
                                
                            

Generation of continuously adjustable vehicle models
using symbolic reduction methods
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Abstract Vehicle dynamics has been an active field of research for many decades. The well-
known single-track model already introduced in 1940 by Riekert and Schunck is still used to
explain fundamental effects in vehicle dynamics such as under- and oversteering. However,
meanwhile also very complex multibody dynamics models exist, which allow very detailed
simulations. On the other hand, real-time computations necessary for active safety and driver
assistance systems are demanded for models of lower complexity. As important effects at
the handling limits are not covered by the linear single-track model, but complex multibody
models cannot be integrated fast enough by electronic control units of safety systems, mod-
els with an adjustable degree of complexity are desired. As an example, model-predictive
control is an upcoming field of application and relies on models that are integrated over the
prediction horizon. Therefore, the selection of an appropriate model is an important task.
The crux of the matter is to make a compromise between computation time and accuracy
of the model having only a rough guess of the accuracy of the model. In this contribution a
systematic approach is proposed. Instead of selecting an existing model, which is supposed
to match requirements in computation time and level of detail, a complex model is reduced
to match the requirements using symbolic model reduction techniques. This approach has
two major advantages: First, the accuracy can be set by the user. Second, the model is con-
tinuously adjustable in its complexity or propagation precision.

Keywords Vehicle models · Model reduction · Symbolic reduction techniques · Real
time · Assistance systems

1 Introduction

Vehicle models are essential for detailed simulation purposes as well as for model-based
control methods applied in modern driver assistance systems. Hence, in the last decades
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much effort was put into the development of adequate vehicle models. Although, for these
two application examples different models are demanded. Certainly, for a detailed simu-
lation a much more complex model will be employed than in the control algorithm of a
driver assistance system which has to run in real-time. Thus, on the one hand simple models
like the single-track model introduced by Riekert and Schunck [10] and on the other hand
complex multibody vehicle models [9] can be found in literature. While the simpler models
cover only fundamental effects like over- and understeering, complex models describe ve-
hicle dynamics very detailed. In-between models reproducing only certain effects in detail
can be found. All of these models have one thing in common: They are designed manually,
depending on the experience and intuition of an engineer. Therefore, this engineer has to
decide which physical effects are taken into account. This choice depends on the estimated
influence on the vehicle dynamics and the available computing power. Especially for the
upcoming field of model-predictive control, the selection of an appropriate model is a hard
task since the models are integrated over the prediction horizon. Due to the limited compu-
tation power of an electrical control unit, the employed model has to be simple enough to
allow for real-time control. Thus, up to now only look-up tables are employed, instead of
physical models. However, upcoming systems like lane keeping assistance use model based
control strategies, which require real-time simulations. In this contribution, a systematic ap-
proach for the generation of models of appropriate complexity is proposed. As opposed to
the classical approach, it is started from a complex model. The reduced model is obtained
from the complex model by the application of symbolic reduction techniques as presented
in [14]. As a major advantage the reduced model is guaranteed to stay within user defined
error bounds (at least for the reduction scenario, as will be shown in the next section). Sym-
bolic reduction techniques were first used in analog circuit design [1] and based on the
DC-analysis of nonlinear analog circuits. These techniques were extended to the reduction
of arbitrary DAE-systems in [13, 14]. Hence, symbolic reduction techniques can be used for
the modeling and design of mechatronic systems [11].

This contribution is structured as follows. In Sect. 2, symbolic reduction techniques are
introduced. Moreover, a new symmetry reduction is presented. Afterwards the vehicle mod-
els which are chosen here as starting models for the reduction process are discussed. These
models are on the one hand a spatial multibody vehicle model and on the other hand a non-
linear single-track model. In Sect. 4, first the reduction algorithm is explained using the
rather simple single-track model as an example. Finally, the complex multibody model is
reduced for different scenarios (initial values, system inputs, parameters). The paper closes
with an outlook and a conclusion in Sect. 5.

2 Symbolic reduction techniques

Many model reduction approaches try to identify slow and fast states in order to project
the system (in general a DAE-system) onto the manifold of the slow states [5] or to ap-
proximate the fast states [3]. Symbolic reduction techniques do not operate on the states of
the mathematical model but on single terms. Hence, instead of identifying fast states, those
manipulations on terms of the system are identified which have only a small influence on
the simulation result. In this context such a manipulation of a term is called a reduction.
Different reduction techniques are for example the cancellation of terms, the substitution of
terms by constants and the linearization of terms. Hence, a reduction is the manipulation
of a certain term by a certain reduction technique. An exception is the symmetry reduction,
which is explained later on. A procedure which measures the influence of those reductions
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Fig. 1 Scheme of the reduction algorithm

on the solution of the system is called ranking [14]. Two different ranking procedures will be
discussed in Sect. 2.2. After the ranking is computed, the terms are sorted in ascending order
with respect to their influence on the solution in order to perform the reductions as long as
the solution of the reduced DAE-system remains within a user-defined error bound ε.

