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1 Introduction

Parallel cable-driven Stewart-Gough platforms consist of a movable end-effector which, is 
connected to a machine frame by motor driven cables. At the Chair of Mechatronics, a testbed 
for tendon-based Steward-platforms (SEGESTA, Seilgetriebene Stewart-Plattformen in Theorie 
und Anwendung) has been developed during the past few years (see Fig. la). Presently, the 
SEGESTA teststand has n = 6 d.o.f. and uses m =  7 tendons to move the platform along desired 
trajectories [3]. In a future modified version of SEGESTA it is planned to add an eighth tendon. 
Since cables can transmit only tension forces, at least m =  n + 1 cables are needed to tense a 
system having n degrees-of-freedom. This results in a kinematical redundancy and gives m -  n 
degrees-of-freedom in the cable force distribution. For this reason, the workspace analysis is 
complex and very time-consuming. Therefore, reliable and robust algorithms are demanded to 
calculate the resulting workspace for a given parameter set (cable winch positions and platform 
connection points). To analyze the workspace, discrete methods are widely used. However, 
the drawback o f these methods is that intermediate points on the discrete calculation grids are 
neglected. Especially for parallel mechanisms, this may lead to false results and thus be dan
gerous. A  promising way to avoid this kind of discretization problems may be analyzing the 
workspace by means of so-called interval analysis. Within this paper, the workspace is defined 
by a force equilibrium and the workspace analysis is demonstrated for this criterion. The force 
equilibrium can be described as (see see Fig. lb):

[ Vl 
L (1)

a n d / > 0 or in a more compact form as

A T/ + W = 0, / > 0 . (2)

Using this formula as a criterion for workspace calculation, the problem can be described as 
a Constmint Satisfaction Problem (CSP). A  possible algorithm to solve CSPs bases on interval 
analysis.
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Fig. la  SEGESTA Testbed Fig. lb  Symbol Definitions for a Tendon-Based Stewart- 
Platform

2 Interval Analysis
For two real numbers a  and b an interval I  =  [a, b] is defined as follows 

[a,b] {r | a  < r <  h} where a < ¿. (3)

Then b  is called the supremum and a  the infimum o f  I. A  n-tupel o f  intervals is called box 
or interval vector. It is possible to define every operation o on R  on the set o f intervals I  = 
{[a, b] | a, b  e  R}, such that the following holds: 
Let Io , Ii €  I be two intervals. Then

V u G l0 , V v e l i 3 z e l 0 o l i  (4)

where 

z  = u o v. (5)

Hence 

max u o v < Sup(Zo o (6)

where <  is not unusual. This phenomenon is called overestimation and causes additional nu
merical effort to get sharp boundaries. For sure the same holds for min and Inf. Thus for input 
intervals I0 , . . . , I a  interval analysis delivers evaluations for the domain IQ X  h  x . . .  x  l a . Ib is  
evaluation is guaranteed to include all possible solutionsx e.g.

[1,3] + [2 ,4 ]  =  [3 ,7 ], (7)
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(8)

(9)

(10)

In some cases overestimation can be eliminated, e.g.

[1,3] + [1,3] • [-2 ,1] = [-5,6] 

while

[1 ,3 ]-( 1 + [-2 ,1 ]) = [-3 ,6].

3 Solving CSPs using Interval Analysis
A CSP is the problem of determining all c e  X c such that

0 (c ,v )> O
Y v e X v

where 4» is a system of real functionsdefined on a real domain representing the constraints. It 
will be shown later that for a description of the workspace, this problem has to be extended to

®(c,y,e) > 0
Y v e X y  (11)

3 e e X t .

Within this definition

•  c  is the vector of the calculation variables,

•  v is the vector of the verification and,

•  e is the vector of the existance variables.

Additionally, there may exist a vector of (e.g. geometrical) parameters g. The solution set for 
calculaton variables of a CSP is called Xs i.e.

®(c,v,e) >  0
y C € y C

e k  <” >
V F € Sty

3 e e X e .

As shown in detail in [6], the CSP can be solved using interval analysis, which guarantees re
liable solutions [2],[5],[4]. Solving the CSP with interval analysis delivers a list of boxes Zs 
representing an inner approximation of X$. According to eqn. 12, the solutions in Jis hold 
for total Xy and a subset of X t . Additionally, available implementations for interval analysis 
computations are robust against rounding effects. General CSP solving algorithms have been 
proposed in [6], which have to be changed slightly:

Algorithm CSP Solver
Given a system of inequations ^(b (c , v,e)) as a CSP. Set a desired precision e  for the cal

culation.
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1. Define a start box ¿Q.

