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Fig. 1. SEGESTA Testbed

Abstract— Completely and redundantly restraint tendon-based
Stewart platforms demand for an appropriate distribution of
tendon forces to control the platform on a given trajectory.
Thus, position control has to be extended by a tendon force
controller which generates continuous and feasible force values.
The computation of such force distributions can be formulated
as a constrained optimization problem. Solving the problem is
numerically expensive and requires an algorithm which is capable
to be integrated into a realtime environment. In this paper, a new
algorithm for tendon force distribution calculations capable for
usage on a realtime system is proposed.

Index Terms— Force Calculation, Tendon-based Manipulator

I. INTRODUCTION

At the Chair of Mechatronics, a testbed for tendon-based
Steward-platforms (SEGESTA Seilgetriebene Stewart-Platt-
formen in Theorie und Anwendung) has been developed
during the past few years. Presently, the SEGESTA teststand
has n = 6 d.o.f. and uses m = 7 tendons to move the platform
along desired trajectories [8]. In a future modified version of
SEGESTA it is planned to add an eighth tendon.

Fig. 2. Symbol Definitions for a General Tendon-Based Stewart-Platform

The platform can be basically guided using position control
in the domain of tendon lengths. Following a trajectory,
intermediate poses for every time step are calculated. For
these points, the inverse kinematics delivers the corresponding
tendon lengths. Since the actual tendon lengths are available
from sensors, feedback control is used to guide the plat-
form. This basic control concept provides satisfying results
at low velocities. For higher accelerations and velocities it
was observed that the platform begins to “wobble” due to
slack tendons. To prevent slackness and also to limit forces,
tension has to be controlled within lower and upper bounds.
The calculation of a force distribution is theoretically straight
forward in the case of a manipulator with m = n+1 tendons.
In the case of m > n+1, normally optimization is used, which
is always expensive in terms of computational time. For 6
d.o.f. systems, one cannot precalculate force distributes for all
poses. Therefore, it is required to determine force distributions
online. The chosen algorithm needs to be suitable with respect
to calculation time and possibly fulfill deterministic realtime
requirements.

II. KINEMATICS AND FORCE EQUILIBRIUM

SEGESTA consists of two main components: a frame of alu-
minium profile bars which carries motors, winches as well as
further components like computers, measurement equipment
etc. (fig. I). The triangular shaped platform is connected to the
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winches by tendons. SEGESTA is designed as an reconfigurable
system by using modules which carry winches and motors
and which can be installed and removed easily. Due to its
lightweight structure, SEGESTA can generate high-dynamic
motions [7].

Platform poses are calculated along a trajectory and for
every step, computation of the tendon lengths (inverse kine-
matics) is trivial compared to the generally complicated
forward kinematics. SEGESTA can be described using the
following vectors and coordinate frames, with µ = 1, . . . ,m
[5]:
• The coordinate frame CB is the base frame, while CP is

connected to the platform (fig. 2).
• The vectors bµ denote the positions of the winch points,

represented by the points where tendons are led through
small ceramic eyes which are fixed.

• pµ are the platform-fixed vectors to the connecting points
• lµ denote the tendon vectors from the platform to the

winches.
• The forces in the tendons are described by fµ, where fP

and τP denote all other applied forces and torques acting
on the platform.

Since tendons can only transmit pulling forces, tensions
must always be greater than zero which leads to the require-
ment of at least m = n + 1 tendons if no external load is
available to tighten the tendons.The force equilibrium for the
platform can be easily expressed as ([9],[13])

[
ν1 . . . νm

p1 × ν1 · · · pm × νm

] f1

...
fm

 +
[

fp

τ p

]
= 0 (1)

with ν = lµ

|lµ| and f > 0 or in a more compact form as

ATf + w = 0, f > 0. (2)

III. SAFE FORCE GENERATION METHOD

Since force control is necessary to guarantee a defined
tension distribution, a method to calculate tendon forces must
be provided. Because we have force redundancy in the ex-
amined systems with m ≥ n + 1 and thus at least an one-
dimensional solution set for the force distributions belonging
to a specific position, methods were proposed which ensure
the continuity of the force distribution along a trajectory using
a cost function and linear constraints for the force limits.
The resulting formulation of the problem has been solved
using optimization methods ([13],[11], [3], [14], [2]). Standard
optimizer implementations ([1], [10]) require iterative compu-
tations which may not be used within a realtime controller
system due to their normally non-predictable worst-case run-
time. [12] transforms the problem to a linear programming
problem which allows a direct calculation the minimum force
distribution (which does not guarantee continuity) or uses
iterative quadratic programming to get continuous solutions.