A scheme of the symbolic reduction algorithm is shown in Fig. 1 for a chosen reduction
technique. Given a scenario (system inputs, initial states and parameters) and an error bound,
the algorithm starts with the ranking. Here, the influence of all reductions for a chosen
reduction technique onto the solution of the system is estimated. Afterwards it is checked
whether the reductions lead to an error inside the error bounds, beginning with the smallest.
Finally a less detailed model is obtained within the prescribed error bounds results. These
steps are further explained in the next sections. First, the used nomenclature is introduced.
Let

F : Ω × I �→ R
m (1)

be differentiable, where Ω ⊂ R
n × R

n is an open set and I ⊂ R is an interval. Then

F(x, ẋ, t) = 0 (2)
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is called DAE-system if ∂F
∂ ẋ is singular. Furthermore, let F be given in expanded form

Fi(x, ẋ, t) =
li∑

k=1

tki
(x, ẋ, t), 1 ≤ i ≤ m, (3)

where li is the number of terms in Fi and tki
denotes the kth term in Fi . Then, each term tki

may again be a function whose argument is a sum of subterms (terms of the second level),
and so on. Consequently, the reduction can be performed on different levels of the DAE-
system. Then the set T i is the set of all terms in the ith level and Ki denotes the set of all
reductions for one reduction technique in the ith level. For κ ∈ K,

Fκ = 0 (4)

is the DAE-system emerging from the reduction κ . Then for DAE-systems of the form of (2),

F(x, ẋ, t,u) = 0 (5)

with system inputs u, a scenario is the set of a vector field defined on the interval I for
the system inputs, the initial values and the parameters. Furthermore, N (F(x, ẋ, t),u) is the
solution of (2) computed by a numerical integrator N at nodes t1, . . . , tN . The solution

y =
[

yout

ȳ

]
= N

(
F(x, ẋ, t),u

)
(6)

consists of two components. In yout the nout output variables are contained, while ȳ consists
of the remaining internal variables.

2.1 Reduction techniques

As already mentioned above, possible reduction techniques are the negligence of terms
(Uneg), setting terms to constants (Uconst), linearization of terms (Ulin), symmetry considera-
tions (Usym) and the simplification of piecewise functions. In this contribution, Uneg, Uconst,
Ulin and Usym are chosen in different compositions. Certainly, the easiest manipulation of
a term is its negligence. As shown in (3), each term consists of a function. Choosing lin-
earization as reduction technique, the term (function) under consideration is linearized with
respect to its arguments. Using Uconst for each term, a constant has to be chosen. Usually the
mean value throughout the simulation is employed. Clearly, this mean has to be determined
in advance. At first sight, this looks like a drawback, but a reference simulation is essen-
tial for the ranking anyway as will be seen in the next section. However, other values than
the mean value are thinkable. Choosing Usym, at first variables which have similar values
throughout the simulation are sought. Alternatively, variables which are expected to be sim-
ilar can be flagged. For two similar variables, every occurrence of the first variable (or its
derivative) is substituted by the second variable (or its derivative). Consequently, now one
equation can be canceled. A reasonable choice is that equation which leads to smallest error.

2.2 Ranking

In general, a ranking procedure estimates the influence of a reduction on the solution of a
DAE (or ODE) system. In [13], different ranking algorithms are proposed. A reasonable
measure for the influence of a reduction is the error emerging from the reduction. In order to
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get a good estimate of that error, a reference solution y� is required. The crux of the matter
is that the quality of the estimate raises with the duration of the ranking procedure. Hence, a
ranking procedure should be a good compromise between computation time and accuracy.
Mathematically speaking, a ranking procedure R maps two DAE-systems on a real value,
estimating the error between their solutions. Apparently, perfect accuracy can be achieved
by the use of simulations. However, this would lead to very high computation times. Here,
the so-called Residual Ranking and One-Step Ranking will be discussed.

2.2.1 Residual Ranking

Let y� be the reference solution calculated by a numerical integrator N

y� = N (F). (7)

Then

‖F(y�(ti), ẏ�(ti),u(ti))‖ < η, (1 ≤ i ≤ N) (8)

holds for a prescribed accuracy η. Hence,

Rres(F, κ) =

∥∥∥∥∥∥∥

⎡

⎢⎣
‖Fκ(y�(t1), ẏ�(t1),u(t1))‖

...

