
Geographic Wayfinders and Space-Time Algebra

Bernhard Möller
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Abstract

Time Geography is a framework for describing reachable points in a (static) spatio-temporal environment.
While originally devised to facilitate reasoning about an individual’s or a population’s living conditions, it
was later adapted to many other applications. A wayfinder is an entity that moves through a space-time
continuum with possible obstacles. We show how to model the pertinent notions in relational algebra (and,
more abstractly, in modal semirings) with box and diamond operators. Admissible or undesired regions can
be described as Boolean combinations of primitive regions such as the set of all points reachable by forward
or backward movement from a given region or starting point. To derive results about the region blocked by
the union of two regions we introduce an abstract algebraic view of coordinates that is largely independent
of dimensional and metric aspects and thus very general. Moreover, the approach lends itself quite easily to
machine-supported proofs.

Keywords: Time geography; moving objects; obstacle analysis; formal algebraic semantics; modal
operators; modal semirings.

1. Introduction

Time Geography is a framework for describing reachable points in a (static) spatio-temporal environment.
While originally devised to facilitate reasoning about an individual’s or a population’s living conditions [11],
it was later adapted to many other applications (e.g., transportation planning [27], epidemiology and envi-
ronmental risk assessment [15] or crime analysis [23]).

In this paper we concentrate on the description and analysis of wayfinders. These are entities that move
through a space-time continuum with possible obstacles. Therefore it is an important task to determine
regions of space-time which wayfinders may safely traverse without running the risk of getting stuck before
an obstacle (obstacles are considered impenetrable).

In describing such phenomena we take up an approach by Hendricks et al. [13]. Central concepts there are
modalities such as “may” and “must” when describing movement in space-time. Examples are

– “We must reach the plane before it leaves.”
– “We must not pass through road X because of construction work.”

While the treatment in the original paper is only semi-formal, we show how to model these notions in
relational algebra with box and diamond operators and further in the general algebraic setting of modal
semirings. One advantage of the more abstract treatment is that for a large part our results are independent
of the number of spatial (or even temporal) dimensions and of metric considerations.
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The paper is structured as follows. In Sects. 2 and 3 we review the original approach of [13] and set up
the connection with relation algebra and modal operators. In Sect. 4 we introduce the algebraic structure
of modal semirings which abstracts and generalises the relational setting. Then Sect. 5 introduces algebraic
formulations of transitivity, irreflexivity and reflexive closure. Sect. 6 deals with intervals and convexity.
In Sect. 7 we present central notions and properties concerning regions that are blocked by obstacles and
therefore have to be avoided by wayfinders. Sect. 8 defines minimal and maximal elements of a region which
are used in Sect. 9 to characterise lower and upper bounds. These serve in Sect. 10 to prove a number of
properties of obstacles with a bounded avoidance region. The subsequent sections deal with the problem of
determining the avoidance region for a union of regions. It turns out that in case of a partial overlap this
is larger than just the union of the avoidance regions. To characterise this situation, Sect. 11 introduces a
notion of separatedness. Sect. 12 presents an abstract algebraic notion of coordinates, with which further
boundedness assertions become possible. The above-mentioned results about the avoidance regions of unions
are then presented in Sect. 13. In Sect. 14 we show how our general, dimension-independent, ideas work
out in the concrete case of two spatial dimensions, with a surprising result on avoidance regions. Sect. 15
contains a brief discussion of related work. Finally, Sect. 16 lists a few further properties about transitivity
and strict-orders.

2. Points and Reachability

We start with a set of very concrete definitions. First, we assume a set S of spatial coordinates, e.g., a
subset of Rn for some natural number n. However, we only assume an associative and commutative addition
operator + on spatial coordinates, such as addition of position vectors; subtraction is not needed. Second, we
assume a set T of temporal coordinates, linearly ordered by a partial order ≤, i.e., ≤ is reflexive, transitive
and antisymmetric and satisfies ∀ t, t′ ∈ T : t ≤ t′ ∨ t′ ≤ t. Moreover, we assume an element 0 ∈ T and
an addition operator + on T such that (T,+, 0) is a cancellative commutative monoid, i.e., + is associative
and commutative with neutral element 0 and satisfies t + t′ = t + t′′ ⇒ t′ = t′′. Finally, we require that
t ≤ t′ ⇔ ∃ t′′ : t′ = t + t′′. By cancellativity this t′′ is unique and we denote it by t′ − t when t ≤ t′.
Moreover, 0 is the least element of T under ≤ . A point is a pair (s, t) ∈ S × T .

We want to describe the possible movements of a wayfinder. Without any restrictions one could not predict
where the wayfinder might be at a given time. Therefore one assumes an upper bound on the velocity and
analyses how far away a wayfinder can get from its starting position while staying below this speed bound
all the time. The bound is supposed to be constant over time. Now, given a constant and non-negative
maximum velocity vector v we define the reachability relation Rv between points by

(s, t)Rv (s′, t′) ⇔df t ≤ t′ ∧ s′ ≤ s+ v · (t′ − t) ,

where ≤ on vectors is taken coordinate-wise. This means that (s′, t′) can be reached from starting point
(s, t) by travelling for time t′−t with maximal velocity v. Having v as a parameter allows modelling switches
between varying velocities, e.g., shifting to a lower gear in a steeper region.

Lemma 2.1. Rv is a partial order.

The straightforward proof is omitted.

If besides addition there are also subtraction − and a norm operator ‖ ‖ on spatial coordinates available, a
more liberal variant of the reachability relation is the following:

(s, t)Sv (s′, t′) ⇔df t ≤ t′ ∧ ‖s′ − s‖ ≤ v · (t′ − t) ,

with a scalar non-negative velocity v.
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Lemma 2.2. Sv is a partial order.

Proof. Reflexivity is clear.

Transitivity: Assume (s, t)Sv (s′, t′) ∧ (s′, t′)Sv (s′′, t′′), i.e., t ≤ t′ ∧ ‖s′−s‖ ≤ (t′−t)·v ∧ t′ ≤ t′′ ∧ ‖s′′−s′‖ ≤
v · (t′′− t′). By transitivity of ≤ on T we infer t ≤ t′′. Moreover, by vector arithmetic, the triangle inequality
for ‖ ‖, distributivity and time arithmetic,

‖s′′ − s‖ = ‖s′′ − s′ + s′ − s‖ ≤ ‖s′′ − s′‖+ ‖s′ − s‖ ≤ v · (t′′ − t′) + v · (t′ − t) = v · (t′′ − t) ,

and hence (s, t)Sv (s′′, t′′).

Antisymmetry: Assume (s, t)Sv (s′, t′) ∧ (s′, t′)Sv (s, t), i.e., t ≤ t′ ∧ s′ ≤ s + v · (t′ − t) ∧ t′ ≤ t ∧ s ≤
s′ + v · (t′ − t). By antisymmetry of ≤ on T we infer t = t′. Hence t − t′ = 0 = t′ − t, so that from the
assumptions we obtain ‖s′− s‖ ≤ 0 · v = 0, thus s′− s = 0 by definiteness of the norm and hence s = s′. ut

We now abbreviate points by x, x′, y, y′ etc.

We can compose reachability relations in the standard relational way:

x (Rv ;Rw) y ⇔df ∃ z : xRv z ∧ z Rw y .

Hence x (Rv ; Rw) y holds iff we can move from x to y by travelling for a while with maximal velocity v to
an intermediate point z and from there to y with maximal velocity w.

In the following sections we will abstract from this concrete relational model. However, we will frequently
illustrate the definitions there using the notion of a v-path. This is the set of points reachable from some
starting point (s, t) by moving with constant velocity v, i.e.,

{(s′, t′) | t′ ≥ t ∧ s′ = x+ v · (t′ − t)} .

Such a path describes a movement of unbounded duration along a line, disregarding possible obstacles in
the way. This notion will be helpful in the definition of blocking, though. When v is irrelevant we just speak
of a path.

3. Modalities

Now we want to characterise regions of spatio-temporal reachability. The diagrams to follow are similar to
the light cones introduced by Minkowski within the Theory of Relativity [17]. In this section we restrict
ourselves to the case of two spatial dimensions to allow simple depictions. The illustrations in this section
are taken from [13]; time progresses upwards.

3



The cone in (a) models the case where a wayfinder starts at the space-time point at the tip of the cone. Since
we study the points reachable under maximal velocity v, the further time progresses the farther a wayfinder
can move away (in every spatial direction) from the spatial coordinate of its starting point. In (b) we find
the situation where both a departure point and a destination point are given. The downward open cone at
the top models the region from which the destination can be reached under maximal velocity v; it is also
known as a past cone. Dually, a cone such as the one in (a) is called a future cone.