In this paper, we propose a non-iterative algorithm which
provides continuous force distributions furthermost from the
force limits. The algorithm provides a force distribution which

leads to a fairly tensed system. Due to these properties, we call
the obtained solution a ”‘safe”’ solution.

Beside minimum tendon forces (which can be zero as
smallest possible force) also the maximum tendon forces are
of great importance since their ratio defines the workspace
boundaries. To evaluate the proximity of a specific position
of the platform to the workspace boundaries, knowledge of
the tendon forces is presumed. Obtaining a solution from
the optimization algorithm which exceeds the tendon force
boundaries means that the platform is outside the predefined
workspace. So, the calculation of force distributions plays also
an important role in terms of reliability and safety. In practice,
it is of great importance to find continuous solutions. Non-
continuous tendon forces may consist of acceptable solutions,
but since those values are needed for control, they would cause
steps in motor torques which leads to vibrations and high
mechanical loads. Using both the results from the inverse kine-
matics and the force optimization makes a combined position-
force-control possible. The position part delivers positioning
precision while the force controller is responsible for positive
tensions and acts as a kind of pilot control. Detailed concepts
for tendon force control are also proposed in [12].

A. Introducing Example
As an introducing simple example, a planar manipulator

having a point-shaped platform with 1 translational d.o.f. (n =
1) and 3 tendons (m = 3) is considered. It has a structure
matrix with a 2-dimensional kernel. The resulting system with
redundancy r = m − n = 2 might be limited for practical
use, but it illustrates the problem very well since it allows to
visualize the algorithm in three dimensions as follows:

The limits for minimum tendon force fmin and maximum
tendon force fmax form an (open) cube where only forces inside
the cube are acceptable, i.e. if f is a solution, it holds fmin <
f < fmax. Assume the force limits fmin = 1, fmax = 10. We first
consider the homogenious case w = 0 which will afterwards
be extended to the inhomogenious case which results in the
simplified equations

ATf = 0 (3)

and
f > 0. (4)

The solutions of eqn. 3 are the base vectors of the kernel
H = (H1 H2) ∈ R3×2 of the structure matrix AT. Thus,
all solutions can be represented by a plane in R3 which is
spanned by the column vectors in H .

f = Hλ, λ ∈ R2 (5)

If solutions of eqn. 3 and eqn. 4 exist, the cube of the force
limits and the plane intersect and form a 2-dimensional convex
polyhedron in R3 which contains all acceptable solutions, i.e.
solutions where no tendon exceeds its minimum or maximum
force limits. This is from now on called acceptable solution
set.

Assume we have a structure matrix

AT =

 1
−1
−1

 (6)
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which allows us to describe the kernel as e.g.

H =

 1 1
0 1
1 0

 (7)

Since we know the force limits for the tendons, we can set
the following inequality

fmin

 1
1
1

 ≤ Hλ ≤ fmax

 1
1
1

 . (8)

The solution set for λ of ineqn. 8 is the convex polyhedron
in R2 which is mapped by H onto the acceptable solution
set. Now, component-wise evaluation of ineqn. 8 for both
sides of the inequalities gives us 6 lines in R2, which bound
the convex preimage of the acceptable solution set under H .
The line intersections give a list of points in R2. Only the
points satisfying all inequalities are the vertices of the desired
convex preimage of the acceptable solution set. Afterwards,
a triangulation gives a list of nt triangles. Triangulation in
this case can be easily done for r = 2 by choosing one
vertex and connecting all vertices to the initial one. After
calculation of the center of gravity (CoG) of each triangle
λsi

, i = 1, . . . , nt, the resulting CoG λs of the convex
polyhedron can be computed via