‖Fκ(y�(tN ), ẏ�(tN ),u(tN )‖)

⎤

⎥⎦

∥∥∥∥∥∥∥
(9)

seems to be a good estimate for the error resulting from the reduction κ ∈ K. The Residual
Ranking is a very fast ranking procedure due to its simplicity.

2.2.2 One-Step Ranking

Typically, computing the solution of a DAE-system, at each time step a nonlinear system of
equations is iteratively solved. DASSL, for example, uses the backward difference formulae
(BDF) up to order 5 in order to transform (2) into the nonlinear system of equations

F

(
1

βh

i∑

k=0

αkxn+1−k,xn+1, tn+1

)
= 0, (10)

where α and β are the coefficients of the ith order BDF. Furthermore, h denotes the step-
size and xn is the solution at tn. This nonlinear system of equations is solved using Newton’s
method. The required initial guess is obtained by an extrapolation of the solution of the pre-
ceding time-step. The idea of the One-Step Ranking is to use the reference solution for an
estimation of the difference of the solution of the original and the reduced DAE-systems.
Hence, during the solution of (4), the reference solution y� is used as the initial guess in
Newton’s method at the corresponding time steps. Since not the exact solution but an esti-
mation of the solution of the reduced DAE is required, the number of iterations is limited to
one. This gives the approximate solution ŷ which leads to a ranking value

Rstep(F, κ) = ‖y�
out − ŷout‖. (11)

The One-Step Ranking is more accurate than the Residual Ranking and delivers a good
compromise between accuracy and run-time.
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2.3 Reduction algorithm

In the term-cancellation procedure, the ranking is used to perform as many reductions as pos-
sible, while preserving the desired accuracy. Here, the error emerging from the reductions is
measured only at the nout output variables. Thus, the error bound ε has dimension nout. To
perform as many reductions as possible, it is beneficial to start with those reductions which
are supposed to lead only to a small error. After choosing a set of reductions K (by choosing
a reduction technique and a level), the ranking list L is computed, i.e. the ranking values for
all κ ∈ K are calculated and stored in L together with the corresponding reductions. Then,
the ranking list L is sorted in ascending order with respect to the ranking value, resulting in
Lsort. Now, one possibility is to check the reductions in the same order as they are stored in
Lsort. After each reduction, it has to be verified that the solution of the reduced system yκ

stays within the error bound ε, i.e.

∥∥y�
out,i − yκ

out,i

∥∥
∞ < εi ∀i ≤ nout. (12)

If (12) is not satisfied, κ is retracted. For this verification a simulation has to be performed.
Thus, in case of complex systems, many simulations are necessary. However, this method
can be accelerated by the use of clusters [12]. Using clusters, the ranking list Lsort is divided
into s disjunct subsets

Lsort =
s⋃

i=1

Si, (13)

where

S = [S1, . . . , Ss]. (14)

Each cluster Si contains reductions leading to a similar estimated error (for example, up to
a factor of 10). Now the clusters are checked one after another, beginning with S1 contain-
ing the reductions leading to the smallest estimated error. Thus, multiple reductions can be
verified by one simulation. If a cluster Si cannot be verified (the reductions of Si lead to
errors greater than the error bound ε), Si is divided disjunct into two clusters S 1

i and S 2
i .

The term-cancellation procedure then continues with S k
i (k = 1,2). The whole reduction

algorithm is shown in Algorithm 1 for a reduction technique U , a ranking procedure R, a
numerical integrator N and a certain level k. Here, for a reduction κ ∈ K, κ−1 undoes the
reduction. There exist different criteria to stop the algorithm. One possibility is to check
only those reductions which have a ranking value lower than a number rmax. However, in
general it is hard to identify a reasonable value for rmax a priori. Another possibility is to
stop the algorithm after nmax

fail failed reductions. Throughout this paper, the second stopping
criterion with nmax

fail = 15 for the spatial multibody vehicle model in Sect. 4.2 and nmax
fail = 3

for the single-track model in Sect. 4.1 is employed. It should be noted that the efficiency of
this algorithm depends strongly on the order of the reductions and therefore on the employed
ranking procedure.
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Algorithm 1 REDUCTION ALGORITHM
Require: DAE-system F, Error Bound ε, Scenario u
Ensure: Reduced DAE-system G

yref
out = N (F,u)

G = F
r = R(F, K)

nfail = 0
Compute S from r

while S 
= ∅ and nfail < nmax
fail do

St = S1

S = S \ S1

for all κ ∈ St do
G = Gκ

end for
yout = N (G,u)