Since the speed limitation is assumed to be global, the possible region of travel for a wayfinder is the
intersection of the (infinitely extended) future and past cones; it is called a prism [11, 13]. Finally, in (c)
there is a sequence of space-time points that the considered wayfinder has to meet; they are connected by
prisms. Such a structure is called a necklace.

We will now show how to model cones and prisms in terms of reachability relations. We use the modal
forward and backward diamond operators (e.g. [21]) that compute the inverse image |Rv〉Q and the image
〈Rv|P of sets Q,P of points under some relation Rv:

|Rv〉Q =df {x | ∃ y ∈ Q : xRv y} , 〈Rv|P =df {y | ∃x ∈ P : xRv y} .

Hence these operators are existential quantifiers about successor and predecessor points. Concerning move-
ment, |Rv〉Q describes the past cone spanned by Q and 〈Rv|P the future cone spanned by P . Therefore, the
modal notation can serve as a “calculus of diagrams”.

|RvQQ Rv PP

Let us explain the notation. In many modal logics one considers only one direction of transitions and then
uses a notation like 〈R〉. However, we are interested in both directions and hence use the above asymmetric
notations. As a mnemonic aid, one can think of the diamonds as a simplified version of arrows: a frequent

notation for transition systems R is x
R7→ y when R offers a transition from x to y. Dropping the middle line

of the arrow and enlarging stem and tip one obtains x |R〉 y or, the other way around, y〈R|x. Our notations
generalise that to point sets P,Q instead of points x, y: we have x ∈ |R〉Q iff there is a point y ∈ Q with
x |R〉 y. Likewise, y ∈ 〈R|P iff there is a point x ∈ P with y〈R|x. So the set of “given” points for which we
want to compute the inverse image/image is at the tip/stem of the simplified 7→ arrow.

Box operators corresponding to the diamonds are defined deploying the De Morgan duality ∀ z : P (z) ⇔
¬∃ z : ¬P (z) between existential and universal quantifiers: one sets

|Rv]Q =df |Rv〉Q , 〈Rv|P =df 〈Rv|P ,

where X is the complement of X. Therefore

|Rv]Q =df {x | ∀ y : xRv y ⇒ y ∈ Q} , [Rv|P =df {y | ∀x : xRv y ⇒ x ∈ P} .

Hence diamonds and boxes express possible and guaranteed reachability, resp.:

– x ∈ |Rv〉Q iff under maximal velocity v it is possible to reach from x some point in Q;
– y ∈ 〈Rv|P iff under maximal velocity v it is possible to reach y from some point in P ;
– x ∈ |Rv]Q iff under maximal velocity v all points reachable from x lie in Q;
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– y ∈ [Rv|P iff under maximal velocity v all points from which y is reachable lie in P .

The diamond and box operators are well known from modal logic (e.g. [21]) and hence can also mirror the
deontic concepts of “must” and “must not” mentioned in the introduction.

We now sketch how some of the constructions in [13] can be described in terms of the above operators. To
simplify notation we identify singleton sets with their only elements. With this, the past and future cones
for a starting point x, a target point y and maximal velocity v mentioned at the beginning of this section
are given by 〈Rv|x and |Rv〉y, resp. The space-time prism between x, y (cf. Part (b) in the diagram on p.3
is simply the interval [x, y]v =df 〈Rv|x ∩ |Rv〉y between x, y w.r.t. the partial order Rv, i.e.,

[x, y]v = {r |xRv r ∧ r Rv y} . (1)

Note that by reflexivity of Rv we have x, y ∈ [x, y]v (and hence [x, y]v 6= ∅) whenever xRv y.

This definition is easily generalised to point sets P,Q by setting [P,Q]v =df 〈Rv|P ∩ |Rv〉Q. This can be
visualised as follows:

Q

P

[P,Q]

Next we show how compulsions or barriers, i.e., regions that must be reached or avoided, can be modelled
as sets of points.

In this picture we restrict ourselves to one spatial dimension. Region M1 consists of a single space-time point.
M2 is a spatially extended region which exists only for one single instant of time. M3–M5 are singleton regions
in space which each exist for a certain interval of time. M6 is a spatially extended region which exists and
retains constant width for another interval of time. Finally, M7 and M8 are regions that, during a time
interval, move from one place in space to another. While M7 at each time during the interval occupies a
singleton region in space, the spatial extent of M8 shrinks during its time interval.

By the above explanations, the set of points from which a wayfinder can avoid a barrier B in forward
direction is [Rv|B. An analogous expression models this for the backward direction. The set of points from
which a wayfinder is guaranteed to reach only compulsion C is [Rv|C.
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Frequently, one will want a barrier or compulsion to be “connected” (i.e., not to have “holes”). For this one
can use the classical mathematical notion of convexity: a set P of points is Rv-convex if with any two points
in P also all intermediate points belong to P , i.e., ∀ p, q ∈ P : [p, q]v ⊆ P .

Lemma 3.1.

1. For any transitive relation R and point set B the sets |R〉B and 〈R|B are convex.
2. Convex sets are closed under intersection. In particular, intervals are convex.

A proof will be given within the algebraic treatment of the following sections.

4. Abstraction

The relational treatment already allows abstracting from the particular space in which the movements occur:
all that matters is the respective reachability relation, which simply can be treated as a parameter of the
whole approach. The only general requirement is that reachability be transitive.

However, we abstract even further by generalising the setting of concrete relations to the algebraic structure
of modal semirings. This is a well established theory (see [4] for a survey) with many concrete instantiations,
in particular relations. Using it makes our theory apply to a much larger class of models. Additionally it
becomes amenable to (semi-)automatic proofs more easily (see [14] for a pioneering paper on this and [10,
22, 9] for more recent comprehensive case studies).

Definition 4.1. An idempotent semiring is a structure (S,+, ·, 0, 1), where (S,+, 0) forms an idempotent
commutative monoid (i.e., a+a = a for all a ∈ S) and (S, ·, 1) a monoid; moreover, · has to distributive over
+, and 0 has to be a multiplicative annihilator, i.e., 0 · a = 0 = a · 0. The operator + (not to be confused
with addition of spatial coordinates) induces the natural order given by a ≤ b ⇔df a+ b = b, in which 0 is
the least element (this should not be confused with the order ≤ between temporal coordinates).

In many concrete examples the elements of a semiring correspond to sets of possible transitions between
states of some kind. In the case of modelling wayfinders, the states would be points and the transitions pairs
of points as in the reachability relation. In informal motivations of our definitions we will often use this
transition view of semiring elements; in binary relations these are one-step transitions, but in other models
it is also possible to have longer transition paths. The roles of the operators can be explained as follows.

a+ b ↔ choice between the transitions of a and b (union of a and b),
a · b ↔ all possible sequential compositions of transitions from a followed by transitions from b,

0 ↔ empty choice (empty set of transitions, modelling abortion or blocking),
1 ↔ identity transition, taking each state to itself (modelling “skip” or “no-operation”).

A prominent example of an idempotent semiring is provided by taking S to be the set of binary relations
over some set X, with relational union as +, relational composition as · , the empty relation as 0 and the
identity relation {(x, x) : x ∈ X} as 1. In the preceding sections X was the set of space-time points. In the
relational interpretation, the natural order ≤ coincides with inclusion ⊆ .

Frequently we use the proof principle of indirect equality [7]:

a = b ⇔ (∀ c : c ≤ a ⇔ c ≤ b) . (2)

The implication ⇒ is trivial. For ⇐ set c = a to obtain a ≤ b and c = b to obtain b ≤ a, and use
antisymmetry then. The principle may seem cumbersome at first, but the variable c offers an additional
degree of freedom which often makes proofs go through more easily (or at all).
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In the relational semiring, when the elements of the set X are interpreted as points, subsets of the identity
relation can be used as adequate representations of subsets of X. When X is the set of space-time-points,
subsets of X are also called regions. They can therefore be represented by subrelations of the identity relation
on X. The set of all points is represented by the identity relation itself, i.e., by the element 1 in the relational
semiring, while the empty set of points is represented by the empty relation, i.e., by the semiring element 0.
Subrelations of the identity relation can be mimicked algebraically by so-called tests.

Definition 4.2. In a semiring, a test is a sub-identity element p ≤ 1 that has a complement relative to 1,
i.e., an element ¬p that satisfies p+ ¬p = 1 and p · ¬p = 0 = ¬p · p.