2. Evaluate and analyze the result

3. If inf(4>(6()) >  0, entire box belongs to the solution, marie as valid.

4 . If sup(0(^ )) < 0, entire box is not part o f  the solution, marie as invalid.

5. Otherwise, result is undefined. Bisect box, if  the diameter is bigger than e  and store the 
new parts.

6. For Calculation, store all valid boxes. For Verification, exit with invalid when any box is 
invalid. For Existence check, exit with valid when any box is valid.

7. If unprocessed boxes remain, goto step 2 and investigate next unkown box.

4 Continuous Workspace Analysis
Examining eqn. 2, the structure matrix A r  needs to be inverted to calculate the tendon forces 

f  from a given platform pose and given external forces w. Since A r  has a non-squared shape, 
this is usually done using the Moore-Penrose pseudo inverse. Thus, the calculated forces will 
be a  least squares solution. In fact, not a least squares result but a force distribution within 
predefined tensions is demanded. To overcome this problem, the structure matrix is divided 
into a squared matrix Ajn- and a second matrix A ^ . with m — n columns. Now, the resulting 
force distribution can be calculated as

f Prt =  - A p
T

ri\ w  +  A T
l ie f t t c ). (13)

In this equation, is unknown. Every point and wrench satisfying

(14)

and leading to primary tendon forces

(15)

belongs to the workspace. Hence eqns. 14 and 15 represent a CSP o f  the form o f eqn. 11 with 
as existence variable, hi case o f  a single redundancy (r =  1), an arbitrary column of A r  

can be chosen to be A ^  [7], but by experiment it was found out that it is more efficient to loop 
through the columns than to fix one column to get the same precision. Fixing one column forces 
the algorithm to divide the boxes down to a very small size until die final result is at hand. This 
may lead to a higher computational effort than to loop through the columns. On the other hand, 
for r  >  2, looping is mandatory, i e .  all permutations have to be tested until a final result can be 
set To calculate a workspace for a specific robot, the following variable set for the CSP is used:

•  The platform coordinates arc the calculation variables.
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•  The tendon forces are the existence variables. Using intervals, this can be done in a 
"natural” way by using the tendon force limits as the interval boundaries.

•  Optionally, the exerted external wrench w and desired platform orientations can be set 
as verification variables. Workspace for a fix orientation o f  the platform is called con
stant orientation workspace. On the other hand, sometimes free orientation o f  the plat
form within given ranges must be possible within the whole workspace. The resulting 
workspace is called the total orientation workspace.

The algorithm determines all boxes, which are guaranteed to be reachable with at least one valid 
force distribution, for all desired orientations and external wrenches.

5 Continuous Workspace Synthesis
Workspace synthesis describes the process to obtain the geometrical parameters for a set 

M  := (m J , a  G I  o f  manipulators providing a predefined workspace. This predefined workspace 
is guaranteed to be a subset o f each obtained manipulator’s workspace W a , i.e.

W p c V a . (16)

In order to formulate the synthesis problem as a CSP o f  the form 11, eqns. 14 and 15 are 
considered again. This time the roles o f the variables have to be interchanged:

•  The workspace coordinates are the verification variables. Le. all found parameter sets 
ma  describe manipulator configurations having at least the demanded workspace W p . 
Again, optionally the exerted external wrench w  and a platform orientation can be given 
as verification variables.

•  The tendon forces are the existence variables

•  The geometrical parameters are the calculation variables, i.e. M  = Xs-

Solving this CSP with the described algorithm leads to a solution set represented as a list of 
boxes Z» c  X s  containing the geometrical parameters o f the manipulators. Note that the fol
lowing holds

lim Z A X s = 0 ,  (17)

where

(18)

In general Z , will be a real subset o f  X s, but due to eqn. 17 Xs can be approximated by Z j up 
to any precision by reducing e. Usually a synthesis requires the analysis o f  many possible 
manipulator configurations, thus it requires a multiple o f  the computation time used in the 
analysis process.
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6 Manipulator Design Optimization
Often, in industrial applications the term ’’optimal” is used with respect to economic as

pects, i.e. costs. In the case o f tendon-based parallel robots, the most cost-driving factor are the 
tendon winch units. Thus, every optimization method should reduce the number o f  winches as 
far as possible. Subsequently, within the set o f  all suitable robots with a minimum number o f 
winches, a further optimization criterion can be employed. A  reasonable choice is the volume 
expansion. On one hand, reducing the expansion o f  the robot saves space within a production 
facility, which reduces costs, on the other hand, the required tendon lengths are minimized. 
Since the usage o f  modem high-tech tendons is convenient in terms of safety, reliability and 
performance, the costs for tendons can be remarkable. In literature, usually the optimization, 
is performed with respect to the size (or volume) o f the workspace, e.g. [1]. Here, another 
approach is used [6]: Not a maximum size o f the workspace is demanded, but the guaranteed 
covering o f a predefined domain taking the above mentioned economic aspects into account at 
the same time. The following algorithm performs the required steps:

Algorithm Design Optimization

1. Set the number o f tendons m =  3

2. Perform a Workspace Synthesis

3. If the Synthesis delivers no solution, m =  m  +  1 and go to 2

4. Perform a Global Optimization on the solution set regarding a cost function C(c)

Note that the initial number o f  tendons was chosen with respect to practical aspects, i.e. d.o.f. =  2. 
The Global Optimization can be performed using Interval Analysis again and is described in de
tail in [2].

7 Conclusion
The workspace analysis for parallel cable-driven Stewart-Gough platforms is complex and 

very time-consuming. Reliable and robust algorithms are demanded to calculate the resulting 
workspace for a given parameter set (cable winch positions and platform connection points). 
However, the drawback o f discrete methods is that intermediate points on the discrete cal
culation grids are neglected. Especially for parallel mechanisms, this may lead to false re
sults and thus be dangerous. In this paper, discretization problems are avoided by analyzing 
the workspace by so-called interval arithmetics. The presented algorithms yield guaranteed 
workspaces and are usable for both the completely restrained systems (m =  n + 1 ) as well as for 
the more difficult redundantly restrained systems (m >  n +  1). For practical application, e.g. in 
robotics, parameter synthesis to generate desired workspace geometries is mandatory. However, 
in general the resulting workspace geometries are very complex and not intuitive to the design 
engineer. Here, the extension o f  the analysis methods to methods usable for the synthesis is 
shown.

79



Acknowledgements
Ulis work is supported by the German Research Council (Deutsche Forschungsgemein

schaft) under HI370/24-1.

References
[1] Hay A.M. and Snyman J.A. The optimal synthesis o f  parallel manipulators for desired workspace. 

In Advances in Robot Kinematics, pages 337-346, Caldes de Malavalla, 2002.

[2] Eldon Hansen. Global Optimization using Interval Analysis. Marcal Dekker, Inc., 1992.

[3] M. Hiller, S. Fang, S. Mielczarek, R. Verhoeven, and D. Franitza. Design, analysis and realization 
o f  tendon-based parallel manipulators. Mechanism and Machine Theory, 40,2005.

[4] J.-P. Merlet. A  generic trajectory verifier for the motion planning o f  parallel robots. Journal o f  
Mechanical Design, 123:510-515,2001.

[5] J.-P. M erlet Solving the forward kinematics o f  a gough-type parallel manipulator with interval 
analysis. Int. J. o f  Robotics Research, 23(3):221-236,2004.

[6] A. Pott Analyse und Synthese von Parallelkinematik-Werkzeugmaschinen. Ph. D. dissertation, 
Geihard-Mercator-University, Duisburg, Germany, 2007. To be published.

[7] R. Verhoeven. Analysis o f  the Workspace o f  Tendon-Based Stewart-Platforms. Ph. D. dissertation, 
Gerhard-Mercator-University, Duisburg, Germany, 2004. Available under http://deposit.ddb.de/.

Authors:
Tobias Bruckmann
University o f  Duisburg-Essen, Lehrstuhl für Mechatronik
Lotharstraße 1,47057 Duisburg
Tel.: +49 (0) 203 /  379-1908, Fax: +49 (0) 203 /  379-4494, eMail: bruckmann@imech.de

Lars Mikelsons
University of Duisburg-Essen, Lehrstuhl für Mechatronik
Lotharstraße 1,47057 Duisburg
TeL: +49 (0) 203 /  379-1908, Fax: +49 (0) 203 /  379-4494, eMail: mikelsons@imech.de

Dieter Schramm
University of Duisburg-Essen, Lehrstuhl für Mechatronik
Lotharstraße 1,47057 Duisburg
TeL; +49 (0) 203 /  379-3275, Fax: +49 (0) 203 /  379-4494, eMail: schramm@imech.de

Manfred Hiller
University o f Duisburg-Essen, Lehrstuhl für Mechatronik
Lotharstraße 1,47057 Duisburg
Tel.: +49 (0) 203 /  379-3337, Fax: +49 (0) 203 /  379-4494, eMail: hilHer@imech.de

80


	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 