εti ⇐ ‖yref
outi

− youti ‖,1 ≤ i ≤ nout

if εt ≥ ε then
for all κi do

G = Gκ−1

nfail = nfail + 1
end for
if |St | > 1 then

Divide St into S 1
t and S 2

t

S = [S 1
t , S 2

t , S]
end if

end if
end while

3 Vehicle models

3.1 Description of the spatial twin track model

The spatial twin track model covers all six rigid body d.o.f. of the vehicle chassis. The
translational d.o.f. consist of the jerk, the lateral push and the lift. The three rotational d.o.f.
(roll, pitch, yaw) are denoted as θ , ϕ and ψ . Additionally the model has four independent
wheels. Each wheel has a rotational d.o.f. about the wheels axis and a translational d.o.f.
in the vertical direction. The front wheels perform the steering motion. Altogether the twin
track model has 14 d.o.f. The wheels are connected to the chassis with spring- and damper
elements. Moreover, anti-roll bars in the front and the rear of the vehicle are considered. The
chassis and each wheel have corresponding masses and inertia. Change of camber and caster
is neglected at the wheel suspension. The inputs of the model are the steering angle and the
driving torque. The driving torque acts only at the front axle and is distributed equally to the
front tires.

3.1.1 Equation of motion of the twin track chassis

The quantities and parameters describing a twin track model in the x–y plane are shown in
Fig. 2. Here lF is the distance between front axle and the center of gravity (CG) and lR is
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Fig. 2 Twin track model in the x–y plane

the distance between rear axle and CG. Furthermore, tF and tR are the track widths of the
front and rear wheels, respectively. Important quantities for the lateral dynamics are the yaw
angle ψ and the side slip angle β , the latter describing the angle between longitudinal axis of
the vehicle and the velocity vector in the x–y plane. It is assumed that the steering angles at
the front tires are equal, and thus δFL = δFR = δ holds. When driving into a turn, centrifugal
forces act on the CG. The centrifugal force causes a cornering force and the corresponding
side slip angles αi (with i ∈ {FL,FR,RL,RR}). The calculation of the tire force is shown in
the following section. The Newton equation for the vehicle chassis of the twin track model
reads

mv r̈v =
∑

i∈{FL,FR,RL,RR}

∑

j∈{k,s}
Fji + G + Fwind, (15)

where G is the climbing resistance force and Fwind is the wind resistance force. The calcu-
lation of the horizontal tire forces Fsi is presented in Sect. 3.1.2, while a detailed derivation
of the vertical suspension forces Fki

is out of scope of this paper. The Euler equation of the
vehicle body reads

Θv · ω̇v + ωv × (
Θ · ωv

) =
∑

i∈{FL,FR,RL,RR}

∑

j∈{k,s}
rji × Fji , (16)

where Θv is the inertia tensor of the vehicle body and ωv its angular velocity. The vectors rij

are defined analogously to Fig. 3.
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Fig. 3 Description of the front
left quarter car suspension

3.1.2 Nonlinear tire model

The stationary tire forces are calculated through the Magic-Formula tire model. This tire
model is based on Pacejka’s Magic Formula [8] and belongs to the non-physical models. The
stationary longitudinal and lateral tire forces are calculated depending on the longitudinal
slip si , the slip angle αi , the vertical wheel force Fzi

and the friction coefficient μi . The
relation between the quantities is described by

[
F stat

xi

F stat
yi

]
=

[ si
sn,i

· F total
i

tan(αi )

sn,i
· F total

i

]
, (17)

where

F total
i =

√
tan2(αi)

s2
n,i

· F 2
ref,yi

+ s2
i

s2
n,i

F 2
ref,xi

, (18)

Fref,xi
= μx sin(cx · atan(100 · bxsn,i)) · Fzi

, (19)

Fref,yi
= μy sin

(
cy · atan

(
180

π
by · atan(sn,i)

))
· Fzi

, (20)

sn,i =
√

tan2(αi) + s2
i (21)

for i ∈ {FL,FR,RL,RR}. Here μx, cx, bx,μy, cy and by are measured tire parameters. The
dynamic wheel forces are calculated by means of a first-order differential equation which
considers the running-in of the rubber particles of the tire:

[
Ḟxi

Ḟxi

]
=

⎡

⎣
|rωw

i
|

Sxi
(F stat

xi
− Fxi

)

|rωw
i

|
Syi

(F stat
yi

− Fyi
)

⎤

⎦ . (22)
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Fig. 4 Vertical and rotational
movement of the wheel

Here ri denotes the radius and ωw
i the angular velocity of the ith wheel.