Actually, the condition p ≤ 1 is redundant, since it follows from p + ¬p = 1. We have given it to ease the
connection with the relational semiring. It is easy to see that complements are unique if they exist. Moreover,
the set of tests forms a Boolean subalgebra in which + coincides with the binary supremum t and · with the
binary infimum u . The notations + and · for supremum and infimum are also frequently used in Boolean
algebra, notably in switching theory. As a consequence of the definitions,

p ≤ q ⇔ p = p · q . (3)

Every semiring contains the greatest test 1 and the least test 0. In the relational semiring the correspond to
the overall setX and the empty set, resp. We also use the analogue of set difference, defined by p−q =df p·¬q.
It satisfies the shunting rule

p− q ≤ r ⇔ p ≤ q + r . (4)

Because of their interpretation in the concrete space-time model we will write “regions” instead of “tests”
in the sequel. Regions will be denoted by p, q, r etc., and the set of all regions by Reg.

Points can be modelled as atomic regions, corresponding to singleton sets.

Definition 4.3. Region p is a point if p 6= 0 ∧ ∀ q : q ≤ p ⇒ q = 0 ∨ q = p. This means that there are no
regions properly between 0 and p. In lattice theory the points are therefore often called atoms. We denote
the set of all points by Pt. Moreover, we require the set Reg to be atom-determined ; this means that every
region p is the least upper bound of the set of all points ≤ p. In the literature “atom-determined” is mostly
abbreviated to just “atomic”. In the sequel we will denote points by x, y, z.

Lemma 4.4. For point x and region p we have x 6≤ p ⇔ x ≤ ¬p.

Proof. By (3), p ≤ 1, hence x · p ≤ x, x a point and Boolean algebra,

x 6≤ p ⇔ x · p 6= x ⇔ x · p ≤ 0 ⇔ x ≤ ¬p . �

Without the assumption that x be a point this property may fail: in set-theoretic notation, q 6⊆ p is not
equivalent to q ⊆ p.

As mentioned, in the sequel a, b etc. can be thought of as semiring elements that represent sets of transitions
between points. The natural semiring order ≤ corresponds to inclusion ⊆ between sets of transitions. Given
a region p, the product p · a can be used to restrict a to those transitions that start from points in region p
while, symmetrically, a · p restricts a to those transitions that end in points of p.

Definition 4.5. With these concepts we axiomatise the backward and forward modal diamond operators 〈 |
and | 〉 introduced in Sect. 3:

〈a|p ≤ q ⇔ p · a · ¬q ≤ 0 , |a〉p ≤ q ⇔ ¬q · a · p ≤ 0 ,
〈a · b|p = 〈b|〈a|p , |a · b〉p = |a〉|b〉p .

7



The first axiom says that the image of p under a lies fully in q iff the restriction p · a does not contain pairs
that end in ¬q. The second axiom is the analogous characterisation of the inverse image of p under a. The
axioms in the second line stipulate that the diamonds are well behaved w.r.t. sequential composition: The
image of p under a · b is the image under b of the image of p under a, and analogously for the inverse image.

The diamonds of regions work out as follows: for regions p, q we have

|p〉q = p · q = 〈p|q (5)

which entails the import/export laws

〈a · p|q = p · 〈a|q , |p · b〉q = p · |b〉q . (6)

Also, the diamonds are fully strict :

〈a|q = 0 ⇐⇒ q · a = 0 , |a〉q = 0 ⇐⇒ a · q = 0 . (7)

Points and regions interact as follows.

Lemma 4.6. Let x be a point, p a region and a an arbitrary element. Then

x ≤ 〈a|p ⇔ p · a · x 6= 0 , x ≤ |a〉p ⇔ x · a · p 6= 0 .

Since, by the above remarks on restriction, p · a · x 6= 0 is the subset of a-transitions that lead from some
p-element to x, the first equivalence expressess that x is in the image of p under a iff there is at least one
transition from p to x. An analogous explanation applies to the second equivalence.

Proof. We show the first claim, the second being symmetric. Here and in the derivations to come, we use
the symbols {[ and ]} to bracket a comment that justifies the step from the line above it to the line below
it. Some authors use { and } for that purpose, but this might lead to confusion when set comprehensions
occur.

x ≤ 〈a|p
⇔ {[ (3) ]}

x = x · 〈a|p
⇔ {[ x · 〈a|p ≤ x and x a point ]}

x · 〈a|p 6= 0

⇔ {[ by import/export (6) ]}
〈a · x|p 6= 0

⇔ {[ definition and full strictness of diamond (7) ]}
p · a · x 6= 0 .

ut

Corollary 4.7. For points x, y and arbitrary a we have y ≤ 〈a|x ⇔ y ≤ |a〉x.

This expresses that y is in the image of x under a iff x is in the inverse image of y under a.

Definition 4.8. As in the relational case, the box operators are defined as De Morgan duals of the diamonds:

[a|q =df ¬〈a|¬q , |a]q =df ¬|a〉¬q .
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By the first diamond axioms and Boolean algebra the modal operators satisfy the swapping rules

〈a|p ≤ q ⇔ p ≤ |a]q and |a〉p ≤ q ⇔ p ≤ [a|q . (8)

This means that diamonds and boxes form Galois connections [8].

Diamonds are disjunctive in both arguments, while boxes are conjunctive in their test arguments and an-
tidisjunctive in their transition arguments:

〈a|(p+ q) = 〈a|p+ 〈a|q , |a〉(p+ q) = |a〉p+ |a〉q ,
〈a+ b|p = 〈a|p+ 〈b|p , |a+ b〉p = |a〉p+ |b〉p ,
[a|(p · q) = [a|p · [a|q , |a](p · q) = |a]p · |a]q ,
[a+ b|p = [a|p · [b|p , |a+ b]p = |a]p · |b]p .

(9)

This entails that diamonds and boxes are isotone, i.e., monotonically increasing, in their test arguments. In
the transition argument, diamond is isotone, while box is antitone, i.e., monotonically decreasing:

p ≤ q ⇒ 〈a|p ≤ 〈a|q ∧ |a〉p ≤ |a〉q ∧ [a|p ≤ [a|q ∧ |a]p ≤ |a]q ,
a ≤ b ⇒ 〈a|p ≤ 〈b|p ∧ |a〉p ≤ |b〉p ∧ [b|p ≤ [a|p ∧ |b]p ≤ |a]p .

(10)

Another important property is the following.

Lemma 4.9. For arbitrary b and regions r, s we have |b〉r − |b〉s ≤ |b〉(r − s) and 〈b|r − 〈b|s ≤ 〈b|(r − s).

Proof.

|b〉r − |b〉s ≤ |b〉(r − s)
⇔ {[ shunting (4) ]}
|b〉r ≤ |b〉s+ |b〉(r − s)

⇔ {[ disjunctivity of diamond (9) ]}
|b〉r ≤ |b〉(s+ (r − s))

⇔ {[ Boolean algebra ]}
|b〉r ≤ |b〉(r + s)

⇔ {[ r ≤ r + s and isotony of diamond (10) ]}
TRUE .

ut

Many further properties can be found in [4, 5].

5. Abstract Reachability

For the rest of the paper we restrict ourselves to the case of a single reachability relation represented by
a transition element a of a semiring. Although, as mentioned in the beginning of Sect. 4, our treatment is
completely independent of the concrete space or time domain used, we visualise our definitions, as in Sect. 3,
for the case of one-dimensional space and time to keep the pictures simple. As in that section we assume
that time flows from bottom to top.
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Then the values of the diamond operators for transition element a and a region p can be visualised as follows.

a p
p

|app

If p is actually a point then exactly the future and past cones of Sect. 3 result.

Differing from Sect. 2 we only consider proper reachability, i.e., the starting point is not properly reachable
from itself. This will facilitate the definition of extremal points later. Therefore the transition element a is
required to be irreflexive and transitive.

Definition 5.1.

1. a is irreflexive if for all points x we have x · |a〉x = 0, equivalently, if x · 〈a|x = 0 for all points x,
equivalently, if x · a · x = 0 for all points x. This means that a does not contain a self loop for any
point.

2. a is transitive if |a〉|a〉p ≤ |a〉p for all regions p. If, concretely, a is a relation, this means that all
points x, y, z with x a y and y a z also satisfy x a z, the standard notion of transitivity of a relation.
The algebraic formulation is equivalent to 〈a|〈a|p ≤ 〈a|p as well as to |a]p ≤ |a]|a]p and [a|p ≤ [a|[a|p
(see Sect. 16.1 in the Appendix).

3. An irreflexive and transitive element a is called a strict-order .

By a =df a + 1 we denote the reflexive closure of a, the least reflexive element ≥ a. The notation follows
the mathematical convention of denoting the reflexive closure of a strict-order < by ≤.

This entails, by the definition of a, disjunctivity of diamond (9) and diamond of 1,

|a〉p = |a+ 1〉p = |a〉p+ |1〉p = |a〉p+ p . (11)

Using the theory of partial orders and (11) we obtain

|a〉p ≤ |a〉p+ p = |a〉p . (12)

Symmetric laws hold for the backward diamond.

