter δ so that the jump to the
unperturbed branch can be done after a lesser number of continuation steps.

Finally, we have demonstrated that an error-oriented, or affine covariant, im-
plementation of Newton’s method, undamped or damped, applied directly to the
original constrained nonlinear eigenproblem is extremelyeffective and efficient for
finding the first two eigenmodes, but without further modification fails, for example,
to find the 3rd eigenmode. We showed that the key ingredient in the successful cases
is proper initialization.
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