λ1
s =

∑
i

(λ1
si
·Ai)∑

i

Ai
λ2

s =

∑
i

(λ2
si
·Ai)∑

i

Ai
(9)

The identified CoG is finally transformed back into the R3

using H . In our example, we start with ineqn. 8 which is 1
1
1

 ≤
 1 1

0 1
1 0

[
λ1

λ2

]
≤

 10
10
10

 , (10)

giving us the equations

1 = λ1 + λ2; 10 = λ1 + λ2

1 = λ2; 10 = λ2

1 = λ1; 10 = λ1

(11)

which are pairwise considered as a 2 × 2 systems of linear
equations in λ. The resulting points [λ1, λ2] are [0, 1], [1, 0],
[−9, 10], [10,−9], [1, 1], [9, 1], [10, 1], [1, 9], [1, 10], [0, 10],
[10, 0] and [10, 10]. Since only the three points [1, 1], [9, 1]
and [1, 9] satisfy all inequalities of ineqn. 10, they are the
vertices of the convex preimage of the acceptable solution
set. In this example, we found only one triangle forming the
convex polyhedron, so that its CoG is the required CoG at
λ = [113 , 11

3 ]T . The mapping onto the solution plane using the
kernel H (eqn. 5) gives us the solution xs = [223 , 11

3 , 11
3 ]T .

In reality, normally external loads appear; at least gravity
and inertia provide a non-zero w. This case is also covered
by the algorithm. In the inhomgenious case, we have to deal
with eqn. 2:

ATf + w = 0, f > 0.

Thus, the solution plane has the form

f = p + Hλ, λ ∈ R2 (12)

i.e. external loads shift the solution plane. p denotes a particu-
lar solution of eqn. 2. In our example, let w = 5, the particular
solution is computed by

AT p + w = 0 ⇔

 1
−1
−1

 p1

p2

p3

 + 5 = 0.

This yields
p1 − p2 − p3 = −5.

Now we can freely choose a particular solution, say p2 = p3 =
0. Then one finds p1 = −5 which means we found a particular
solution p = [−5 0 0]T . With this knowledge, instead of
moving the plane, we can move the cube of the force limits
by −p which is done by substracting p on both sides of eqn. 8
before performing the algorithm. The final result for the CoG
must then be transformed back by adding p.

B. Safe Force Calculation

Now the simple example will be extended for the general
case of an arbitrary number of tendons, i.e. for any redundancy.
In the general case, we have a structure matrix AT ∈ Rn×m.
This leads to a kernel H = (H1 . . . Hr) ∈ Rm×r. Again,
we start with the homogenious case of w = 0 which will be
extended later. In the case of m tendons, the cube describing
the force limits is an m-dimensional hypercube C ⊂ Rm.
The plane describing all solutions becomes a r-dimensional
subspace S ⊂ Rm spanned by the kernel of the structure
matrix. Again, if the intersection F of the hypercube C and
the subspace S is non-empty, solutions f in the acceptable
solution set F exist, i.e. F = C ∩ S 6= ∅, where F is a r-
dimensional manifold of the Rm. The required calculation of
the kernel can done effectively using a QR decomposition of
AT . Matrix Q ∈ Rn×n is orthogonal which implies that we
have only to consider the trapezoidal R ∈ Rn×m to get the
kernel of AT .

Again, the kernel is used as a map from the Rr to S ⊂
Rm, i.e. for all λ ∈ Λ, the following must hold, where Λ is
the (convex) polyhedron-shaped preimage of the manifold F
under the mapping H:

fmin


1
1
...
1


m×1

≤ Hλ ≤ fmax


1
1
...
1


m×1

(13)