Lemma 5.2. Assume a to be transitive.

1. |a〉|a〉p = |a〉p = |a〉|a〉p.
2. a is transitive as well; we have even |a〉|a〉p = |a〉p.

Analogous properties hold for the backward diamond and the box operators.

Proof.

1. By definition of a, disjunctivity of diamond (9), diamond of 1 and transitivity,

|a〉|a〉p = |a+ 1〉|a〉p = |a〉|a〉p+ |1〉|a〉p = |a〉|a〉p+ |a〉p = |a〉p .

The second equation is proved symmetrically.
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2. By the definition of a, disjunctivity of diamond (9) with (5), Part 1 and (12),

|a〉|a〉p = |a+ 1〉|a〉p = |a〉|a〉p+ |a〉p = |a〉+ |a〉p = |a〉p .

ut

6. Intervals and Convexity

From now on we assume the transition element a to be irreflexive and transitive, i.e., a strict-order, unless
explicitly stated otherwise.

Next we generalise the definition of intervals in (1) to the algebraic setting with the help of the diamond
operators. By the assumption that our transition elements a are irreflexive we can define (half) open and
closed intervals using the reflexive closure of a of a when appropriate.

Definition 6.1. The intervals spanned by regions p, q are

]p, q[ =df 〈a|p · |a〉q , [p, q[ =df 〈a|p · |a〉q ,
]p, q] =df 〈a|p · |a〉q , [p, q] =df 〈a|p · |a〉q .

Strictly speaking, these intervals should be indexed by the transition element a; we omit this to reduce
notational “noise”.

For instance, a closed interval can be visualised like this:

q

p

interval [p,q]

With the help of intervals we can give an algebraic definition of convexity, as already mentioned just before
Lm. 3.1.

Definition 6.2. A region p is convex if for all regions q, r ≤ p the closed interval spanned by q and r is
contained in p, i.e., [q, r] ≤ p.

Lemma 6.3.

1. The intersection of convex regions is convex.
2. For transitive a and arbitrary region p the regions 〈a|p and |a〉p are convex.
3. Every interval is convex.

Proof.

1. Immediate from the definitions and isotony of · .
2. Assume r, s ≤ |a〉p. By 〈a|r ≤ 1, isotony (10) with s ≤ |a〉p and Lm. 5.2.1,

〈a|r · |a〉s ≤ |a〉s ≤ |a〉|a〉p = |a〉p .

The proof for 〈a|p is symmetric.
3. Immediate from the definition of intervals and Parts 1 and 2. ut
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7. Barriers and Blocking

Definition 7.1. A barrier is a region p that a wayfinder must avoid. It is considered to be impenetrable,
i.e., the wayfinder has no possibility of “permeating” through it and hence has to go around it.

A barrier blocks movement in two respects:

– a wayfinder must not hit the barrier when moving
– and it cannot come from certain points behind the barrier, because barriers are considered to be

impenetrable.

As an auxiliary notion we define the region reachable from a region p as

rea(p) =df 〈a|p+ |a〉p .

In the transition model this is the union of the past and future cones of p and consists of all points on paths
to or from p.

p rea p

Now we want to define the region fbl(p) (“forward blocked by p”) before a barrier p. If a wayfinder would
start in that region it would necessarily hit p after a while. To characterise it, we observe that any subregion
q of fbl(p) must satisfy the following conditions:

1. q must lie before p.
2. All paths starting from q must lead through p.

Condition 1 is easily expressed as q ≤ |a〉p.

For Condition 2 things are not as simple. Note that we cannot recast it in the form “all paths starting in q
must lead only up to p”, since in the transition model every path can in principle be extended indefinitely
(unless the domain of time is finite). Therefore, to capture Condition 2. we define the forward cone fcone(p)
spanned by p using the formula

q ≤ fcone(p) ⇔df 〈a|q ≤ rea(p) . (13)

The idea is that p acts as a kind of gate through which all paths starting in q must pass. We visualise the
intended behaviour.

a q  rea p

q

p

a q  rea p

q

p

12



By the swapping rule (8) the right hand side is equivalent to q ≤ |a](rea(p)). Therefore, the principle of
indirect equality (2) leads to the following definition.

Definition 7.2. The forward cone of p is

fcone(p) =df |a]rea(p) . (14)

This can be visualised as follows.

p
fcone p

In general a forward cone could also be truncated by the bottom boundary of the overall space-time region.

Lemma 7.3.

1. The function fcone is isotone.
2. p ≤ fcone(p).
3. fcone(p) = |a]fcone(p).
4. q ≤ fcone(p) ⇔ 〈a|q ≤ fcone(p). In particular, 〈a|fcone(p) ≤ fcone(p) and hence
〈a|fcone(p) = fcone(p).

5. fcone(p) ≤ rea(p).
6. fcone(p) is convex.

Part 1 speaks for itself. Part 2 says that the above picture is correct, i.e., p is contained in its own fcone.
This also meets the original condition that every path starting in fcone(p) must lead through p. Part 3
means that paths starting in fcone(p) remain there throughout. Part 4 provides another closure property,
namely that fcone(p) contains all future cones of its points. Part 5 says that all points in fcone(p) are indeed
reachable from p. Part 6 again speaks for itself.

Proof.

1. The function is a composition of the isotone functions 〈a|, |a〉, 〈a| and + .
2. By (13) we have p ≤ fcone(p) ⇔ 〈a|p ≤ rea(p) = 〈a|p+ |a〉p, which holds trivially.
3. By the definition, Lm. 5.2 and the definition again,

fcone(p) = |a]rea(p) = |a]|a]rea(p) = |a]fcone(p) .

4. By Part 3, the swapping rules (8) and (13),

q ≤ fcone(p) ⇔ q ≤ |a]fcone(p) ⇔ 〈a|q ≤ fcone(p) .

5. By the definitions of fcone and a, antidisjunctivity of box (9), box of 1 and |a]rea(p) ≤ 1,

fcone(p) = |a]rea(p) = |a+ 1]rea(p) = |a]rea(p) · |1]rea(p)
= |a]rea(p) · rea(p) ≤ rea(p) .

13



6. Assume q, r ≤ fcone(p). By (13), |a〉s ≤ 1 with isotony of diamond (10) and Lm. 5.2.2,

〈a|r · |a〉s ≤ fcone(p) ⇔ 〈a|(〈a|r · |a〉s) ≤ rea(p) ⇐ 〈a|〈a|r ≤ rea(p)
⇔ 〈a|r ≤ rea(p) ,

which holds trivially. ut

Definition 7.4. The region forward blocked by p is the part of fcone(p) including p and before p, i.e.,

fbl(p) =df |a〉p · fcone(p) . (15)

Corollary 7.5. p ≤ fbl(p) and fbl(p) is convex. Moreover, for all q we have q ≤ fbl(p) ⇔ q ≤ |a〉p ∧ 〈a|q ≤
rea(p).

The second property offers a simpler way to check whether a region lies inside fbl(p) than using the original
definition (15), since it avoids an explicit calculation of fcone(p).

Proof. The first claim is immediate from p ≤ |a〉p and Lm. 7.3.3, the second one from Lm. 6.3.2 and Lm. 7.3.6
and Lm. 6.3.1. The final claim follows from the fact that · coincides with the intersection of regions and
from (13). ut

If one is interested in the part of fbl(p) properly before p one can use

pfbl(p) =df fbl(p)− 〈a|p .

fbl p

p
p

pfbl p

Definition 7.6.

1. Symmetrically to above, we define for a region p the backward cone bcone(p), backward blocked region
bbl(p) and the proper backward blocked region pbbl(p) as

bcone(p) =df [a|rea(p) , bbl(p) =df 〈a|p · bcone(p) , pbbl(p) =df bbl(p)− |a〉p .

2. Finally, we define the region blocked forward and backward by p as

bl(p) =df pfbl(p) + p+ pbbl(p) . (16)

14



p

bl p

Corollary 7.7. For f ∈ {fcone, fbl , bcone, bbl , } we have f(p) + f(q) ≤ f(p+ q).

Proof. Immediate from isotony of these functions. ut

In [20] the difference f(p + q) − (f(p) + f(q)) is called the emerging blocked region induced by the union
p+ q of regions. We will return to this topic in Sect. 13.

8. Extremal Elements

Next we define sets of extremal points, see also [25, 6, 19].

Definition 8.1. The maximal and minimal points of region p are given by

maxa p =df p− |a〉p , mina p =df p− 〈a|p .

I.e., the maximal points are those points in p that are not strictly before any p-point; likewise for the minimal
points.

