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Abstract — In this second part of our two-part article, we present aisdwss the corresponding
numerical results from implementations of the numericgbethms described in the first part. With
these results, we observed that

e operator splitting applied to the associated time-deper®blem is suitable for solving only
the first eigenproblem,

e among those tried, the perturbation and arclength cortiouapproach was the sole effective
and robust approach for solving higher eigenproblems,

e on the eigenproblems for which (undamped or damped) Newtoethod converged, it was
without question the most efficient.

Keywords: numerical method, Lane, Emden, semilinear, elliptic, epyeblem, operator splitting,
finite element, arclength continuation, least-squarestrob Newton’s method

1. INTRODUCTION

In this second part of our two-part article, we present talte of implementing the
numerical algorithms detailed in the first part. For simpliove take the computa-
tional domainQ to be a right triangle whose sides have the ratios 3:4:5 (afige
triangle”), anticipating that with such a symmetry-breakichoice, all computed
eigenpairs will be simple (although we do not attempt to prihis). Figure 1 shows
this domain along with the finest (uniform) triangulatioredsn computations.

Starting with the principal eigenproblem, §2 we present numerical results
from the operator splitting method applied to the time-aelemt problem discussed
in Part (1), §2. Next, in§3, we present the numerical results from the perturbation
and arclength continuation methods discussed in Par¢3I}l,. Finally, in§4, we
present some numerical results from the application of Netstmethod discussed
in Part (1),§3.2.

* Department of Mathematics, University of Houston, 480th@ah Rd, Houston, TX 77204-3008.
This work was supported by NSF grant DMS 0412267.
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Computational domain Q and triangulation, hl=1/128 s h2=3/4*h1
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Figure1l. DomainQ with finest triangulation.
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2. THE PRINCIPAL EIGENPROBLEM

Figure 2 shows the solutions of the initializing linear pipal eigenproblem (2.21)-
(2.23) (top) and the nonlinear principal eigenproblem }c(113) (bottom). Figure 3
shows the convergence results with an initial guesguBfAl}} = {ws,0} (top) and

the evolution of thd—l&(Q) norms of the minimizing sequence elements generated
by the computational scheme (bottom). We can see that thetied in norm oc-
curs mostly before about the 70th iteration. Finally, Fegdrshows graphs of the

a posteriorinecessary upper bounds orromputed using conditions (2.30) (solid)
and (2.32) (dashed), plotted as functions of the time stéyiotice that the former
condition is always more restrictive. Attempts to use evestightly largert than

the smallest necessary condition value resulted in failure

3. HIGHER EIGENPROBLEMS

3.1. Arclength continuation results

3.1.1. Validation problems. For validation purposes, we include some computa-
tional results for two problems that have been studied ptsly. The first is the
extensively studie@ratu problemarising in the modelling of exothemic chemical
reactions and combustion phenomena. It is well known thafatoblem has an in-
teresting solution set that can be readily approximatedcangputed via arclength
continuation ¢f. [10] and [8]). The statement of this problem is:

—Au=2A€e" inQ, (3.1)
u=20 onl, (3.2)

whereA is the so-calledArrhenius parameteiWe formulated the arclength contin-
uation method for this problem on the “Fermat triangle” domend implemented
the discretized version to obtain the following numerieduits. The branch of so-
lutions continued forA > 0 and initialized with(up,Ag) = (0,0) and {Up, Ao} =

-0 1
ot ke

satisfying the corresponding initializing Davidenko etipias

<(lﬁ) ;01></1\1>:<(1)> (3.3)

where—Al = 1, is exhibited in the top graphic of Figure 5 while the bottgraphic
shows the conjugate gradient convergence history alongrémeh. The top graphic
of Figure 6 shows the approximdiait (akaleft turningor folding) point solution
occurring at(A,, ||u.||) = (23.0866 3.2824), while the bottom graphic of the same
figure shows the final continued solution computed along tipeportion of the
solution branch.

