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Abstract

The vehicle response of construction machines
strongly depends on the tuning of the control system
in interaction with the drive system. A compromise
between performance and comfort needs to be found
to fulfill the operators requirements on a high usability
of the machine. In order to achieve an optimal behav-
ior Hardware-in-the-Loop simulation techniques offer
a suitable approach to determine the overall behavior
in advance. Prerequisition is a realtime capable simu-
lation model of the considered system. Therefore, in
this paper the mathematical model of the system is au-
tomatically adapted by symbolic model reduction al-
gorithms in order to match real-time requirements on
a given hardware. Inputs to the automatic reduction al-
gorithm are the complex mathematical system model,
the desired realtime cycle and the number of floating
operations per second (flops), which can be realized
by the chosen target hardware. The outputs of the al-
gorithm are the automatically reduced model, which
is guaranteed to run in realtime on the target hard-
ware and the maximal model error for the test scenario.
In this paper, the reduction procedure is demonstrated
for the complex hydromechanical model of a so-called
skid steer loader. Summarizing, the proposed proce-
dure of symbolic model reduction helps to reduce the
developing phase of mechatronic prototypes dramati-
cally as the adaptation of the system model with re-
spect to the target hardware is completely automated.
Keywords: symbolic model reduction, realtime, con-
struction maschines, object oriented modelling

1 Introduction

Nowadays many complex systems are modeled in ob-
ject oriented simulation tools like for example Dy-
mola [4] or SimulationX, which base on Modelica
[5] and hence generate a symbolic representation of

the emerging DAE system. Having a symbolic rep-
resentation at hand, the equations can be manipu-
lated, simplified or even reduced. While algorithms
for simplification and index reduction are already im-
plemented in those simulation tools, not much atten-
tion has been paid to symbolic reduction techniques
[2, 13]. Though, they are a very powerful tool for au-
tomated generation of less complex models [9]. Sym-
bolic reduction techniques were first used in analog
circuit design [2] and based on the DC-analysis of non-
linear analog circuits. These techniques were extended
to the reduction of arbitrary DAE-systems in [12, 13].
Hence, symbolic reduction techniques can be used for
the modeling and design of mechatronic systems [10].
Examining a complex physical system like construc-
tion maschines in many cases only one model is not
sufficient. Often a very accurate model is required in
order to analyze certain physical effects, while at the
same time a model for realtime simulation is required.
Here symbolic reduction techniques come into play.
Up to now symbolic reduction techniques lower the
complexity (and therefore the level of detail) of the
model until a user defined error bound is reached. In
this contribution this approach is extended in order to
obtain models which are usable for realtime simulation
on a given realtime target in a given realtime cycle.
In section 2 symbolic reduction techniques are briefly
introduced and extended for realtime reduction. After
that the approach is applied to a construction machine
called skid steer loader. In section 3 the MathModelica
[6] model of the skid steer loader is presented, while
in section 4 the reduction results are given. The paper
closes with a conclusion and an outlook in section 5.

2 Symbolic Reduction Techniques

The basic idea of symbolic model reduction tech-
niques is to identify those terms of a DAE (or ODE)
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Figure 1: Scheme of the Reduction Algorithm

system, whose influence on the solution of the system
is minor, and to perform a reduction on them (e.g. to
neglect them). The algorithm consists of two steps,
see for example [10] and [13]. First a specific reduc-
tion technique is chosen. Afterwards the relevance of
each term for the solution of the DAE-System is esti-
mated in the so called “ranking”. Then the terms are
sorted in increasing order with respect to their influ-
ence on the solution in order to perform the reductions
as long as the solution of the reduced DAE-System re-
mains within a user-defined error boundε [13]. This
basic idea is extended in section 2.4 in order to obtain
reduced models, which can be simulated in realtime on
a given realtime target. Possible reduction techniques
are neglecting terms, setting terms to constants, lin-
earization of terms or symmetry considerations. While
the first three reductions are operations on terms of the
DAE-System, the last one operates on variables and is
explained later on. A scheme of the symbolic reduc-
tion algorithm is shown in Fig.1 for a chosen reduc-
tion technique. Given a scenario (system inputs,initial
states and parameters) and an error bound, the algo-
rithm starts with the ranking. Afterwards it is checked
whether the reductions lead to an error inside the error
bounds, beginning with the smallest. Finally, a less
detailed model, performing within the prescribed error
bounds results.
Let now