Here we see why a better be irreflexive: otherwise points with a self-loop would be removed by the max/min
operators, even if they are related to no other points.

Lemma 8.2. [19] Consider elements a, b, a test p and a point x. We have the following properties for max
and symmetric ones for min.

1. maxa p ≤ p.
2. maxa (maxa p) = maxa p.
3. p = maxa p+ p · |a〉p.
4. If x is a point then maxa x = x = maxa |a〉x.

For the reader’s benefit we include the proof.

Proof.

1. By the definitions and ¬|a〉p ≤ 1 we have maxa p = p− |a〉p = p · ¬|a〉p ≤ p.
2. By Part 1 and isotony of diamond (10) we obtain |a〉(maxa p) ≤ |a〉p. Now antitony of ¬ shows
¬|a〉p ≤ ¬|a〉(maxa p) and thus

maxa (maxa p) = maxa p · ¬|a〉(maxa p) = p · ¬|a〉p · ¬|a〉(maxa p) = p · ¬|a〉p = maxa p .

15



3. By neutrality of 1, the definition of regions and distributivity,

p = p · 1 = p · (¬|a〉p+ |a〉p) = p · ¬|a〉p+ p · |a〉p = maxa p+ p · |a〉p .

4. For the first equation we obtain by Part 3, irreflexivity of a and neutrality of 0,

x = maxa x+ x · |a〉x = maxa x+ 0 = maxa x .

For the second equation we get by definition of max, disjunctivity of diamond (9) with Lm. 5.2.2,
Boolean algebra, definition of max and by the first equation,

maxa |a〉x = |a〉x− |a〉|a〉x = (|a〉x+ x)− |a〉x = x− |a〉x = maxa x = x .

ut
Next we determine the extremal points of a sum.

Lemma 8.3. maxa (p+ q) = (maxa p− |a〉q) + (maxa q − |a〉p) and
mina (p+ q) = (mina p− 〈a|q) + (mina q − 〈a|p).

In our depictions of regions, dominated points are drawn below the dominating ones. Hence the maximal
elements of a rectangular region constitute the upper border line of the rectangle. To illustrate the terms
in the above lemma we choose a sample case where all of region q is “behind” all of region p, with part of
the points in p dominated by elements of q. These form the inverse image |a〉q of q under a. Hence the first
summand maxa p− |a〉q can be visualised as follows.

p

qmaxa p - |aq

Proof.

maxa (p+ q)

= {[ definition ]}
(p+ q)− |a〉(p+ q)

= {[ distributivity ]}
(p− |a〉(p+ q)) + (q − |a〉(p+ q))

= {[ disjunctivity of diamond (9) ]}
(p− (|a〉p+ |a〉q)) + (q − (|a〉p+ |a〉q))

= {[ Boolean algebra ]}
((p− |a〉p)− |a〉q) + ((q − |a〉q)− |a〉p)

= {[ definition ]}
(maxa p− |a〉q) + (maxa q − |a〉p) .

ut

9. Boundedness

Using the extremal points we can define boundedness.
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Definition 9.1. Region p is up-bounded if p ≤ |a〉maxa p. This means that every point in p is dominated
by a maximal point of p. Therefore, if maxa p = 0 then p is up-bounded iff p = 0. Down-boundedness of p is
defined symmetrically as p ≤ 〈a|mina p. Region p is bounded if it is up-bounded and down-bounded.

Corollary 9.2.

1. p is bounded iff p ≤ [mina p,maxa p].
2. p is bounded and convex iff p = [mina p,maxa p].

Proof.

1. p bounded

⇔ {[ definition of boundedness ]}
p ≤ 〈a|mina p ∧ p ≤ |a〉maxa p

⇔ {[ lattice algebra ]}
p ≤ 〈a|mina p · |a〉maxa p

⇔ {[ definition of intervals ]}
p ≤ [mina p,maxa p] .

2. (⇒) By Part 1 we have p ≤ [mina p,maxa p]. Morever, by definition, mina p ≤ p and maxa p ≤ p, and
convexity of p implies [mina p,maxa p] ≤ p.
(⇐) By Lm. 6.3.3 p as an interval is convex, while boundedness follows from Part 1.

ut

Lemma 9.3. If p is up-bounded then for every transitive element b ≥ a one has |b〉p = |b〉maxa p. In
particular, |a〉p = |a〉maxa p and |a〉p = |a〉maxa p. A symmetric property holds for down-boundedness.

Proof. (≥) follows by p ≥ maxa p and isotony of diamond (10). For (≤) we calculate

|b〉p
≤ {[ p up-bounded and isotony of diamond (10) ]}
|b〉|a〉(maxa p)

= {[ definition of a and disjunctivity of diamond (9) twice ]}
|b〉|a〉(maxa p) + |b〉|1〉(maxa p)

≤ {[ |1〉q = q and assumption a ≤ b with isotony of diamond (10) ]}
|b〉|b〉(maxa p) + |b〉(maxa p)

≤ {[ transitivity of b and isotony of diamond (10) ]}
|b〉(maxa p) + |b〉(maxa p)

= {[ idempotence of + ]}
|b〉(maxa p) .

Now, a is transitive by assumption, from which transitivity of a follows by Lm. 5.2, and a and a are ≥ a. ut

Theorem 9.4. If p, q are up-bounded then maxa (p+ q) = maxa (maxa p+ maxa q).

Proof. We can re-use the proof from [19], where this property was shown under the assumption that a is
normal, i.e., that all regions are up-bounded.

For the right hand side of the claim we first obtain
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maxa (maxa p+ maxa q)

= {[ Lm. 8.3 ]}
(maxa (maxa p)− |a〉(maxa q)) + (maxa (maxa q)− |a〉(maxa p))

= {[ idempotence of max ]}
(maxa p− |a〉(maxa q)) + (maxa q − |a〉(maxa p)) .

Since by Lm. 9.3 up-boundedness entails |a〉q = |a〉(maxa q) and |a〉p = |a〉(maxa p), we are done. ut

Next we show the important property that the sum of bounded regions is bounded again.

Theorem 9.5. If p, q are up-bounded then so is p+ q.

Proof. We show p ≤ |a〉maxa (p+ q). By commutativity of + and swapping the roles of p and q also
q ≤ |a〉maxa (p+ q), which shows the claim. First,

p

≤ {[ up-boundedness ]}
|a〉(maxa p)

= {[ Boolean splitting ]}
|a〉(((maxa p) · |a〉q) + ((maxa p)− |a〉q)))

= {[ disjunctivity of diamond (9) ]}
|a〉((maxa p) · |a〉q) + |a〉((maxa p)− |a〉q) .

The second summand is ≤ |a〉maxa (p+ q) by Lm. 8.3 and isotony of diamond (10). For the first one we
continue as follows.

|a〉((maxa p) · |a〉q)
= {[ definition of max ]}
|a〉(p · ¬(|a〉p) · |a〉q)

≤ {[ p ≤ 1 and isotony of diamond (10) ]}
|a〉(¬(|a〉p) · |a〉q)

= {[ commutativity of · on tests and definition of − ]}
|a〉(|a〉q − |a〉p)

= {[ By Lm.9.3 ]}
|a〉(|a〉(maxa q)− |a〉p)

≤ {[ transitivity of a and shunting (4) ]}
|a〉(|a〉(maxa q)− |a〉|a〉p)

≤ {[ Lm. 4.9 ]}
|a〉|a〉((maxa q)− |a〉p)

= {[ transitivity of a and Lm. 5.2 ]}
|a〉((maxa q)− |a〉p))

≤ {[ Lm. 8.3 and isotony of diamond (10) ]}
|a〉maxa (p+ q) .

ut
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10. Bounds and Cones

We call p strongly up-bounded if it is up-bounded and it is not possible to bypass its maximal points
from non-maximal ones, i.e., if p · |a〉p ≤ fcone(maxa p). Symmetrically, p is strongly down-bounded if it is
down-bounded and it is not possible to bypass its minimal points starting from non-minimal ones, i.e., if
p · 〈a|p ≤ bcone(mina p).

Lemma 10.1. Assume p to be strongly up-bounded.

1. fcone(p) = fcone(maxa p).
2. fbl(p) = fbl(maxa p).

A symmetrical property holds for strongly down-bounded regions.

Proof.

1. We show rea(p) = rea(maxa p).

rea(p)

= {[ definition ]}
〈a|p+ |a〉p

= {[ up-boundedness and Lm. 9.3 ]}
〈a|p+ |a〉maxa p

= {[ Lm. 8.2.3 and disjunctivity of diamond (9) ]}
〈a|maxa p+ 〈a|(p · |a〉p) + |a〉maxa p

= {[ definition ]}
rea(maxa p) + 〈a|(p · |a〉p) .