Remark 3.1. In numerical testing, we found that the efficiency of the cgajte
gradient solver used for the correction step in the arclengnhtinuation algorithm
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Figure2. Principal linear eigenpaifwy, 113 } solving problem (2.21)-(2.23) (top) and
nonlinear eigenpaifus, A1} solving problem (1.1)-(1.3) (bottom).
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. Convergence history of u™-u"
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Figure 3. Convergence results with an initial guess{af,A}} = {w;,0} (top) and
evolution of theH&(Q) norm of the minimizing sequence elements (bottom).
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Continued solution branch for -Au=Ae"inQ,u=0onT,
As=0.1,n=531, limit point at (A,,||u,||,n,) = (23.0866,3.2824,236) , hl:1/128 , h2:3/4’*h1
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Figure 5. Continued solution branch (top) and conjugate gradienvexgence be-
havior (bottom) for the Bratu problem (3.1)-(3.2).
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-Au=Ae"inQ, M= OonTl , A =23.0866 (approx. limit point) ,
|D u| dx =10.7743 , )\j e'u dx = 10. 7758 As=01,n=236, h =1/128, h 3/4*h
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Figure 6. Continued approximate limit point (top) and final unstatiietfom) solu-
tions of Bratu problem (3.1)-(3.2).



Numerical methods for a Lane-Emden type eigenproblem 9

was very sensitive to the precision with which the lineskeanoblems were solved
for the descent parameters. For example, for the Bratuataia problem we found
that using a 10° rather than a 10 convergence threshold for the linesearch prob-
lems resulted in amrder of magnitude increasdrom 7 to 70, in the number of
CG iterations required to resolve the approximate turnimigtpalong the continued
solution branch. Since we employ a Newton solver for theskxaech problems, the
computational cost of requiring more precision in thesedaarches was negligible
compared with that incurred in the conjugate gradient il@neby not doing so. &

The second problem is a model problem that can be found ingbesuguide
for the NETLIB software packagBLTMG (cf. [5]). The statement of this model
problem is

—Au=Asinu inQ, (3.4)
u=20 onl, (3.5)

It is evident that{{0,A }}, A € R, is a trivial branch of solutions and that, from the
Davidenko equations

<_(So_)}\ /\Oo></1\1>:<(1)> (3.6)

evaluated along this trivial branch, there are nontrivianzhes of solutions bifur-
cating at each eigenvalie= u,, n=1,2,..., of the linear eigenproblem (2.21)-
(2.22). Formulating the arclength continuation methodlig problem on our “Fer-

mat triangle” domain and implementing the discretized ieexsthe branches of so-

lutions initialized with {Uo, Ao} = {0, ttn} and {Uo, Ao} = {)\own, ﬁ} where

{Wn, i} is the " eigenpair solving the normalized linear eigenproblem 1R.2
(2.23), are exhibited in the top graphics of Figure 7 o= 1 (top) respectively

n = 2 (bottom), while Figures 8 and 9 show the respective comgugeadient con-

vergence histories and final continued solutions alongetisasne two branches of
solutions.

3.1.2. Main problem. Despite the relative ease with which we were able to pro-
duce results for the validation problems discussed in theipus section, our initial
experiences with the pseudo-arclength continuation ceatipnal framework ap-
plied to the perturbed formulation (3.18) of our main probleere rather puzzling.
Since we already found a solution of th& 2unperturbed) nonlinear eigenproblem
using other methods, it was natural and desirable (as apémdient verification of
these earlier results) to first attempt to find the nontrig@lution branch for the
2"d perturbed nonlinear eigenproblem with the ultimate gotik(asufficient con-
tinuation) of “jumping” to the corresponding unperturbeaghich. Initial efforts to
continue this nontrivial solution branch met with failure.

To explain this failure, we refer to Figure 10. Each begignimanch segment
shown in this figure was initialized with the trivial branchipt {up, Ao} = {0, £2},
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Continued solution branch for —-Au=Asin(u)inQ,u=0onT,
(A llull) = (67.1713, 0), (A _,[Ju ) = (1340.5399 , 18.5629) ,