F : Ω× I 7→R
m (1)

be differentiable, whereΩ ⊂ R
n×R

n is an open set.
Then

F(x, ẋ, t) = 0 (2)

is called DAE-system if∂F
∂ ẋ is singular. Furthermore,

let F be given in expanded form

Fi(x, ẋ, t) =
l1i

∑
k=1

t1
ki
(x, ẋ, t), 1≤ i ≤ m, (3)

wherel1
i is the number of terms inFi andt1

ki
denotes

thek-th term inFi . Each term in the first levelt1
ki

may
consist of a functionf 1

ki
, whose argument is a sum of

l2
ki

second level subtermst2
ki

(1≤ i ≤ l2
ki
)

t1
ki
(x, ẋ, t) = f 1

ki
(

l2ki

∑
k=1

t2
ki
(x, ẋ, t)), (4)

and so on. Here level indicates the hierarchy of argu-
ments nested into each other in each single summand.
Then the setT i is the set of all terms in thei-th level.
The manipulation of a term is called reduction in the
following. Consequently, for the set of all reductions
K i for one reduction technique in a leveli, it holds

∣∣T i
∣∣ =

∣∣K i
∣∣ . (5)

For κ ∈ K

Fκ = 0 (6)

is the DAE-system emerging from the reductionκ.
Then for DAE-systems of the form of Eq. 2

F(x, ẋ, t,u) = 0 (7)

with system inputsu, a scenario is the set of a vector
field defined on the intervalI for the system inputs,
the initial values and the parameters. Furthermore,
N (F(x, ẋ, t),u) is the solution of Eq. 2 computed by
a numerical integratorN at nodest1, . . . , tN. The so-
lution

y =

[
yout

ȳ

]
= N (F(x, ẋ, t),u) (8)

consists of two components. Inyout the nout output
variables are contained, whilēy consists of the remain-
ing internal variables.
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2.1 Reduction Techniques

As already mentioned above possible reduction tech-
niques are the neglecting terms (Uneg), setting terms to
constants (Uconst), symmetry considerations (Usym) or
the simplification of piecewise functions. In this con-
tribution only Uneg is chosen. Certainly, the easiest
manipulation of a term is neglecting it. UsingUconst

for each term a constant has to be chosen. Usually
the mean value throughout the simulation is employed.
Clearly, this mean value has to be determined before.
At first sight, this looks like a drawback, but a refer-
ence simulation is essential for the ranking anyway as
will be seen in the next section. However, other val-
ues than the mean value are thinkable. ChoosingUsym

at first variables which have similar values through-
out the simulation are sought. Alternatively variables,
which are expected to be similar can be flagged. For
two similar variables every occurrence of the first vari-
able (or its derivative) is substituted by the second vari-
able (or its derivative). Consequently, now one equa-
tion can be canceled. A reasonable choice is that equa-
tion which leads to smallest error.

2.2 Ranking

In [12] different ranking algorithms are proposed. In
this contribution only the so called One-Step Rank-
ing will be discussed. In general a ranking procedure
estimates the influence of a reduction on the solution
of a DAE (or ODE) system. A reasonable measure
for the influence of a reduction is the error emerging
from the reduction. In order to get a good estimate
of that error a reference solutiony⋆ is required. The
crux of the matter is that the quality of the estimate
increases with the duration of the ranking procedure.
Hence, a ranking procedure should be a good compro-
mise between computation time and accuracy. Math-
ematically speaking a ranking procedureR maps two
DAE-systems on a real value, estimating the error be-
tween their solutions. Apparently, perfect accuracy
can be achieved by the use of simulations. Though,
this would lead to very high computation costs.