Now we are done, since by (13) the assumption of strong up-boundedness is equivalent to 〈a|(p · |a〉p) ≤
rea(maxa p).

2. fbl(maxa p)

= {[ (15) ]}
|a〉maxa p · fcone(maxa p))

= {[ boundedness with Lm. 9.3 and Part 1 ]}
|a〉p · fcone(p)

= {[ (15) ]}
fbl(p) .

ut
Lemma 10.2. Let r = fbl(p) and assume that r is down-bounded.

1. r = [mina r, p].
2. fcone(p) = 〈a|mina r.
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r

r

p
p

fcone p

r

Proof.

1. (≤)

r

= {[ since by. (15) r ≤ |a〉p ]}
r · |a〉p

≤ {[ down-boundedness of r ]}
〈a|mina r · |a〉p

= {[ definition of intervals ]}
[mina r, p] .

(≥)

[mina r, p]

= {[ definition of intervals ]}
〈a|mina r · |a〉p

= {[ Lm. 9.3 ]}
〈a|r · |a〉p

= {[ definition of r ]}
〈a|(|a〉p · fcone(p)) · |a〉p

≤ {[ isotony of diamond (10) ]}
〈a|fcone(p) · |a〉p

≤ {[ Lm. 7.3.4 ]}
fcone(p) · |a〉p

= {[ Def. 15 ]}
r .

2. By Lm. 9.3 it suffices to show fcone(p) = 〈a|r.
(≥) follows from fbl(p) ≤ fcone(p) by Lm. 7.3.4.
(≤) By Boolean algebra and the definitions

fcone(p) = fcone(p) · |a〉p+ fcone(p) · ¬|a〉p = r + (fcone(p)− |a〉p) .

The first summand r is ≤ 〈a|r by (12). For the second one we reason as follows.

fcone(p)− |a〉p ≤ 〈a|r
⇔ {[ shunting (4) ]}
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fcone(p) ≤ |a〉p+ 〈a|r
⇐ {[ since p ≤ r by Cor. 7.5 ]}

fcone(p) ≤ |a〉p+ 〈a|p
⇔ {[ definition ]}

fcone(p) ≤ rea(p)

⇔ {[ by Lm. 7.3.5 ]}
TRUE .

11. Separatedness

Definition 11.1. Call p, q min-separated if mina p · 〈a|q = 0 = mina q · 〈a|p. max-separatedness is defined
symmetrically.

min-separatedness means that the minimal elements of p, q in no way dominate each other.

Corollary 11.2. If p, q are min-separated then mina (p+q) = mina p+mina q. If p, q are max-separated then
maxa (p+ q) = maxa p+ maxa q.

Proof. Straightforward by Lm. 8.3 and Boolean algebra. ut

Lemma 11.3. If p, q are min-separated and mina p·〈a|q ≤ 0 then fbl(p) ≤ fbl(p+q). If p, q are max-separated
and maxa p · |a〉q ≤ 0 then bbl(p) ≤ bbl(p+ q).

Proof. By Cor. 11.2 the assumption entails mina p ≤ mina (p+ q). Now the claim is immediate from isotony
of diamond (10) and fcone. The proof for max is symmetric. ut

Without the assumptions these properties may fail:

p

q

not in  fbl(p+q)

12. Coordinates

For our next results we need more detailed assumptions on the reachability relation a and on regions.

Definition 12.1. A finite family (pi)i<n of regions (n ∈ N) is said to partition a region q if q =
∑
i<n

pi and

the pi are pairwise disjoint, i.e., i 6= j ⇒ pi · pj ≤ 0.
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This is an algebraic formulation of the classical notion of partitions as induced, e.g., by equivalence relations.
An example is provided by the following diagram.

p1

p0
p2

p3

p4

q

Based on this we define coordinates, such as parallels to the axes in a two-dimensional system. Each coor-
dinate r partitions the plane into three regions: r itself, the points on one side of r and the points on the
other side of r. Algebraically this is expressed as follows.

Definition 12.2. A coordinate is a region r such that 〈a|r− r, r and |a〉r− r partition the overall region 1.

r

|ar - ra|r - r

In R2 straight lines are coordinates, whereas in R3 their role is played by planes.

Corollary 12.3. A coordinate r satisfies 〈a|r + r + |a〉r = 1. Moreover, 〈a|r − r and |a〉r partition 1 as do
〈a|r and |a〉r − r. As a consequence, ¬|a〉r = 〈a|r − r and ¬〈a|r = |a〉r − r.

|ara|r - r |ar - r a|r

Proof. By definition we have (〈a|r − r) + r + (|a〉r − r) = 1, which by Boolean algebra simplifies to the
formula of the first claim. The second claim is shown similarly. ut

In Euclidean geometry the coordinate values of a point are determined by parallels to the axes through that
point. We mimic this algebraically.
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Definition 12.4. Remember that Reg is the set of all regions. We say that the set Pt of points has n
dimensions if there is a family (ci)i<n of coordinate functions ci : Pt → Reg such that the following
conditions hold.

1. All regions ci(x) are coordinates with ci(x) ≤ rea(x). This means that all points in x’s i-th coordinate
are reachable from x.

2. All x ∈ Pt satisfy x =
∏
i<n

ci(x)., i.e., each point is uniquely represented as the intersection of all its

coordinates.

ວ

c0(x)

c1(x)
x

3. For every i the coordinates delivered by ci satisfy y ≤ ci(x) ⇔ ci(y) = ci(x).
4. Every coordinate ci is compatible with the transition relation: y ≤ ¬|a〉ci(x) ⇒ 〈a|ci(y) ≤ ¬|a〉ci(x)

and y ≤ ¬〈a|ci(x) ⇒ |a〉ci(y) ≤ 〈a|ci(x).

Part 3 means that if a point y lies in the i-coordinate of point x then their i-coordinates coincide and
vice versa. Therefore ci(x) is the equivalence class of x w.r.t. the relation y ≡i z ⇔df ci(y) = ci(z). By
contraposition, y 6≤ ci(x) ⇒ ci(y) · ci(x) ≤ 0, which means that if y is not in ci(x) then ci(y) and ci(x) have
empty intersection. This can be interpreted as saying that ci(y) is a (unique) “parallel” to ci(x) through y.
Part 4 means that if a point y does not lie above/below a coordinate the same is true for the whole region
below/above y’s coordinate of the same type.

The requirements above may be viewed as weak versions of the classical postulates of Euclidean geometry:
we do not consider arbitrary lines but just the very limited class of coordinates. We still require that two
non-parallel coordinates intersect in one point and that to every coordinate and a point outside it there is
a unique parallel of the same coordinate type through the point.

One may wonder whether the points in a coordinate should be linearly ordered w.r.t. reachability. But
to obtain the essential partition properties one would, for instance, in the 3D case need to use planes as
coordinates, and these cannot sensibly be linearly ordered.

Corollary 12.5. All x ∈ Pt satisfy |a〉x ≤
∏
i<n

|a〉ci(x) and 〈a|x ≤
∏
i<n

〈a|ci(x). This means that the cones

of x are contained in the intersections of the cones of x’s coordinates.

Proof. This follows from x =
∏
i<n

ci(x) and isotony of the diamonds (10). ut

In the next section we use coordinates to derive formulas for the region blocked by a sum of regions.

13. Blocks of Sums

While all our developments in Sects. 4–12 were completely independent of concrete dimensionalities of space
and time, to obtain further results we restict ourselves to one spatial dimension; some aspects of the case of
two-dimensional space are discussed in Sect. 14.
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In the concrete wayfinder model for 1D space the lines having the directions of the left and right cone
boundaries form a system of coordinates. This is similar to the situation depicted in Def. 12.4.2. For easier
memorability we write l instead of c0 and r instead of c1.

ວ x

l(x) r(x)

ວ

c0(x)

c1(x)
x

Next we move the algebra a bit closer to that model by requiring additional properties of coordinates.

Definition 13.1.

1. The coordinates l and r define a grid if for all points x, y with x 6= y the intersection l(x) · r(y) is a
point again.

2. l and r are cone generators if the inequations in Cor. 12.5 strengthen to equalities, i.e.,

|a〉x = |a〉l(x) · |a〉r(x) .

x

xl(x)

l(x)

r(x)

r(x)

a|x

|ax

In Sect. 14 it becomes clear that in the case of 2D space coordinates will not be cone generators.

One might conjecture that if l and r are cone generators then fcone(x) = 〈a|x and bcone(x) = |a〉x. However,
this need not be the case. If a is a linear strict-order then for all points x one has fcone(x) = 1 = bcone(x),
which generally differs from 〈a|x and |a〉x.

Besides the above “global” requirements we also give further properties of regions.