initial A's = 0/001 , final As'=1.024 , n = 5745, h1:1/12§3  h,=3/a%h,
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Figure7. Continued solution branches fBL TMGproblem (3.4)-(3.5) resulting from
15t (top) and 29 (bottom) linear eigenpair initialization.
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Polak-Ribiere CG convergence behavior during continuation. Convergence criterion: .]n+1(un'm,)\”‘m) <=1e-07
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Figure 8. Conjugate gradient convergence behaviorRBbil MG problem (3.4)-(3.5)
resulting from %t (top) and 29 (bottom) linear eigenpair initialization.
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—Au=Asin(u)inQ,u=0o0nT,A=1340.5399,
IQ|D u|2 dx = 344.5796 , )\IQsin(u)u dx = 344.578 ,n = 5745, h1:1/128 , h2:3/4*h1
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where i, is the 29 eigenvalue solving the linear eigenproblem (2.21)-(2 @)

simplicity we fixed the perturbation parametee= 1). Three choices for the initial
tangent were used in turn. Because the nontrivial nonliseartion branches for
all eigenmodes are symmetric about the trivial branch, aat éind theoretically-

consistent choice for the initial tangent vv@'az,,}\o} = {\‘/%,0}. This choice pro-
duced the dashed curve shown in Figure 10. The computedasolitanch is re-
turning to the trivial solution branch! Initially thinkinthat this unfortunate devel-
opment had something to do with the fact that we were irdtiiadj with Ag = 0, we
next derived a first-order approximation @s) of the solution along the nontrivial

branch, which turned out to be given by}, A9} ~ {M"zvﬁ, L %}As We used

this approximation in the correction step and for the firgten tangent approxima-
tion (3.11) at the corrected solution branch point. The ltegucomputed solution
branch essentially retraced the one resulting from our frsgent choice (dotted
curve overlaying the dashed curve in Figure 10). The thitihirtangent was cho-
sen using (3.24) with = 2, takingAg = —ﬁ which in turn givesc, = +Ao. This
choice produced the dashed-dotted curve shown in Figuraddln, the computed
solution branch eventually starts returning to the trigiallution branch.

The remedy for this undesirable behavior turned out to beehermalization
of the tangent paifu;, A1} (via solution of the Davidenko equations (3.28)) when,
after enough updates using the tangent approximation)(&aXklmple monitor, test-
ing whether or not the computed arclength fell within a smalghborhood of unity,
was violated. The manifestation of this continuation with tangent approximation
followed by tangent renormalization is shown in the solidveuof Figure 10. This
computed solution branch was initialized as with the daghuede (so they initially
overlay), but at some point the tangent renormalizatioieica was satisfied and the
renormalization performed, giving the subsequent abrisghge in the direction of
the solution branch seen in the figure. Subsequent renaatialis were required
as well, although the directional corrections were sulistiy less dramatic than
the first. This renormalization was enough to admit the Withg of the nontrivial
solution branch instead of returning to the trivial branch.

After resolving the mystery of the computed nontrivial s@n branch returning
to the trivial branch, we successfully continued nonttigalution branches for the
perturbed § = 1) eigenproblem (3.18) as well as the “jump” to the corresiimnm
unperturbed § = 0) solution branches for seven eigenproblems correspgrtdin
the eigenpairgun, An},n € {1,2,3,4,5,10,20}. These results are displayed in seven
figures, each corresponding to one of the selected eigelepneb For brevity, we
only explain the results for one eigenproblem, the explandfor the remaining
eigenproblems being similar.

Since none of the other methods attempted were successinditg the 3
eigenpair, we focus our discussion on these results shovigures 17-19. The
top graphic of Figure 17 shows the continued bragthy,|usi|)n}, Nn=0,1,..., of
perturbed solutions as well as the “jump” to the correspogdinperturbed branch
for the 39 semilinear eigenproblem. The bottom graphic shows thesspanding
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Beginning nontrivial solution branch segments for perturbed (3=1) 2nd eigenproblem

without (dashed, dotted, and dashed-dotted) and with (solid) tangent renormalization. Initial point (uO,AO):(O,UZ).
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3 attempt, initial tangent ((~1/(1+{1,)> *w,|Iw, |~ 1/(1+11,)°%) !
|
_gh attempt, same initial tangent as 15 attempt, tangent renormalized
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Figure 10. Beginning solution branch segments fé¥ perturbed nonlinear eigen-
problem resulting from three different initializationsthout (— —,---, and — — )
and one with (—) tangent renormalization.
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conjugate gradient convergence history, i.e., the numb@Giterations required
for convergence to a solution on the branch at each step afahignuation. Note
that we omit these CG convergence history results for theadd 8" eigenpairs
since the number of CG iterations in each case oscillateddsgt one and two for
all continuation steps, resulting in rather uninterestingphs.