One-Step Ranking Typically, computing the solu-
tion of a DAE-system, at each time step a non-linear
system of equations is iteratively solved. Usually the
solution of the preceding time step is used as the ini-
tial value for the solution of the system of non-linear
equations at the next time-step. For the computation
of the solution of Eq.6, the reference solutiony⋆ at
the corresponding time steps can be used for the ini-

tial values. Now, additionally limiting the iterations to
one, a estimate of the solution of Eq.6ŷ is obtained.
Consequently

Rstep(F,κ) = ‖y⋆
out− ŷout‖ (9)

is computed. The one-step ranking usually delivers a
good compromise between accuracy and runtime.

2.3 Term Cancellation

In the term cancellation procedure the ranking is used,
to perform as many reductions as possible, while pre-
serving the desired accuracy. Hence, reductions are
performed as long as the error of the reduced model
remains within the error boundε. The error emerg-
ing from the reductions is measured only at thenout

output variables. Thus,ε has dimensionnout. To per-
form as many reductions as possible, it is beneficial to
start with those reductions, which lead to a small error.
Thus, first the set of reductionsK is sorted in ascend-
ing order depending on the ranking, resulting inKsort.
Now, one possibility is to check one reduction ofKsort

after the other. This is done by checking the computed
solution of the reduced DAE-system for staying within
the error boundε. However, this method can be accel-
erated by the use of clusters [11]. Using clusters, the
set of reductionsKsort is divided intos disjunct sub-
sets

Ksort =
s⋃

i=1

Si , (10)

where

S = [S1, . . . ,Ss]. (11)

Each clusterSi contains reductions leading to a simi-
lar estimated error (for example up to a factor of 10).
Now the clusters are checked one after another, be-
ginning with S1 containing the reductions leading to
the smallest estimated error. Thus, multiple reduc-
tions can be verified by one simulation. If a clusterSi

can not be verified (the reductions ofSi lead to errors
greater than the error boundε), Si is divided disjunct
into two clustersS 1

i andS 2
i . The term cancellation

procedure then continues withS k
i (1 ≤ k ≤ 2). The

whole reduction algorithm is shown in algorithm 1 for
a reduction techniqueU , a ranking procedureR, a
numerical integratorN and a certain levelk. Here for
a reductionκ ∈ K , κ−1 undoes the reduction.
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2.4 Symbolic Reduction for Realtime Pur-
poses

In this contribution the algorithm described above is
extended in order to obtain models, which can be
used for realtime simulation on a given realtime target
within a given realtime cycle. To simulate a model in
realtime it must be guaranteed that one integration step
can be computed within a realtime cycle, i.e., the worst
case run time for one integration step has to be smaller
than the realtime cycle. Hence, two quantities are im-
portant. First the maximal number of required floating
point operations (FLOPs) for one integration step and
second the number of FLOPs, which can be computed
on the realtime target in one second (FLOP/s). The
number of required FLOPs depends onF and the inte-
gration method used. Clearly, for realtime purposes a
fixed step solver has to be chosen. Then the maximal
number of required FLOPsσreq (using a BDF method)
can be expressed as

σreq = nBDF
iter (neval(σF +σJ +σdJ)+σLSE)+σevent.

(12)

Here, nBDF
iter denotes the maximal number of Newton

iterations during one integration step,neval denotes the
number of required function and jacobian evaluations
(depending on the order of the method),σF denotes the
required number of FLOPs for one evaluation ofF, σJ

denotes the required number FLOPs for one evaluation
of ∂F

∂x , σdJ denotes the required number FLOPs for one

evaluation of∂F
∂ ẋ andσLSE is the number of required

FLOPs for the solution of the emerging system of lin-
ear equations within every Newton iteration. Further-
more,σEvent denotes the maximal number of required
FLOPs for the event-handling (finding new consistent
initial values), which has to be considered since an es-
timate for the worst case runtime is demanded. One
common approach to calculate new consistent initial
values is the “event iteration” [7]. Having a DAE sys-
tem with nevent zero functions at hand, the maximal
number of required FLOPs forσevent then reads