Definition 13.2.
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1. Region p is up-pointed if p is up-bounded and maxa p is a point. A proper down-cone is a region of the
form p = |a〉x for a point x; its tip is x. Down-pointedness and proper up-cones are defined dually.

xວ

a|x 

xວ

|ax 

2. An up-pointed region p with tip x is left-down-limited if there is a point u such that p ≤ 〈a|r(u) and
for all points y ≤ ¬|a〉l(x) · ¬|a〉r(u) we have l(y) · |a〉r(u) 6= 0.

l(x)

xວ

uວ

yວ

l(y)

r(u)

p

The first condition means that all of p is above the r-coordinate of u, which makes r(u) a “left lower
bound” for p; in particular, p does not extend indefinitely along its left bound l(x). The second condition
means that through every point y properly left of l(x) we can draw a parallel to l(x) that meets the area
below r(u), which is guaranteed to “stay away” from the region blocked by p. This is made precise
in Lem. 13.4. Right-down-limitedness is defined symmetrically. On can define analogous notions of
up-limitedness for down-pointed regions; we will deal only with up-pointed ones here, though.

As depicted, the coordinate r(u) does not need to actually meet p. However, in subsequent pictures we will
draw it as touching the respective region.

The tips can be retrieved from proper cones using Lm. 8.2.4:

Corollary 13.3. For point x we have maxa |a〉x = x = mina 〈a|x. Hence every proper down/up-cone is
up/down-pointed.

Limitedness admits an auxiliary result about cones.

Lemma 13.4. Assume that l and r are cone generators and consider an up-pointed region p with tip x. If
p is left-down-limited then ¬|a〉l(x) ≤ ¬bcone(p). Symmetrically, if p is right-down-limited then ¬|a〉r(x) ≤
¬bcone(p).
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Proof. We only show the first claim. Assume p ≤ 〈a|r(u) for some u with the further property stated in
Def. 13.2. By isotony of diamonds (10) and transitivity of a we obtain

〈a|p ≤ 〈a|〈a|r(u) = 〈a|r(u)

and hence, by Boolean algebra, ¬〈a|r(u) ≤ ¬〈a|p. Next, since l and r are cone generators, we have p ≤ |a〉l(x),
and obtain, again by isotony of diamonds (10) and transitivity of a,

|a〉p ≤ |a〉|a〉l(x) ≤ |a〉l(x)

and hence, by Boolean algebra, ¬|a〉l(x) ≤ ¬|a〉p.

Consider now an arbitrary point y ≤ ¬|a〉l(x) and choose some point z ≤ l(y) · |a〉r(u), which exists by the
assumption of left-down-limitedness. Then, by definition of z, the assumption on y with Def. 12.4.4, isotony
of diamond (10), Boolean algebra and the definition of rea,

z ≤ l(y) · |a〉r(u) ≤ ¬|a〉l(x) · |a〉r(u) ≤ ¬|a〉p · ¬〈a|p = ¬(〈a|p+ |a〉p) = ¬rea(p) .

Moreover, by Def. 12.4.1 and Cor. 12.3 we infer z ≤ |a〉y and hence |a〉y · ¬rea(p) 6= 0, equivalently |a〉y 6≤
rea(p). By the dual of (13) therefore y 6≤ bcone(p) and hence, by Lm. 4.4, y ≤ ¬bcone(p).
Since y ≤ ¬|a〉l(x) was arbitrary, we infer ¬|a〉l(x) ≤ ¬bcone(p). ut

Now we can state our first block-of-sum result.

Theorem 13.5. Let l and r induce a grid and be cone generators. Consider two regions p and q such that
p̂ =df bbl(p) and q̂ =df bbl(q) are up-pointed with tips x and y. Assume moreover that x ≤ |a〉r(y) and
y ≤ |a〉l(x) and that p + q is left-down-limited and right-down-limited. Assume further that p̂ · q̂ 6= 0, i.e.,
that the blocks of p and q intersect. Then with z =df l(x) · r(y) one has bcone(p + q) = |a〉z and therefore
bbl(p+ q) = |a〉z · 〈a|(p+ q).

In the diagram, s and t are points that define left and right bounding coordinates for p+q. The assumptions
x ≤ |a〉r(y) and y ≤ |a〉l(x) say that x is below r(y) and y is below l(x). The intersection point z of l(x)
and r(y) then serves as kind of a supremum of x and y and its lower cone encompasses the region blocked
by p and q; the exact extent of that region is obtained by intersecting the lower cone of z with the upper
cones of p and q.

Proof. We first prove that |a〉z ≤ bcone(p+ q). To this end we show for all u ≤ |a〉z that |a〉u ≤ rea(p+ q).

Since z = l(x) · r(y) we know by Def. 12.4.3 that l(z) = l(x) and r(z) = r(y). By Cor. 12.5 we have
|a〉z ≤ |a〉l(z) · |a〉r(z) = |a〉l(x) · |a〉r(y) and hence u ≤ |a〉l(x) · |a〉r(y).

By the partition properties of coordinates (Cor. 12.5), u therefore lies in |a〉x or in |a〉y or in 〈a|r(x) · 〈a|l(y).
These three cases are shown in the diagrams below.

ວ x

ວ y

ວ

ວ z

ວ s
ວ t

ວ v

p
q

u ≤ |ax

u

ວ x

ວ y

u ວ

ວ z

ວ s
ວ t

ວ v

p
q

u ≤ |ay

ວ x

ວ y

uວ

ວ z

ວ s
ວ t

ວ v

p
q

u ≤ |ax ∙ |ay

In the first case |a〉u ≤ |a〉x ≤ rea(p) ≤ rea(p+ q).
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In the second case |a〉u ≤ |a〉y ≤ rea(q) ≤ rea(p+ q).

In the third case we set v =df r(x) · l(y). The parallelogram spanned by v, x, y, z is the “emerging” blocked
region mentioned immediately after Cor. 7.7. By pointedness of p̂ and q̂ then v ≤ p̂ · q̂ and hence v ≤
〈a|p · 〈a|q ≤ 〈a|p. By construction u ≤ 〈a|v and hence u ≤ rea(p) ≤ rea(p + q) as well. Consider now
an arbitrary point w ≤ |a〉u. We can do the same case analysis for w again and obtain in this way that
w ≤ rea(p+ q) and are done.

It remains to prove that ¬|a〉z ≤ ¬bcone(p+ q). Since l and r are cone generators, Boolean algebra shows

¬|a〉z = ¬(|a〉l(z) · |a〉r(z)) = ¬|a〉l(z) + ¬|a〉r(z) .

Now we exploit that p + q is left-down-limited and right-down-limited. Using Lm. 13.4 we infer ¬|a〉l(z) =
¬|a〉l(x) ≤ ¬bcone(p+ q) and ¬|a〉r(z) = ¬|a〉r(y) ≤ ¬bcone(p+ q), and are done. ut

For the next theorem we need an additional notion.

Definition 13.6. The coordinate functions l and ry satisfy the parallelogram property if for points w, x, y, z
with w ≤ |a〉l(x) and y ≤ |a〉r(z) we have ]l(w), l(x)[ · ]r(y), r(z)[ 6= 0.

ວ x

ວ
w

ວ y

ວ z

l(x)

l(w) r(y)

r(z)

]l(w),l(x)[ ວ ]r(y),r(z)[

The conditions w ≤ |a〉l(x) and y ≤ |a〉r(z) mean that w lies below the l-coordinate of x and y lies below
the r-coordinate of z. Since by Def. 12.4.2 all l-coordinates are “parallel”, and likewise all r-coordinates,
l(w), l(x), r(y), r(z) span a “parallelogram” whose interior is the intersection (]l(w), l(x)[) · (]r(y), r(z)[) of
the open intervals between l(w), l(x) and r(y), r(z). The parallelogram property requires this interior to be
non-empty under the given assumptions.

Now we can formulate our second block-of-sum result, for the case of non-overlapping blocks.

Theorem 13.7. Let l and r induce a grid, be cone generators and satisfy the parallelogram property. Con-
sider two regions p and q such that bbl(p) and bbl(p) are up-pointed with tips x and y. Assume moreover
that x ≤ |a〉r(y) and y ≤ |a〉l(x) and that both p and q are left-down-limited and right-down-limited. Assume
finally that p and q are min-separated. Then one has bcone(p + q) = bcone(p) + bcone(q) and therefore
bbl(p+ q) = bbl(p) + bbl(q).
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ວ x ວ y

ວ z
t w

p q

gap(p,q)

Proof. As in the proof of Th. 13.5 one shows that ¬|a〉z ≤ ¬bcone(p+ q), where z =df l(x) · r(y).