Since the initializing trivial solution along the solutidsranch of the '8 per-
turbed eigenproblem is rather uninteresting, we show fanparison purposes the
linear eigenpaifws, u3} solving (2.21)-(2.23) in the top graphic of Figure 18. We
then show, in the bottom graphic of this same figure, the lastisn obtained via
continuation along the perturbed & 1) solution branch, starting from the bifur-
cation point{0, us}, whereps is the 3¢ linear eigenvalue solving the linear eigen-
problem (2.21)-(2.22). The top graphic of Figure 19 showesuhconstrained eigen-
pair {us, A3} obtained by “jumping” from this last perturbed solution keetunper-
turbed © = 0) solution branch. The bottom graphic of this figure showes uhit
L*(Q) norm constrained eigenpafus, A3} solving the original constrained semi-
linear eigenproblem (1.1)-(1.3).

Finally, Figure 31 superimposes the continued perturjadyp”, and continued
unperturbed branches for all eigenmodes investigated avilength continuation.
This shows the relative orientation of the solution brasclog all eigenmodes re-
vealed in this study. Additionally, thex”s mark the unitL#(Q) norm constrained
solution points along the unperturbed branches.

It is important to note that, compared with other solutiontmds, the pertur-
bation and arclength continuation approach proved to bentb& computationally
reliable, predictable, and effective in capturing eigeda®of the model problem,
particularly the higher ones. In fact, at the expense of sgloleal efficiency (lo-
cally, at each continuation step, it is extremely efficigittvas the only method we
tried that was able to capture eigenmodes beyondtheri.
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and continued ? eigenpair{u,, >} solving the perturbedX= 1) semilinear eigen-

problem (3.18)-(3.19) (bottom).
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Figure18. 3" eigenpair{ws, u3} solving the linear eigenproblem (2.21)-(2.23) (top)
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problem (3.18)-(3.19) (bottom).
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Figure21. 4™ eigenpair{wy, 14} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued % eigenpair{us, A4} solving the perturbedX= 1) semilinear eigen-
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Figure22. Continued &' eigenpair{us, A4} solving the unperturbed(= 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalizEdeigenpair{us, A4} solving
the original constrained semilinear eigenproblem (1113) (bottom).
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Figure23. 5 eigenpair{ws, us} solving the linear eigenproblem (2.21)-(2.23) (top)
and continued8 eigenpair{us, As} solving the perturbedX= 1) semilinear eigen-
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Figure24. Continued & eigenpair{us, As} solving the unperturbed(= 0) semilin-
ear eigenproblem (3.18)-(3.19) (top) and normalizEceenpair{us,As} solving
the original constrained semilinear eigenproblem (1113)((bottom).
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Figure 26. 10" eigenpair{wio, ti10} solving the linear eigenproblem (2.21)-(2.23)
(top) and continued f0eigenpair{up, A1} solving the perturbedX = 1) semilin-
ear eigenproblem (3.18)-(3.19) (bottom).
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Figure27. Continued 18 eigenpair{u;o,A10} solving the unperturbed(= 0) semi-
linear eigenproblem (3.18)-(3.19) (top) and normalized &lyenpair{uo, A10}
solving the original constrained semilinear eigenprob(érm)-(1.3) (bottom).
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To complete the analysis and discussion of the resultsradahusfar, we in-
clude Figures 32-34, each graphic of which highlights, veitimtrasting symbols,
the regions in the domaif2 within which the respective eigenfunctions have one
sign. The boundaries between these regions constituteiballednodal setsde-
fined as the closure of the sets of interior zero crossingseoéigenfunctions. The
geometry of these nodal sets witiihas well as their proximity t@Q for various
domain geometries continue to attract a fair amount of atter(cf. [2]). It is ev-
ident from the figures that, for the eigenfunctions comptuterkin, the nodal sets
that intersectQ do so orthogonally (within computational resolution).