3.1.3 Equation of motion of the wheel

As stated before, each wheel possesses a translational d.o.f. which is the compression of
the wheel suspension in the vertical z-direction (see Fig. 4). For this motion the Newton
equation yields

mw z̈wi
= Fw

zi
− Fzi

− mwg i ∈ {FL,FR,RL,RR}, (23)

where Fw
zi

is the contact force, while Fzi
is the force acting from the suspension onto the

wheel. Furthermore, the wheels have a rotational d.o.f. about the wheel axis (see Fig. 4).
The rotational motion of the front and rear wheels is covered by the Euler Equation

Θw · ω̇w
i = Md

i − riFw
xi

i ∈ {FL,FR,RL,RR}, (24)

where Md
i is the driving torque at the ith wheel, Θw denotes the inertia of the ith wheel and

Fw
xi

is the longitudinal tire force.

3.2 Description of the single-track model

For the investigation of lateral dynamics while driving a vehicle into a turn, the two wheels
at one axle can virtually be combined to one wheel element. This wheel element transmits
the combined forces between the axle and the track. The single-track model gained in this
approach is valid up to a lateral acceleration of about 4 m/s2. This model covers three d.o.f.
: the translational motion in x and y directions and the rotation about the yaw axis.
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Fig. 5 Single track model

3.2.1 Equations of motion of the single-track model

All necessary quantities for describing the longitudinal and lateral dynamics of the single-
track model are shown in Fig. 5. The equations of motion then read

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍCG

ÿCG

ψ̈

ω̇F

ω̇R

ḞxF

ḞyF

ḞxR

ḞyR

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m
(c(ψ + δ)FxF

+ c(ψ)FxR
− s(ψ + δ)FyF

− s(ψ)FyR
)

1
m
(s(ψ + δ)FxF

+ s(ψ)FxR
+ c(ψ + δ)FyF

+ c(ψ)FyR
)

1
Θz (lf (s(δ)FxF

+ c(δ)FyF
) − lrFyR

)

1
Θw (MA − r(c(δ)FxF

− s(δ)FyF
))

− 1
Θw rFxR

|rωF |
σx

(F stat
xF

− FxF
)

|rωF |
σy

(F stat
yF

− FyF
)

|rωR |
σx

(F stat
xR

− FxR
)

|rωR |
σy

(F stat
yR

− FyR
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (25)

where the abbreviations

c = cos and s = sin

are used. The tire forces are calculated in the same manner as for the twin track model (see
(17)–(22)), while the vertical forces and the slip are calculated by

FzF
= lr

l
mg − lz

l
(cos(δ)FxF

− sin(δ)FyF
) + FxR

, (26)

FzR
= lf

l
mg + lz

l
(FxF

+ FxR
), (27)
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Table 1 Parameters of the single-track model

SYMBOL VALUE DESCRIPTION

l 2.7 m Length of the vehicle

lf 1.25 m Distance from the front axle to CG

lr 1.35 m Distance from the front axle to CG

lz 0.6 m Distance from the ground to the CG

r 0.295 m Radius of the tires

m 1200 kg Mass of the vehicle

Θz 2400 kg·m2 Vehicle moment of inertia

Θw 1.7 kg·m2 Wheel moment of inertia

σ x 0.01 m Relaxation length

σ y 0.2 m Relaxation length

g 9.81 m/s2 Gravity

μx ,μy 0.9 Friction coefficients in the tire model

cx , cy , bx , by 1.05,0.3,1.5,0.15 Tire model parameters

vxF
= cos(ψ + δ)(ẋCG − lf ψ̇ sinψ) + sin(ψ + δ)(ẏCG + lf ψ̇ cosψ), (28)

vyF
= − sin(ψ + δ)(ẋCG − lf ψ̇ sinψ) + cos(ψ + δ)(ẏCG + lf ψ̇ cosψ), (29)

vxR
= cos(ψ)(ẋCG + lr ψ̇ sinψ) + sin(ψ)(ẏCG − lr ψ̇ cosψ), (30)

vyR
= − sin(ψ)(ẋCG + lr ψ̇ sinψ) + cos(ψ)(ẏCG − lr ψ̇ cosψ), (31)

si = vxi
− rωi

max(|rωi |, |vxi
|) , (32)

αi = − arctan

(
vyi

|rωi |
)

, (33)

sn,i =
√

tan2(αi) + s2
i , (34)

for i ∈ {F,R}. The parameters of the single-track model are listed in Table 1.