σevent= 2nevent·nevent
iter · (σF +σJevent), (13)

wherenevent
iter denotes the maximal number of Newton

iterations during the event-handling andσJevent denotes
the number of required FLOPs for one evaluation of
the jacobian ofF with respect to the unknowns dur-
ing the event-handling. The required FLOPs for table
lookup are included inσF , σJ, σdJ andσevent. With
this knowledge the maximal number of FLOPs for one
integration step can be computed, while the number of

FLOP/s of the realtime target can be easily measured.
Since no longer an error bound, but an upper bound
for the number of FLOPs for one integration step is
given, the term cancellation procedure has to be mod-
ified. In the modified term cancellation procedure no
simulations are performed. After the ranking the re-
ductions are performed as long as the maximal num-
ber of required FLOPs is greater than the upper bound
for the FLOPs. Hence, this time no clustering is used,
since no verification-simulations are performed and
thus clustering would be quite inefficient. Clearly, here
a very accurate ranking procedure is demanded, other-
wise reductions with a small estimated error leading to
a high error could be performed. In this contribution
the one-step ranking is simply extended to a three-step
ranking, which means that three Newton iterations are
allowed. Moreover, the computed ranking value is di-
vided by the number of required FLOPs for one eval-
uation of the term under consideration. Thus, among
reductions with a similar ranking value, those which
need many FLOPs are favored.
As can be seen in Eq.12 the dimension ofF has big in-
fluence on the number of required FLOPs for one inte-
gration step, since the complexity for solving a system
of linear equations of dimensionk is of ordero(k3).
Hence, after each reduction it is checked whetherF
got decoupled. More precisely, it is checked whether
the DAE system may be written as

[
F1(x1, ẋ1, t)
F2(x2, ẋ2, t)

]
= 0, (14)

whereyout only depends onx1. In this caseF2 andx2

can be canceled out of the DAE system.

3 Modeling of the Skid-Steer Loader

The skid-steer loader (Figure 2) is a small high ma-
neuverable vehicle that is usually used in locations
where maneuverability and turning space are severely
restricted. The high degree of maneuverability is due
to their method of steering which is so-called skid
steering. They are typically four-wheel drive vehi-
cles with the left-side drive wheels independent of the
right-side drive wheels. By having each side indepen-
dent of the other, wheel speed and direction of rotation
of the wheels determine the direction the loader will
turn. The drive system on the skid-steer loaders has
no mechanical transmission. Instead it uses a combi-
nation of hydraulic pumps and motors, the hydrostatic
drive system, to drive the wheels as well as the work-
ing hydraulic mechanisms. It generally comprises a
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diesel engine having its output shaft coupled to a pair
of variable displacement pumps. The output of each
pump is connected to the respective hydraulic motor,
which operates independent chain transmissions and
drives on the vehicle. From the modeling point of

Figure 2: Skid-Steer Loader

view, the skid-steer loader comprises mainly the fol-
lowing parts: hydraulic control unit, diesel engine,
hydrostatic drive system, working hydraulic mecha-
nisms, tire-road contact and chassis. Due to simplicity
there are some limitations concerning the modeling:

• the dynamical effects are only considered in the
longitudinal direction.

• the working hydraulic mechanisms are simplified
as a rigid body.

Based on these two limitations, the chassis together
with the working hydraulics is modeled as a sliding
mass. All the other parts are introduced in the follow-
ing.

3.1 Hydrostatic Drive System

The hydrostatic drive system is constructed using a
variable displacement pump to drive a constant dis-
placement motor. In this closed circuit, a charge pump
is needed to replenish fluids lost and to provide a min-
imum pressure in the return line. A low-pressure re-
lief valve is used to control the discharged pressure.
There are two more relief valves to limit the pressure
in the high pressure line. Furthermore, a pair of check
valves are used to restrict the flow direction. In order to
model the hydrostatic drive system, a simplehydraulic
library was built in MathModelica. After modeling all
the necessary components, the hydrostatic drive sys-
tem can be easily obtained. Due to space limitations
details are neglected here.