4. NEWTON'SMETHOD RESULTS

Our experience with the implementation of the damped Newatgorithm discussed
in Part (1),53.2, as applied to problem (1.1)-(1.3), proved rather fegaig despite
being only partially successful. Specifically, we foundtthkhough we were able
to successfully solve for the first two nonlinear eigenpaiith breathtaking ef-
ficiency, we failed in our many attempts to solve for tHé Bonlinear eigenpair.
Even the successful outcomes in the cases of the first twopddrs were obtained
through nothing short of pure luck in “stumbling on” goodtiai guessegu®, A°}.
We were not so lucky in the case of thé Bigenpair. Indeed, it was our experience
that the performance of the method was extremely sensiitieet choice of initial
guess, even among the “natural” although relatively snelio$ choices provided
by the one-dimensional linear eigenmanifolds. Other tihanttivial solution man-
ifold, which is useless as a source of initial guesses, treali eigenmanifolds are
really the only “natural” sources of initial guesses thatdity present themselves
a priori in this case. If “good” initial guesses cannot be found gasithin these
sets, then without further modification (some suggestianswvhich can be found
in [7], Chap. 8), the method is of limited practical use fastparticular semilinear
problem.

To support this empirical assessment, we provide compuigtiresults for the
15t-3'd eigenproblems. We first applied the method to, and thus foausgiscussion
on, the 29 eigenproblem. After many unsuccessful tests of dampeddusirious
damping factors) and undamped Newton’s methods, takingitienpair{w., (>}
solving the unitL*(Q) norm constrained linear eigenproblem (2.21)-(2.23) as ini
tial guess (the most “natural” choice), we literally stusiblupon a “good” initial
guess by scaling the linear eigenfunction by a factor of W/#h this lucky scaling,
the method converged in 12 iterations without damping arid ®%terations with
damping (depending on the damping factor used)! Compartdtiaé overall con-
vergence rates of any of the other previously used methloidgsta truly remarkable
benefit of either method.

The costs of this remarkable performance come in the fornig affairly nar-
row window of choices for “good” initial guesses as well ae)reme sensitivity
of the behavior of the Newton sequence to the choice of irgti@ss. As we men-
tioned, we got lucky with the choice df0.5w,, L;} as our second initial guess,
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Figure 32. Signed regions of ® (top) and & (bottom) eigenfunctions solving the
original constrained semilinear eigenproblem (1.1)X18" marks regions where
u> 0 and “” marks regions whera < 0.
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which resulted in the spectacular convergence behavidrdtetl above for the cor-
responding damped and undamped Newton sequences. Hotheveensitivity of
the Newton sequence behavior to a simple scaling of therlieiggnfunction ini-
tial guess is extreme. Without damping, convergence oashen the scale factor
falls within a rather small neighborhood of 0.5, e.g., ors gontaining the interval
[0.4875,0.50625]. With damping, this neighborhood is deveed to one just con-
taining [0.39375,0.525]. Furthermore, the delineationthefse intervals of “good”
scale factors was only possible because of our good fortugedssing the value 0.5
within the intervals to begin with as opposed to a systenmtagorithmic search.
Without a “good” initial guess, the damped Newton methodséies without con-
verging (due to the ultimate failure of the monotonicityttegen with vanishingly
small damping factors) and the undamped Newton method gidiygrges. Unfor-
tunately, “good” initial guesses for th&3honlinear eigenproblem were very elusive
indeed (we did not find any).

Figures 35-37 show the results for thH& Rigenproblem. Figure 35 shows sev-
eral converging Newton sequendgs®|, A¥) (note thatA¥ is plotted on the horizon-
tal axis andu| on the vertical axis, marked by<”s), along with the corresponding
undamped (dotted line) and several damped (solid line)cxpate Newton path
segments connecting the iterates. A circle marks the solyoint (|u*|,A*). The
top graphic shows the entire sequences while the bottomhigrapows a zoomed
subset in a neighborhood of the solution point. The intdise®f the dotted and
solid segments marks the initial gue$s®|,A°). Note the dramatic difference be-
tween the undamped and damped approximate Newton pathslafgng has the
effect of changing both the magnitude and direction of trst éind subsequent New-
ton increments to improve convergence. In the undamped itasénteresting that
the first Newton step, taken from the initial guess withinlthear eigenmanifold, is
consistently to a point further away from the solution ppiram which subsequent
iterates then approach the solution point. This alreadgestg that the linear eigen-
manifold may be a problematic source of initial guesseswhat other “natural”
choices are there?