In other words, since the kernel H maps the Rr onto the
solution subspace S, it maps the polyhedron Λ ⊂ Rr onto the
solution manifold F . In fact, we don’t know Λ, but we know
the limits of F in eqn. 13. Thus, we use the map to calculate
the vertices of Λ again by component-wise evaluation of
ineqn. 13 for both sides of the inequalities which gives us 2m
equalities which are considered in all possible combinations
as r × r systems of linear equations in λ. Every solution is
examined with respect to its compliance with all inequalities
of eqn. 13. If a solution satisfies all inequalities, it is a vertex
of the convex polyhedron Λ. Clearly, a vertex may be the
solution of more than one linear equation system, satisfying
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all inequalities. Nevertheless, they describe the same vertex
and thus, the solution is only considered once for the next
steps. Remembering the introducing example having r = 2,
we used triangulation to divide the polyhedron Λ into triangles.
Triangles in R2 are 2-simplexes, which is now extended to the
use of r-simplexes. Since we have a polyhedron, triangulation
now requires advanced techniques as it is presented in [4].
Please note that we still use the term triangulation though we
handle r-simplexes. Say we have a list of ns simplexes P k

with each having r + 1 vertices vkj
with k = 1 . . . ns and

j = 1 . . . r +1. After triangulation, we determine the volumes
V k of the simplexes by integration [6] and also their CoG
λsk

.

λi
sk

=

r+1∑
ν=1

vi
kν

r + 1
i = 1 . . . r k = 1 . . . ns (14)

which can be used to calculate the CoG λs of the polyhedron
via

λi
s =

ns∑
µ=1

(λi
sµ
· V µ)

ns∑
µ=1

V µ

. (15)

Finally, the solution is transformed back using the kernel
H as a map

xs = Hλs (16)

where xs is the center of the manifold F .
In the inhomogenious case, we have to consider again a

non-zero load w.

ATf + w = 0, f > 0.

Thus, the solution subspace S has the form

f = p + Hλ, λ ∈ Rr (17)

As before, external loads shift the solution plane and p denotes
a particular solution of eqn. 17. The particular solution is
computed by

ATp + w = 0 ⇔ QRp + w = 0 (18)

First, we compute a intermediate solution y by

Qy = −w ⇔ y = −QT w (19)

Finally, we get p by concerning the undetermined system

Rp = y (20)

and freely choosing r parameters.
Instead of moving the plane, we move the cube of the force

limits by −p which is done by substracting p on both sides
of eqn. 13 before performing the algorithm. The final result
for the CoG must be transformed back by adding p.

C. Proof-of-Concept
In this section we prove that the CoG of the manifold F can

be computed by calculating the CoG of the convex polyhedron.
First, the CoG of a general body can be computed compo-

nentwise as

xi
s =

∫
F

xidF

V (F )
. (21)

Now, the theorem for integration on manifolds states

xi
s =

∫
Λ

xi ◦H?
√

det((DH)?T (DH)?) dλ

∫
Λ

1 ◦H?
√

det((DH)?T (DH)?) dλ
(22)

where H? : Λ 7→ F, λ 7→ Hλ is a linear map from Λ to
F and (DH)? is the Jacobian of H? which is equal to H
itself

(DH)? =
∂H?

∂λ
= H.

Furthermore,
√

det(HT H) is independent from λ and can
therefore be canceled in the next step. Additionally splitting
Λ into the simplexes gives:

xi
s =

ns∑
ν=1

∫
P ν

xi ◦H? dλ

ns∑
ν=1

∫
P ν

1 dλ

(23)

Now we can insert the expression xi ◦ H? =
r∑

µ=1
Hµ,iλ

µ

which results in

xi
s =

ns∑
ν=1

∫
P ν

r∑
µ=1

Hµ,iλ
µ dλ

ns∑
ν=1

V ν

(24)

Since H is independent from λ, it can be moved out of the
integral. In vector form we get

xi
s =

(
H1,i . . . Hr,i

)
ns∑

ν=1
V ν

·


ns∑

ν=1

∫
P ν

λ1 dλ

...
ns∑

ν=1

∫
P ν

λr dλ



Because of eqn. 21, we rewrite this equation by:

xi
s =

(
H1,i . . . Hr,i

)
ns∑

ν=1
V ν


ns∑

ν=1
λ1

sν
· V ν

...
ns∑

ν=1
λ1

sν
· V ν


Using eqn. 15, we get

xi
s =

(
H1,i . . . Hr,i

)  λ1
s
...

λr
s


=

(
H1,i . . . Hr,i

)
λs
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Therefore xs = Hλs holds where λs denotes the CoG of
Λ in Rr.