0

M

nnidle nmax

maximum torque

drag torque

n∗

M∗
max

M∗
drag

Figure 3: Characteristic Curves of the Engine

3.2 Hydraulic Control Unit

The skid-steer loader is controlled by two joysticks
and one foot throttle. The left-hand joystick controls
the speed and direction, and the right-hand joystick
controls the loader arm. Furthermore, the input sig-
nal of the foot throttle can effect the transformation of
the input of the two joysticks. The signal itself is only
sampled by the trigger in the control unit. In the Math-
Modelica model the left-hand joystick is modeled as
two paralleled signal sources namely the driving and
steering signal. The right-hand joystick is not nec-
essary to model since the working hydraulic mecha-
nisms are considered as a rigid body. Hence the input
signals of the hydraulic control unit are driving and
steering signals as well as throttle. The output sig-
nals of the control unit control the swivel angles of hy-
draulic variable pumps in the hydrostatic drive system
and the sampled throttle signal to drive the diesel en-
gine. The transformation behavior of the control unit
can be described by three characteristic curves. Two
curves characterize the relations between swivel angle
and the steering and driving signal respectively. An-
other curve illustrates the effects of driving signals on
the steering signals. All these three curves are identi-
fied by measurement. In addition, there are some lim-
iters in the control unit to limit the output signals. For
example, an amplitude limiter is used to restrict the
swivel angle and a rate limiter is used to limit the driv-
ing maneuver.

3.3 Engine

The engine used in the skid-steer loader is a diesel
engine. It serves to drive the two hydrostatic drive
systems. The input of this diesel engine is the foot
throttle, which can be normalized in the interval[0,1].
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Since there are no different pedal levels, the foot throt-
tle is proportional to the rotational speed of the en-
gine. The idle rotational speed which is the speed
when the throttle is 0 is 1000rpm and the maximum ro-
tational speed which is the speed when the throttle is 1
is 3200rpm. The relationship between rotational speed
and the generated driving torque can be described by
two characteristic curves, namely, the maximum and
drag torque with respect to the rotational speed. Fig-
ure 3 shows the two characteristic curves. The driving
torqueM∗ when the rotational speed isn∗ is calculated
by

M∗(n∗) = M∗
max−M∗

drag (15)

The dynamical behavior of the engine is also approxi-
mated by a PT2 system. The speed control is realized
by a PID-controller.

3.4 Tire

For the reason of skid steering which causes the high
dynamical effects in the lateral direction, the normal
tire model of a skid-steer loader can be very complex.
As only the longitudinal dynamics is considered here,
a simplified one dimensional tire model is sufficient to
describe these effects. Figure 4 shows the free body

v

Fx

Fz

ω

rdyn

MaMr

n

Figure 4: Forces and Moments on the Tire

diagram. All the necessary velocities, forces and mo-
ments are depicted. The circumferential velocity of the
wheel is

v = ω · rdyn (16)

whereω is the angular velocity of the wheel andrdyn

is the effective rolling radius. The rotational motion
the wheel can be described by

Jω̇ = Ma−Fx rdyn−Fzn (17)

The wheels are driven by the driving torqueMa. The
distribution of the tire load is normally not unit in the
contact patch. Thus the supporting forceFz acted not

in the middle and generated a rolling resistance torque
Mr . The distance from the acting point to the middle
is called pneumatic trailn.

Mr = Fzn (18)

The longitudinal forceFx is calculated with the longi-
tudinal slipsx. The longitudinal slip is defined by

sx =
vP

ω · r
=

ω · r −v
ω · r

(19)

There exist already some tire models describing the
mathematical function between these two variables.
For example, the magic formula tire model with a pure
mathematical description based on the experiment re-
sults [1], and the physical HSRI tire model with lower
computational efforts. In this work the static HSRI tire
model was used. The longitudinal forceFx is described
in the following equation.