Figure 36 shows the damped Newton solutifui,A*} of the 2 semilin-
ear eigenproblem (1.1)-(1.3) (bottom) compared with th&ainguessiuo,)\o} =
{0.5ws, 112} (top), where{ws, 11, } is the 29 eigenpair solving the unlt*(Q) norm
constrained linear eigenproblem (2.21)-(2.23). The gmiuagrees with that ob-
tained using the arclength continuation method.

Figure 37 shows converging undamped (top) and various dar{ipattom)
Newton sequences resulting from various initial guessaergged by different scal-
ings aw;, of the 2" linear eigenfunctiom, together with the linear eigenvalye,
i.e., various points in the" linear eigenmanifold {aws, k> }|a € R}. With such
scalings, the initial guesses ha‘\ié(Q) norms scatter along the vertical line= L,
as can be clearly seen in the damped case and barely seerumddn@ped case. In
the damped case, solid Newton sequences converge whiggldwotes do not. In the
undamped case, only solid converging Newton sequencedatedo(plotting di-
verging ones spoil the axes scaling for the converging ot that we attempted
to find nearly extremal scalings admitting convergence so &olate windows of
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“good” initial guesses for both the damped and undampedadsthAs can be seen
in the graphics, and as discussed previously, the “gootiairjuess window in the
undamped case is extremely narrow indeed, with some signifigidening in the
damped case.

Anticipating that both the damped and undamped Newton ndstebould per-
form even better on theSnonlinear eigenproblem, we repeated our experiments
for this case and confirm our prediction with the results showFigures 38 and 39,
which correpond to Figures 36 and 37 for tH€ gigenproblem. Not only was the
solution of the % nonlinear eigenproblem found by both damped and undamped
Newton methods in fewer iterations than that of tH&, 2he windows of “good”
initial guesses within thesilinear eigenmanifold are significantly wider in both
cases.

Unfortunately, despite a fair amount of effort (even witle thenefit of know-
ing the desired outcome in advance), we failed to producergdd or undamped
Newton sequence converging to the solution of tffes@milinear eigenproblem,
as can be seen be examining the top graphic of Figure 41 spdwadamped
Newton sequences resulting from a large number of initigisgas in the'8 linear
eigenmanifold. These represent some of the effort made doafilamped Newton
sequence converging to the solution point (marked with @ejir Figure 40 shows
the stagnation point (bottom) and corresponding initiadsgu(top) for one of the
best results obtained (i.e. nearest to the solution pdddjnparing this stagnation
point with the actual solution at the bottom of Figure 41, we that it is not very
good.

In conclusion, based on the experience with the damped adanymed New-
ton’s methods in this case, it would appear that despitedtstanding performance
of these methods when “good” initial guesses are used, thisatigare not practical
if such initial guesses are difficult to find. This is somewtlisappointing, since the
purpose of employing a damped Newton method is to globatieeotdinary New-
ton method in the sense of removing any restrictions on thialiguess. Further
investigation as to why the globalization fails in this caselld provide valuable
insight into both the methods themselves as well as the muprblem to which
they are applied.

5. CONCLUSIONS

We have presented some numerical techniques for solvingtiayar semilinear
elliptic eigenproblem, each with its own strengths and weakes with respect to
algorithmic complexity, robustness for solving higheregigroblems, and compu-
tational efficiency.

Operator splitting applied to the associated time-depanpi®blem proved ef-
fective and fairly efficient for solving the principal L eigenproblem.