4 Results

The reduction algorithm is implemented in MATLAB using the Maple Toolbox for MAT-
LAB. Models can be imported using a MathML interface. After choosing the output vari-
ables, the error bound, the reduction technique(s) and the ranking procedure, the algorithm
runs fully automated. Inside the algorithm the equations are treated as tree-like structures
in order to manipulate any term or subterm. The residual functions for the simulations are
generated as C-code using the Maple code export and compiled as MATLAB mex-files to
accelerate the evaluation. The emerging DAE-systems are solved either using IDAS of the
SUNDIALS package which is a C implementation of DASPK [2, 6] and offers a MATLAB
interface or the MATLAB built-in solver ode15i. The time that is needed depends highly
on the chosen model, the ranking procedure and the reduction technique. Here, the reduc-
tion technique has a big influence, since linearization and setting to constants needs a newly
compiled residual function for every simulation, while cancellation of terms works with only
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one simulation file. Moreover, the generation and compilation of the residual function are
much slower compared to commercial tools like Dymola. All calculations presented here
are performed on a 1.8 GHz laptop.

4.1 Reduction of the single-track model

In this section, the single-track model presented in Sect. 3.2 is reduced in order to explain the
reduction algorithm clearly. Since one cannot expect many reductions choosing cancellation
of terms as reduction technique, the linearization of terms is chosen. The scenario is a com-
bination of an accelerated straight-ahead travel and a double lane change. More precisely,
the vehicle is accelerated in the first 8 seconds from 8 to 17.5 m/s followed by a double lane
change lasting 20 seconds. The output variables are chosen to be the longitudinal veloc-
ity ẋCG, the lateral velocity ẏCG and the yaw velocity ψ̇CG. In the following, the single-track
model is first reduced for two different ranking procedures using the same error bound. After
that, one of the already reduced models is further reduced raising the error bound. In order to
compare the efficiency of the models, the number of floating point operations (FLOPs) for
one integration step is determined. As integration algorithm the semi-implicit Euler method
is chosen, since it is widely used for real-time simulations. One integration step with the
semi-implicit Euler method requires one evaluation of the right-hand side, one evaluation of
the Jacobian and the solution of a system of linear equations. This gives 34551 FLOPs for
the original single-track model.

In a first step, the error bound is set to 1.5%. Using the Residual Ranking leads to

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍCG

ÿCG

ψ̈

ω̇F

ω̇R

ḞxF

ḞyF

ḞxR

ḞyR

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
m
(FxF

+ FxR
− (ψ + δ)FyF

− ψ · FyR
)

1
m
((ψ + δ)FxF

+ ψ · FxR
+ FyF

+ FyR
)

1
Θz (lf (δ · FxF

+ FyF
) − lrFyR

)

1
Θw (MA − r(FxF

− δ · FyF
))

− 1
Θw rFxR

|rωF |
σx

(F stat
xF

− FxF
)

|rωF |
σy

(F stat
yF

− FyF
)

|rωR |
σx

(F stat
xR

− FxR
)

|rωR |
σy

(F stat
yR

− FyR
)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

Moreover, the calculation of the steady-state tire forces reduces to

[
F stat

xi

F stat
yi

]
=

[
si

sn,i
· F total

i
αi

sn,i
· F total

i

]
, (36)

where

F total
F =

√
tan(αF ) · αF

s2
n,F

· F 2
ref,yF

+ s2
F

s2
n,F

F 2
ref,xF

, (37)

F total
R =

√
α2

R

s2
n,R

· F 2
ref,yR

+ s2
R

s2
n,R

F 2
ref,xR

, (38)

Fref,xF
= μx sin(100 · cxbxsn,F ) · FzF

, (39)
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Fref,xR
= 100 · μxcxbxsn,R · FzR

, (40)

Fref,yF
= μycy · atan

(
180

π
by · sn,F

)
· FzF

, (41)

Fref,yR
= μy sin

(
cy · atan

(
180

π
by · sn,R

))
· FzR

, (42)

αi = − vyi

|rωi | , (43)

sn,i =
√

α2
i + s2

i , (44)

for i ∈ {F,R}. The calculation of the vertical forces, the velocities and the longitudinal slip
remains the same as in (26)–(33). It can be seen that the steering and yaw angle are linearized
in the equations of motion, but not for the calculation of the velocities at the front and the
rear. Additionally, the tire model is already simplified. This reduced model requires only
19116 FLOPs.

In the next step the same reduction is performed once again, but this time using the One-
Step Ranking. In this case the model is the same as the previously reduced model except for
some equations. The second line of (35) gets

ÿCG == 1

m
(sin(ψ + δ)FxF

+ ψ · FxR
+ FyF

+ FyR
), (45)

while (37), (39) and (42) become

F total
F =

√
α2

F

s2
n,F

· F 2
ref,yF

+ s2
F

s2
n,F

F 2
ref,xF

, (46)

Fref,xF
= 100 · μxcxbxsn,F · FzF

, (47)

Fref,yR
= μycy · atan

(
180

π
by · sn,R

)
· FzR

. (48)