Fx =





Cxsx

1−sx
sR ≤ 0.5

Cxsx

1−sx
·
sR−0.5

s2
R

sR > 0.5
(20)

The longitudinal stiffnessCx is a parameter depending
on the properties of the tire. It is defined as the lin-
earization of the force-slip relation atsx = 0 andα = 0.

Cx =
∂F
∂sx

∣∣∣∣∣
sx→0

(21)

The variablesR is an indicator to identify the linear or
non-linear tire behavior, which can be calculated by

sR =

√
(Cxsx)2 +(Cα α)2

µ Fz(1−|sx|)
(22)

The friction factorµ is defined as

µ = µ0(1−Asvx

√
s2
x +(tanα)2) (23)

where, As is the adhesion reduction factor, which
gives As = 0.011s/m for adhesion coefficientsµ0 ∈
[0.53,1.05]. µ0 can be estimated for different road sur-
faces. In this section, the introduction of the HSRI tire
model enhanced on the mathematical equations. For a
more detailed and physical description see [3].

3.5 Driver

The driver modeled here is simply a source of input
signals. The output signals from the driver are ex-
actly the same as the inputs of the control unit, namely,
steering, driving and throttle signals. Some standard
maneuvers were included in this model, such as, the
ramp, step and start-stop driving maneuvers.
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3.6 Air Resistance

Air resistance describes the influence of the environ-
ment. A drag force can be generated by the wind. The
equation is as follow.

Fdrag = cwAρ (vx−vwind)
2 (24)

3.7 Overall System

The overall system of the skid-steer loader is obtained
by coupling all these sub-systems: drive, hydraulic
control unit, engine, hydrostatic drive system, air re-
sistance and the mechanical parts. The acausality of
the Modelica language enables the comfort connec-
tions between the sub-systems. Figure 5 shows the
object diagram of the skid-steer loader in MathMod-
elica.

Figure 5: Object Diagram of the Skid-Steer Loader

4 Simulation Results

The symbolic reduction algorithms are implemented
in Matlab using the the Maple Toolbox for Matlab.
The DAE-system of the previous described model was
imported via a MathML interface. Using the Mathe-
matica interface of MathModelica the flat model can
be exported to Mathematica and then translated into
MathML. The emerging DAE systems are solved us-
ing a fixed step BDF method of second order.
In this section, the results for two reductions are given.
First the model of the skid-steer loader is reduced us-
ing an error bound as stopping criteria. Second the
same model is reduced by the extended algorithm for
realtime purposes using a maximum number of FLOPs
as stopping criteria. Both reductions are performed
under a standard start-stop-start-stop straight driving
maneuver. Moreover, the longitudinal acceleration is
chosen as output variable.

4.1 Reduction with Error Bound

Original Error Bound

Number of Equations 69 48

Maximum FLOPs per step 3.42×106 1.19×106

Maximum absolute error · · · 0.2851

Maximum relative error · · · 7.58%

Table 1: Comparison of Original Model and Reduced
Model with Error Bound

As presented in Section 2, an error bound for the
output variable must be provided for the reduction.
Here an error bound of 0.3m/s2 is set for the longitu-
dinal accelerationax. The ranking is computed using
the one-step ranking procedure. Negligence of terms
is the only reduction technique chosen in this example.
Figure 6 shows the nearly overlaying curves of the
longitudinal accelerationax of the original and the re-
duced model from the reduced model. It can be seen
that the maximum error of 0.2851m/s2 occurs at the
acceleration peaks, where the longitudinal accelera-
tion of the reduced model is slightly higher than the
acceleration of the original model. The reduction of
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Figure 6: Simulation Results of Output Variable in Re-
duction with Error Bound