For higher eigenproblems, we have shown that, among theoaetised herein,
the most robust in terms of resolving the most eigenmodéwisd-called arclength
continuation method. We successfully applied this metluod perturbation of the
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Various Newton sequences converging to solution of -Au =A uin Q,u=0o0nT,A=454443, [ utdx =

i\éewton initial guess = (0.5*w,,1b,). For damped cases initial damping factors ¢° EI{l.0,0.S,O.l,0.0l 0. 001}
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Figure 35. Various undamped and damped Newton sequences converging &4

eigenpair{uy, A2} solving the original semilinear eigenproblem (1.1)-(Xe3ulting

from the initial guesg0.5w,, > } (top), where{w;, 1, } solves the linear eigenprob-

lem (2.21)-(2.23), along with a zoom of same in a neighbodhafdhe solution point

(bottom).
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Newton’s method initial guess (a w, pz), a=0.5,
where (Wz,uz) solves-Aw=pwinQ,w=0onT ,JQ whdx=1, M, = 131.1437, h1 1/128, h2
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Figure 36. Comparison of 2 eigenpair {u,,A,} solving the original semilinear
eigenproblem (1.1)-(1.3) (bottom) resulting from a Newidamethod initial guess
{0.5w, Lo} (top), where{w,, L} solves the linear eigenproblem (2.21)-(2.23).
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Undamped l\éewton sequences with various initial4guesses converging to 2nd eigenpair solving
-Au=Au’inQ,u=0o0nT.,A=454443 ,Iﬂu dx =1 Newton initial guess = (a wz,pz) ,
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Figure 37. Converging undamped (top) and various damped (bottom) diewe-
quences resulting from initial guessgswo, L2}, where{ws,, L} solves the linear
eigenproblem (2.21)-(2.23), for varioase [0.3,0.6).
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Newton’s method initial guess (™ W Hy ), 0=0.5,
)solves-Aw=pwinQ,w=0o0nTl, J' wh dx—1 Hy =67.1713, h 1/128 , h
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Figure 38. Comparison of I eigenpair {u;,A;} solving the original semilinear
eigenproblem (1.1)-(1.3) (bottom) resulting from a Nevidamethod initial guess
{0.5w1, 111} (top), where{w, 3 } solves the linear eigenproblem (2.21)-(2.23).
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Undamped lélewton sequences with various initial guesses converging to 1 eigenpair solving
-Au=Au’inQ,u=0o0nTl,A=23.0916 ,[Qu dx = 1. Newton initial guess = (@ wl,pl) s
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quences resulting from initial guessgsws, 1 }, where{w, (1 } solves the linear
eigenproblem (2.21)-(2.23), for varioase [0.25,1.0].
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Newton's method initial guess (o w. “3)' 0=0.5235,
where (W3,|.13) solves-Aw=pwinQ,w=0onTl ,JQ w dx=1, My = 177.6291 , h1:1/128 s h2:3/4*h1
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solving the & semilinear eigenproblem (1.1)-(1.3) (bottom) resultirayd the ini-
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Damped Newton sequences with various initial guesses approximating 3d eigenpair solving A u = A winQ,u=0onT.
Newton initial guess = (a w3,u3) , where various alJ [0.35,0.6]
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guesseg aws, Lz}, where{ws, Uz} solves the linear eigenproblem (2.21)-(2.23),
for various a € [0.35,0.6]. Desired &' eigenpair solving the original semilinear
eigenproblem (1.1)-(1.3) as obtained from arclength ocoatiion.
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original unconstrained nonlinear eigenproblem for theppee of generating seg-
ments of nontrivial solution branches bifurcating from &iél solution branch
whose endpoints serve to initialize “jumps” to correspogdsolution branches of
the original eigenproblem. To increase the overall efficjeof the method, the ar-
clength continuation process can be optimized via autemaidating of the ar-
clength stepsizé\s and tangent renormalization, based on second-order iaform
tion in §(-,-) and the conditioning of the Davidenko systeaf. (11], pp. 88-89),
and/or adjusting/continuing in the perturbation paramétso that the jump to the
unperturbed branch can be done after a lesser number ohaahtin steps.

Finally, we have demonstrated that an error-oriented, fimeatovariant, im-
plementation of Newton's method, undamped or damped, egplirectly to the
original constrained nonlinear eigenproblem is extrenadflgctive and efficient for
finding the first two eigenmodes, but without further modiiiza fails, for example,
to find the 3 eigenmode. We showed that the key ingredient in the suadessfes
is proper initialization.
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