Furthermore, this time (28) and (30) are reduced to

vxF
= cos(ψ + δ)(ẋCG − lf ψ̇ sinψ) + (ψ + δ)(ẏCG + lf ψ̇ cosψ), (49)

vxR
= cos(ψ)(ẋCG + lr ψ̇ sinψ) + ψ · (ẏCG − lr ψ̇ cosψ). (50)

This new model requires only 14746 FLOPs for one integration step using the semi-implicit
Euler method. Hence, the One-Step Ranking was more efficient in this case. Although this
result cannot be generalized, in most cases the One-Step Ranking is more efficient due to
the more accurate ranking list. However, the big drawback of the One-Step Ranking can
be seen when looking at the run-times of the algorithms. While the whole reduction using
the Residual Ranking takes about 15 minutes, the reduction algorithm using the One-Step
Ranking needs about 50 minutes.

In a last step the error bound is raised to 5%. Using the Residual Ranking, the equa-
tions of motion are the same as in (35). The calculation of the steady-state tire forces is
performed in the same way as for the reduced model using the One-Step Ranking. However,
the calculation of the velocities at the front and the rear reduces to

vxF
= (ẋCG − lf ψ̇ sinψ) + (ψ + δ)(ẏCG + lf ψ̇ cosψ), (51)
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vyF
= −(ψ + δ)(ẋCG − lf ψ̇ sinψ) + cos(ψ + δ)(ẏCG + lf ψ̇ cosψ), (52)

vxR
= (ẋCG + lr ψ̇ sinψ) + ψ · (ẏCG − lr ψ̇ cosψ), (53)

vyR
= −ψ · (ẋCG + lr ψ̇ sinψ) + cos(ψ)(ẏCG − lr ψ̇ cosψ). (54)

Note that this model is not the linear single-track model, although it is similar. It requires
only 11908 FLOPs for one integration step, which is approximately one third of the required
FLOPs for the original model. Obviously, the quality of the reduced models depends on the
error bound, the reduction technique and the ranking.

4.2 Reduction of the twin track model

In this section, the spatial twin track model presented in Sect. 3.1 is selected as the starting
model. The parameters of the model are chosen in order to match a medium-class vehicle.
The reduction is performed for different scenarios, covering a cornering maneuver, an ac-
celerated cornering maneuver and a double lane change. Negligence of terms and symmetry
considerations are used as reduction techniques, while the One-Step Ranking as well as
the Residual Ranking are applied for the computation of the ranking list. The yaw rate and
the lateral acceleration are chosen as output variables since they represent the significant
dynamic behavior. In the next sections the reduced models are presented. The speed-up is
approximately a factor of six for all three scenarios.

4.2.1 Accelerated cornering maneuver

As a first attempt, the spatial twin track model is reduced for an accelerated cornering ma-
neuver. The steering angle at the front wheels is continuously raised from 0◦ to 1◦ within
the first second of the maneuver. The whole maneuver lasts 10 seconds. Starting from an
initial velocity of 12 m/s, the vehicle is accelerated with a driving torque of 490 N m. The
reduction algorithm started using the negligence of terms as reduction technique with an er-
ror bound of 10% and finished with symmetry considerations using an error bound of 15%.
Moreover, the One-Step Ranking was employed as ranking procedure. After the negligence
of terms, the vertical movement of the wheels is vanished as well as yaw- and roll move-
ment. Therefore, at this step a planar twin track model is at hand. In the second step, it is
checked whether similar variables can be replaced by only one variable. In this example, the
pairs of variables to be checked were marked for the algorithm. These symmetry consider-
ations end up with a single-track model. Moreover, the number of d.o.f. is reduced to five.
The tire forces are now calculated using a simplified Magic Formula, since some subterms
are neglected. The resulting yaw rate and lateral acceleration are plotted in Figs. 6 and 7.
Figure 6 indicates that the error becomes smaller as the simulation time rises. This effect is
due to two reductions which lead to errors in opposite directions. In the beginning the influ-
ence of the first reduction is superior to the influence of the second reduction and thus the
lateral acceleration of the reduced model is lower than the lateral acceleration of the original
model. After some time the influence of the second reduction grows and the error becomes
smaller. Consequently, for simulation times longer than 10 seconds, the lateral acceleration
of the reduced model would be higher than the lateral acceleration of the spatial twin track
model. The same effect can be seen in Fig. 7. However, here the influence of the second
reduction gets superior after approximately six seconds. The original and the reduced model
are shortly summarized in Table 2.
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Fig. 6 Lateral acceleration of the twin track model and the reduced model for the accelerated cornering
maneuver

Fig. 7 Yaw rate of the twin track model and the reduced model for the accelerated cornering maneuver