D. Example

As an example, a tendon-based Stewart platform according
to the SEGESTA testbed design with the frame dimensions
800 × 2000 × 1500 mm3 and eight tendons has to follow a
screw line trajectory (see fig. 3).

Fig. 3. Test Trajectory

Fig. 4. Minimum Forces

Fig. 5. Safe Forces

The minimum force desired is 10N , the maximum allowed
force is 1000N . The resulting minimum force distribution is
shown in fig. 4, the safe counterpart is shown in fig. Obviously,
the minimum force run in fig. 4 (generated by a minimizing
optimizer) is close to the minimum desired force. Nevertheless,
the tendon forces increase close to the workspace boundaries.
Note the danger of loose tendons in case the force control
doesn’t work perfectly. Fig. 5 shows the force distributions
generated by the save force generation. As expected, the forces
remain between the given boundaries. Thus, the danger of
exceeding the lower or upper force boundaries is minimized.

It is continuous and remains between the given force
bounds. Thus, it is feasible for control.

E. Control Concept
The proposed algorithm was implemented for first testings

on a MS Windows XP machine to calculate the results in
section III-D. Compared to a standard optimizer approach
using a commercial implementation (NAG), the introduced al-
gorithm reduced the average computation time by nearly 50%.
Clearly, this implementation does not allow any measurements
of realtime capabilities. On the other hand, an upper limit for
the required number of operations can be given since it mainly
depends on the number of simplexes which is 2m − 2 and
no iterative methods are required. The implementation of the
algorithm on the available realtime control system (dSPACE
with Matlab/SIMULINK) is subject to current work.

Once a force distribution was calculated, the question how
to apply it within a control system appears. Since both force
in the tendons and the pose of the platform have to be con-
trolled, the resulting controller has to merge both claims. The
controlled devices for a tendon-based parallel manipulator are
usually electric DC or EC motors, i.e. one has to set a desired
motor torque via the armature voltage, so the motor torque
and hence the tendon forces can be directly set. Generally,
for a specific force distribution, multiple poses result in a
force equilibrium. Additionally force control comes with the
drawbacks of model based control, e.g. model simplifications
and parameter uncertainties. Thus force control is not sufficient
for a robust control. Due to this fact combinations of force
control and position control are proposed. Here, mainly two
concepts are presented which will be tested in the near future.
Note, that the experimental evaluation is still to be done, and
the presented concepts are preliminary.

1) Hybrid Force Control: The basic idea of this approach
is to superpose the controller output of both the position and
the force controller (fig. 6). This classical approach is well-
known from force control for serial robots e.g. grinding robots.
For tendon-based parallel manipulators, this approach was al-
ready introduced by [Ming1994]. For the spatial tendon-based
parallel manipulator, [Fang2005] shows detailed concepts.

2) Redundant Force Control: In this paper, redundant
tendon-based parallel manipulators are focused, i.e. m ≥ n+1.
Thus, the platform is fixed by n + r unilateral constraints.
Only n bilateral constraints are sufficient to fix the platform
pose. Hence the r redundant tendons transform the n unilateral
constraints into bilateral constraints, if and only if all forces
in the tendon force distributions are positive.
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Fig. 6. Hybrid Force Control

Fig. 7. Redundant Force Control

The force equilibrium is represented by an underconstrained
system of equations. Fixing the redundant r tendon forces
results in a quadratic, uniquely solvable system of equations.
Thus, the remaining n tendons react with their corresponding
forces. Since the calculated force equilibrium is calculated
for specific poses along a trajectory, an additional position
control ensures the validity of the force calculations and
precise motions of the platform (fig. 7). This approach has the
additional advantage, that r tendons have to be force controlled
and n tendons have to be position controlled. Thus the number
of feedback sensors can be reduced to r force (or torque)
sensors and n length (or angular) encoders.

IV. CONCLUSIONS

In this paper, a new algorithm for tendon force distribution
calculations capable for realtime computation was shown.
The algorithm delivers feasible and continuous solutions. This

allows to implement the shown algorithm on realtime control
systems which increases reliability, safety and performance for
the industrial application of tendon-based parallel manipula-
tors.
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