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Signal peptide peptidase (SPP) is an unusual aspartyl protease, which mediates clearance of 

signal peptides by proteolysis within the endoplasmic reticulum (ER).  Like presenilins, 

which provide the proteolytically active subunit of the γ-secretase complex, SPP contains a 

conserved GxGD motif in its C-terminal domain which is critical for its activity.  While SPP 

is known to be an aspartyl protease of the GxGD type, several presenilin homologues / SPP-

like proteins (PSHs/SPPL) of unknown function have been identified by database searches. 

In contrast to SPP and SPPL3, which are both restricted to the endoplasmic reticulum, 

SPPL2b is targeted through the secretory pathway to endosomes /lysosomes.  As suggested 

by the differential subcellular localization of SPPL2b and SPPL3 distinct phenotypes were 

found upon antisense gripNA mediated knockdown in zebrafish.  spp and sppl3 knock 

downs in zebrafish result in cell death within the central nervous system, whereas reduction 

of sppl2b expression causes erythrocyte accumulation in an enlarged caudal vein.  

Moreover, expression of D/A mutants of the putative C-terminal active sites of spp, sppl2, 

and sppl3 produced phenocopies of the respective knockdown phenotypes. These data 

suggest that all investigated PSHs/SPPLs are members of the novel family of GxGD 

aspartyl proteases.  More recently it was shown that SPPL2b utilizes multiple 

intramembrane cleavages to liberate the TNFα intracellular domain into the cytosol and to 

release the C-terminal counterpart into the lumen. These findings suggest common 

principles of intramembrane proteolysis by GxGD type aspartyl proteases.  In this article, 

we will review the similarities of SPPs and γ-secretase based on recent findings by us and 

others. 
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INTRODUCTION 

Intramembrane proteolysis is mediated by a class of novel polytopic proteases, which have their 

active centers located within the hydrophobic transmembrane domains [1,2].   Members of these 

proteases include the site-two-protease (S2P) [1], rhomboids [3,4], γ-secretase [5], and signal 

peptide peptidase (SPP) [6,7].  While S2P and rhomboids belong to the class of metallo- and 

serine proteases respectively, γ-secretase and SPP are aspartyl proteases [2,8,9].  

The catalytic core of γ-secretase is provided by either of the two homologous presenilins (PS1 or 

PS2).  Co-factors including APH-1, PEN-2, and Nicastrin are absolutely required to generate a 

functional γ-secretase complex [10-14].  PS1 or PS2 containing γ-secretase complexes can both 

mediate the intramembrane cleavage of the ß-Amyloid precursor protein (APP), Notch and 

probably many other type-I oriented substrates as well [8,15-18] suggesting functional 

redundancy.  The C-terminal critical aspartate of PSs is located within a conserved GxGD motif 

[19], whereas the N-terminal aspartate is embedded within a YD sequence segment.  The GxGD 

signature motif is highly conserved in SPP, an unrelated polytopic aspartyl protease [2,7,20,21] 

as well as in the type-four prepilin peptidases (TFPP) [19,22]. Moreover, mutagenesis of the 

corresponding aspartate residue completely blocks proteolytic activity of SPP [7], PS1 [5], PS2 

[15,23], and TFPP [22].  

The facts that active site inhibitors of γ-secretase can be cross-linked to presenilins [24,25] and 

bind to presenilins in dependence of the critical aspartate [26], suggest that the aspartate within 

the GxGD motif comprises the C-terminal active site of these proteases.  Besides this highly 

conserved active site, further similarities are observed between PSs, SPP, and TFPPs, which for 

example include a PxL motif within the C-terminal domain.   

SPP is required for the removal of signal peptides after their liberation by signal peptidase during 

translocation of proteins into the endoplasmic reticulum [2].  In addition, SPP is also involved in 
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immune surveillance and processing of the Hepatitis viral core protein [7] suggesting a more 

general role of SPP in the liberation of bioactive peptides [2,7,20,21].  Besides SPP a family of 

homologous proteins was identified by database searches [2,7,20,27,28].  These proteins were 

named SPPL (SPP-like) 2(a,b,c), and 3 (in yeast an additional SPPL, SPPL4, exists) [7], PSHs 1-

5 [27] or IMPASes [28]. For clarity, we will use the term SPPL throughout this manuscript.  

Although SPPLs share some homology with SPP, it is not known if they exhibit any proteolytic 

activity [21].  Here we will briefly summarize the recent findings on the cellular function of SPP 

family members and then compare these data to the well defined γ-secretase biology. 

 

All SPPs are members of the GxGD family of aspartyl proteases 

The catalytically critical aspartate residue of SPP, TFPPs, and PS1 and PS2 [2,9,19,22] is 

embedded within a GxGD motif, which is also fully conserved in all SPPLs.  Together with the 

aspartate of the equally critical N-terminal YD motif [5,29], these are the only aspartate residues, 

which are fully conserved throughout the SPPs, SPPLs, PSs, and TFPPs. Moreover, Weihofen et 

al. mutagenized the conserved aspartate residue 265 within the GxGD motif of SPP and found 

that SPP D265A lost its proteolytic activity [7].  As shown for PS1, a transition state inhibitor, 

known to block γ-secretase activity via binding to its active site also blocks SPP function [30].  