complexity of the DAE-systems can be seen in Ta-
ble 4.1. The number of equations is reduced from 69
to 48, corresponding to a reduction of approximately
30%. Moreover, the maximum required FLOPs for
one integration step is reduced by approximately 65%.
Thus, the computation time is accelerated by a factor
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Figure 7: Simulation Results of System Variables in Reduction with Error Bound

of three.
According to the reduction algorithms described be-
fore, only the error of the output variable is considered
during the reduction. In Figure 7, some other system
variables are plotted. The simulation results of the re-
duced model of those variables are also very close to
the original model. That implies that not only the lon-
gitudinal acceleration but also another important dy-
namical effects are conserved during the reduction.

4.2 Realtime Reduction

In the previous section the original model was reduced
until a given error bound was (nearly) reached. Thus,
simulating the reduced model will require less time
than simulating the original model. In practice models
often have to run in realtime environments. For such
applications the previously obtained model is more or
less worthless, since no worst case runtime for one in-
tegration step is known. In this section the original
model is reduced in order to obtain a model, which
can be simulated in realtime on a given realtime tar-
get in a given realtime cycle. Hence, instead of pro-
viding an error bound, a realtime target as well as a

realtime cycle is provided for the realtime reduction.
The realtime target is assumed to be able to perform
1× 109 FLOP/s, which corresponds roughly to Pen-
tium III. The realtime cycle is chosen as 2ms. Thus,
2×106 are the maximal available FLOPs for one in-
tegration step. The results from the reduced model for
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Figure 8: Comparison of Realtime Reduction

realtime purpose are shown shown by the almost iden-
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Figure 9: Simulation Results of System Variables in Reduction for Realtime

tical curves in 8. Nevertheless they are quite different
from the previous reduced model. Again the maximal
absolute error of 0.1111m/s2 occurs at the the acceler-
ation peaks, but this time the longitudinal acceleration
of the reduced model is slightly lower than the accel-
eration of the original model. The FLOPs for one inte-
gration step is reduced by a factor of 1.8 to 1.92×106.
Noteworthy, reducing the original model by a factor
of 3 is possible without significant loss of accuracy as
can be seen in the previous section. Figure 9 shows
other relevant system variables. It can be observed that
the reduced model is in very good agreement with the
original model for all shown system variables. There-
fore, again the relevant physical effects are conserved.

5 Conclusion and Outlook

In this contribution a reduction algorithm is extended
in order to generate models for realtime purposes.
While up to now an error bound was used as stopping
criteria, the extended algorithm uses a maximum num-
ber of flops for one integration step as stopping crite-
ria. Furthermore, in this contribution the new approach

is applied to the model of a construction machine. The
generated model is in quite good agreement with the
original model at a computational effort, which is con-
siderably lower. In this contribution only the longitu-
dinal dynamics is considered. In the near future the
model will be extended by lateral and vertical motion.
Moreover, the implementation of the generated mod-
els on a realtime target is part of current work.
The presented reduction method takes into account
only one scenario. This strongly limits the guaranteed
validity of the model. In [8] it has been tried to over-
come this drawback by using interval arithmétics. Un-
fortunately, this approach works only for rather sim-
ple systems. Therefore, the scenario has to be chosen
quite carefully and can thus be a worst case scenario
for example. In future works it shall be investigated
how one or multiple scenarios can be chosen system-
atically such that the desired effects remain.
Since a quite accurate ranking is required for the re-

altime reduction, here the one-step ranking was ex-
tended to a three step ranking. Currently, a reliable
ranking procedure based on a sensivity analysis is de-
veloped. The new ranking procedure is expected to be
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Original Realtime

Number of Equations 69 57

Maximum FLOPs per step 3.42×106 1.92×106

Maximum absolute error · · · 0.1111

Maximum relative error · · · 2.58%

Table 2: Comparison of Original Model and Reduced
Model for Realtime Purpose

more time efficient, since modern solvers like DASPK
offer a sensitivity analysis during the integration and
hence the ranking can be computed together with the
reference solution.
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