4.2.2 Cornering maneuver

The second scenario is very similar to the first one. The only difference is in the driving
torque. While the cornering maneuver of the previous section was performed with a driving
torque of 490 N m, this time the driving torque is set to zero during the whole simulation.
Also, the reduction algorithm stays nearly unchanged. Only the One-Step Ranking was ex-
changed by the Residual Ranking. The Residual Ranking leads to a reduction result which
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Table 2 Comparison of the original and the reduced model for the accelerated cornering maneuver

VEHICLE MODEL DEGREES OF FREEDOM SCHEMATIC REPRESENTATION

Spatial Twin Track Model d.o.f.: 14

– Three Translational
– Roll, Pitch, Yaw
– Rotation of the wheels
– vertical movement of the

wheels

Reduced Model d.o.f.: 5

– Two Translational
– Yaw
– Rotation of the wheels

Fig. 8 Yaw rate of the twin track model and the reduced model for the cornering maneuver

differs from the result of the previous section as can be seen in Figs. 8 and 9. That may
be astonishing at first sight. However, the Residual Ranking may produce a less reasonable
ranking list (reductions sorted by their ranking values). If the error estimated by Residual
Ranking is small, then the real error will be small as well. The opposite is not true in general.
More precisely, a reduction might cause a high ranking value, although the real error emerg-
ing from that reduction is quite small [14]. Consequently, the ranking list for the Residual
Ranking may be completely different from the ranking list of the One-Step Ranking. Hence,
the reductions are checked in a different order and thus different reductions are performed.
Here the error bound was again set to real values representing approximately 15%. As in
the previous example, the vertical motion of the wheels vanishes. Nevertheless, the angular
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Fig. 9 Lateral acceleration of the twin track model and the reduced model for the cornering maneuver

velocity of the rotations about the x and y axes remains, while the angles get decoupled
from their derivatives and stay constant. Moreover, this time the result is not a single-track
model. Using the Residual Ranking, the negligence of terms leads to a model which has a
quite asymmetric shape. Hence, symmetry considerations lead to a union of the tire forces
in x-direction and to the union of the rotational motion of the front wheels. The tire forces in
y direction and the rotational motion of the rear wheels are still calculated separately. There-
fore, the reduced model has 8 d.o.f., since this time the rotation of three wheels remains as
well as pitch and roll motion (in some sense). A scheme of the reduced model in the x–y

plane is shown in Fig. 10. In order to obtain results which are easier to interpret, one should
either use the One-Step Ranking or perform the symmetry reduction before the negligence
of terms. In this contribution the order of the reduction techniques was chosen the other way
round for performance reasons.

4.2.3 Double lane change

The third scenario examined here is a double lane change at a velocity of 12 m/s. For per-
formance reasons, again the Residual Ranking was employed. Furthermore, an error bound
of approximately 20% is used. In contrast to the second example, here the Residual Rank-
ing gives good estimates of the real error produced by the reductions. The negligence once
again cancels out the vertical motion of the four wheels. This time, additionally roll and
pitch motion vanishes. Moreover, the model maintains its symmetry during the first step of
the reduction. Hence, the symmetry reduction merges the tire forces in x and y directions as
well as the rotational motion of the front and rear tires. Therefore, the result of the reduction
is a vehicle model with only one track and five d.o.f. Thus, it is similar to the result of the
first example. However, here more terms of the tire model are preserved. The resulting yaw
rate and lateral acceleration are presented in Figs. 11 and 12, respectively.
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Fig. 10 Reduced model in the x–y plane

Fig. 11 Yaw rate of the twin track model and the reduced model for the double lane change
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Fig. 12 Lateral acceleration of the twin track model and the reduced model for the double lane change

5 Conclusion and outlook

In this contribution, a new systematic approach for the generation of vehicle models is pro-
posed. Moreover, four examples are given. The results obtained cover conventional models
(Sects. 4.2.1 and 4.2.2) as well as non-conventional vehicle models (Sect. 4.2.3). It was seen
that while the Residual Ranking is beneficial in computation time, the One-Step Ranking
delivers more accurate results. In the near future the algorithm will be implemented as a
plug-in for the Open Modelica compiler [4] in order to reduce run-time. Moreover, the al-
gorithm will be extended in order to generate models that can be simulated in real time on
a predefined real-time target. Hence, not an error bound is given, but the real-time hardware
and the real-time cycle. First, results are presented in [7]. Furthermore, a new ranking proce-
dure based on the adjoint sensitivity analysis will be implemented. Last but not least, it may
be of interest to protect some terms from being removed by the reduction algorithm. Having
a vehicle model coupled with an ESP at hand, the question for the required complexity of the
vehicle model to examine the ESP arises. Hence, the ESP should be protected from being
simplified. That feature (Modular Reduction) will also be integrated into the algorithm in
the future.
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