This fits well with the mutagenesis of the corresponding aspartate residues within the GxGD 

motif of PS1, PS2 [5,15,23] and TFPP [22], which all lost their entire proteolytic activity upon 

mutagenesis of the aspartate.  Thus the corresponding aspartate residues within the GxGD motif 

of SPPLs may likely be responsible for their catalytic function as putative aspartyl proteases.  To 

investigate the functional significance of the corresponding aspartate in SPPLs in vivo and to 

provide evidence that SPPLs are aspartyl proteases, this amino acid was mutated in SPP and its 

homologues to alanine and the resultant phenotype was compared to that of corresponding 
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knockdowns in zebrafish [31]. spp and sppl3 knock downs in zebrafish result in cell death within 

the central nervous system, whereas reduction of sppl2b expression causes erythrocyte 

accumulation in an enlarged caudal vein.  Strikingly, expression of D/A mutations of the putative 

C-terminal active sites of spp, sppl2, and sppl3 produced phenocopies of the respective 

knockdown phenotypes.  This strongly suggests a functional role of the GxGD domain in SPPLs, 

and makes it very likely that SPPLs also belong to the family of GxGD aspartyl proteases. 

 

Finding substrates for the SPPL-Protease family 

To finally prove that SPPLs are indeed proteases, it is essential to find substrates being turned 

over by the proteases. For SPP it has been suggested that only type-2 oriented transmembrane 

proteins may be accepted as substrates [7,32,33]. Furthermore Martoglio and coworkers 

postulated, that the critical aspartates of the  active site in SPP/SPPLs are oriented in the opposite 

direction to those of PSs in the γ-secretase complex [2,7], which only cleave type-1 

transmembrane proteins [10].  Consequently a type-2 transmembrane protein located to late 

endosomale compartments could be a good candidate substrate for SPPL2a and SPPL2b. And 

indeed the type-2 transmembrane protein TNFα was identified as a substrate for SPPL2a and 

SPPL2b [34,35]. To elucidate whether GxGD proteases in general use a common mechanism to 

cleave their substrates within the hydrophobic transmembrane domains, Fluhrer et al. closer 

investigated the cleavage of TNFα by SPPL2b, using mass spec analysis and radiosequencing. 

Two cleavage products were identified. An intracellular peptide (TNFα ICD) in the cell lysate 

and a secreted peptide (TNFα C-domain) (Fig. 1) in the cell culture medium were detected [34].  

Strikingly the two cleavage products were not the result of a single cleavage, but were rather 

separated by a few amino acids, consequently suggesting a dual or even multiple cleavage event 

used by SPPL2b to release the transmembrane domain of TNFα.  Interestingly, the TNFα ICD, 
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generated by SPPL2b, is involved in the transcriptional regulation of IL-12 [35].  Thus SPPL2b is 

not only a novel intramembrane protease of the GxGD-type, but is also critically required for a so 

far unknown signaling pathway. 

 

γ-secretase versus SPPLs: Relatives with similarities and differences  

The SPPLs have been identified as an additional family member of the GxGD proteases. As for 

the PSs mutation of the critical aspartate within the GxGD motive of SPPLs leads to a complete 

loss of proteolytic activity [31,34]. SPP/SPPL activity is massively increased upon 

overexpression of a single cDNA, suggesting that these proteases are active as  monomers or 

homodimers [30], which do not require additional binding proteins for their activity. Sole 

overexpression of PSs on the other hand does not cause an increased proteolytic activity of  γ-

secretase, because γ-secretase requires complex formation of  PS, Aph-1, Nct, and Pen-2 to be 

active [11]. 

Although both protease families show fundamental differences with respect to complex 

formation and primary structure, they exhibit surprising similarity in the cleavage pattern of their 

substrates. SPPL2b, like γ-secretase, performs multiple intramembrane cleavages separated by a 

number of amino acids.  In analogy to γ-secretase cleavage products, the cleavage of TNFα by  

SPPL2b leads to an intracellular domain (TNFα ICD) and to secreted peptide (TNFα C-domain) 

(Fig. 1).  These fragments correspond to the APP intracellular domain (ICD) and Amyloid ß-

peptide respectively (Fig. 2). Theses findings may suggest a common cleavage mechanism for 

intramembrane proteolysis of GxGD type aspartyl proteases. 

PS1 only cleaves type I transmembrane proteins while SPPL2b seems to cleave exclusively type 

II oriented transmembrane proteins.   Accordingly, the membrane topology of SPPL2b 

compared to PS1 is reversed.  It is therefore tempting to speculate that the cleavage pattern of 
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SPPL2b may include a γ- cleavage (after amino acid 34 and 39) and an ε-like cut [36] (after 

amino acid 49) as well as a ζ-like cleavage [37] (after amino acid 51) at the luminal side of the 

membrane.  Moreover intramembrane proteolysis of TNFα by SPPL2 generates a cytoplasmic 

cleavage product, which is required for cellular signaling [35].  A similar cellular signaling 

function is well established for the cleavage of Notch by γ-secretase [38].  

The question arises of how one protease activity can cut its substrate at several sites.  Like 

presenilin [39], the catalytically active component of the γ-secretase complex, SPP and all 

SPPLs appear to occur as homodimers [30,31].  Moreover, at least for SPP, it has been shown 

that dimerization facilitates the binding of an active-site directed photoaffinity labeled γ-

secretase inhibitor, suggesting that dimerization is required to form the fully active catalytic site 

of SPP [30].  

If SPP or SPPL3 process their substrates by a similar mechanism in vivo remains to be 

demonstrated.  However, recent in vitro experiments using an artificial substrate suggest that 

SPP may cleave at predominantly one side within the membrane, although additional cleavages 

could not be excluded [29].   

Taken together, the remarkable similarities of SPPL2b and γ-secretase regarding their cleavage 

mechanisms together with their role in signaling and gene regulation suggest a common concept 

of intramembrane proteolysis.  It is now important find out why γ-secretase requires additional 

co-factors for its biological function, while all SPP family members apparently do not require 

such proteins. 
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Figure legends: 

Fig.: 1 
Schematic representation of the TNFα processing by SPPL2b  
 
Fig.: 2 
APP processing by γ-secretase 
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