But contrary to Th. 13.5 we can show that min-sparatedness implies |a〉z 6≤ bcone(p+q). More precisely, the
region gap(p, q) hatched in the above picture satisfies gap(p, q) ≤ ¬rea(p+ q) and gap(p, q) ≤ |a〉z = |a〉|a〉z
and hence |a〉z 6≤ bcone(p+ q). The details follow.

The parallelogram spanned by z, x, y is r =df |a〉z · 〈a|r(x) · 〈a|l(y). Since p is right-down-limited and q
is left-down-limited, there are coordinates t and w with properties as in Def. 13.2. By min-sparatedness,
t, w, r(x) and l(y) satisfy the assumptions of Def. 13.6 and therefore the parallelogram

gap(p, q) =df (]l(x), t[) · (]r(y), w[)

is non-empty. By construction and Boolean algebra, gap(p, q) ≤ ¬rea(p) · ¬rea(q) = ¬rea(p+ q).

We show now that for all points u ≤ r the intersection of |a〉u and gap(p, q) is non-empty and hence
u 6≤ bcone(p+ q). If u lies strictly above gap(p, q) this is clear. If u ≤ gap(p, q) then l(u) and r(u) lie strictly
between l(x) and t or r(y) and s, respectively. This means they satisfy again the assumption of Def. 13.6,
and hence the parallelogram (]l(x), l(u)[) · (]r(y), r(u)[) is non-empty again. Spelling out the definitions and
using that l, r are cone generators yields

]l(x), l(u)[ · ]r(y), r(u)[ = 〈a|l(x) · |a〉l(u) · 〈a|r(y) · |a〉r(u)
= |a〉l(u) · |a〉r(u) · 〈a|l(x) · 〈a|r(y) ≤ |a〉l(u) · |a〉r(u) = |a〉u .

In sum, only the part of |a〉z consisting of bcone(p) + bcone(q) belongs to bcone(p + q), which shows the
claim. ut

Note that his result crucially depends on min-sparatedness, as the following picture shows:
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ວ x

ວ y

ວ z

p
q

not min-separated!

14. On 2D Space

As shown at the beginning of Sect. 3, in the case of 2D space the inverse image |a〉x of a point x takes the
form of a proper circular cone:

x

|ax

For all points the opening angles of their cones have the same value, say α. This can be used to find the
backward blocked region bbl (cf. Def. 7.6) of a square, whose shape may come as a kind of surprise, since it
does not involve any “curvature”:

Theorem 14.1. Consider a square p with side length l in 2D space. Place a cone C with opening angle α
and base diameter l onto p. Connect the tip z of C with the four corners of p. The resulting pyramid forms
bbl(p).

p

bbl p

C

z

Proof. The proof is not given algebraically, since this would require a considerable amount of further con-
cepts. However, both the theorem and its proof are very much inspired by the techniques of the previous
sections.

The pyramid in the claim can be described as the interval r =df [p, z].
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1. We first show r ≤ bbl(p). By the dual of Cor. 7.5 this is equivalent to

r ≤ 〈a|p ∧ |a〉r ≤ rea(p) . (∗)

The first conjunct is immediate from the definition of intervals.
The second conjunct holds, by additivity of diamond, if |a〉y ≤ rea(p) for every point y ∈ r. Since the
cones q =df |a〉y and C have the same opening angle, q can be viewed as resulting from shifting a
copy of C to y. By construction, the lateral faces of r are tangential to the cone C, and so during the
shifting the upper part of the copy cannot leave the pyramid, even if y lies on one of the lateral faces.

p

q

y

C

Therefore that upper part is above p and hence in 〈a|p ≤ rea(p). Likewise, the lower part of the copy
cannot leave |a〉p, and by |a〉p ≤ rea(p) and we are done.

2. It remains to show that all points outside r do not belong to bbl(p). Consider such a point y. We
illustrate the arising situations with cross-sectional views.

p
y

r

a|p

p

ວy

r

a|p

hວ

y  a|p/ y  a|p

g

z ວ

If y 6∈ 〈a|p then y 6∈ bbl(p) by the first conjunct of (∗). Otherwise, since y has a positive distance
from r, we can draw through y a parallel g to the lateral surface of C. Now we look at the part of
g that lies within the cone |a〉y, i.e., h =df g · |a〉y. All cones emanating from points z in p have a
positive distance from h. Now, since a pyramid is left-down-limited and right-down-limited, the points
on h below the respective bounding coordinate of p cannot be reached from points in p. Therefore
|a〉y 6≤ rea(p) and hence, by the second conjunct of (∗), y 6∈ bbl(p). ut

For a general rectangle an analogous construction results in a roof-like shape of the bbl :
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15. Related Work

Although there is a vast amount of papers on spatial and spatio-temporal logics, in particular, modal ones,
(e.g. [1, 3, 12, 26]), the particular problem of characterising and avoiding obstacles in a modal/algebraic
way does not seem to have been tackled in the literature. Of course, there are non-modal/non-algebraic
mathematically-based treatments of these phenomena, e.g. in robot control [2].

There exist some attempts at formalising the particular problem area of obstacles for wayfinders (e.g. [24]),
but not in a very deep or systematic way. A real breakthrough occurred in the master’s thesis [20] which
presented a formalisation within the functional programming language Haskell together with a simple
visualisation tool for obstacle analysis.

Concerning technicalities, our description of cones bears resemblance to Vulikh’s treatment in general vector
spaces [28]. However, there no modal operators are used.

Acknowledgements I am grateful to Sabine Timpf for drawing my attention to the subject of this paper.
That also motivated the excellent thesis of David Pätzel [20], which was the basis for testing and extending my
earlier ideas on the algebraic abstraction of issues around wayfinders and putting them to actual non-trivial
work. David also provided many helpful remarks and suggestions, as did the editors and the anonymous
referees.
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[9] J. Ertel, R. Glück, B. Möller: Algebraic Derivation of Until Rules and Application to Timer Verification. In J. Desharnais,
W. Guttmann, S. Joosten (eds.): Proc. Relational and Algebraic Methods in Computer Science. LNCS 11194. Springer
2018, 244–262

31

https://web.archive.org/web/20131126163902/http://www.abcm.org.br/pt/wp-content/symposium-series/SSM_Vol2/Section_IV_Mobile_Robots/SSM2_IV_05.pdf
https://web.archive.org/web/20131126163902/http://www.abcm.org.br/pt/wp-content/symposium-series/SSM_Vol2/Section_IV_Mobile_Robots/SSM2_IV_05.pdf
http://www.cs.utexas.edu/users/EWD/ewd11xx/EWD1102.PDF
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16. Appendix: Additional Lemmata

16.1. Transitivity

Lemma 16.1. The swapping rules (8) imply

p ≤ |a]〈a|p , 〈a||a]q ≤ q , p ≤ [a||a〉p , |a〉[a|q ≤ q .

Proof. For the first two, set q = 〈a|p and p = |a]q, resp. The remaining ones are symmetric. ut

Lemma 16.2. The following characterisations of transitivity of a are equivalent:

∀ p : |a〉|a〉p ≤ |a〉p , ∀ p : [a|p ≤ [a|[a|p , ∀ p : |a]p ≤ |a]|a]p , ∀ p : 〈a|〈a|p ≤ 〈a|p .

Proof. Assume |a〉|a〉p ≤ |a〉p for arbitrary p. Then

TRUE

⇔ {[ by Lm. 16.1 ]}
|a〉[a|p ≤ p

⇒ {[ assumption and isotony of diamond (10) ]}

32

https://www.isa-afp.org/entries/KAD.shtml
http://www.minkowskiinstitute.org/mip/books/minkowski.html
http://www.minkowskiinstitute.org/mip/books/minkowski.html
http://perso.ens-lyon.fr/damien.pous/ra/


|a〉|a〉[a|p ≤ p
⇔ {[ by (8) twice ]}

[a|p ≤ [a|[a|p .

Next,

∀ p : [a|p ≤ [a|[a|p
⇔ {[ Boolean algebra ]}
∀ p : ¬[a|[a|p ≤ ¬[a|p

⇔ {[ definition of box and Boolean algebra ]}
∀ p : 〈a|〈a|¬p ≤ 〈a|¬p

⇔ {[ logic ]}
∀ q : 〈a|〈a|¬q ≤ 〈a|¬q .

Finally, by a derivation symmetric to the first one, 〈a|〈a|p ≤ 〈a|p implies |a]p ≤ |a]|a]p, which completes the
cycle. ut

16.2. Trichotomic Elements

Definition 16.3. Element a is trichotomic iff for all points x we have 〈a|x · |a〉x ≤ 0.

This means that the points “before” p are strictly separate from the points “after” p. The standard linear
orders on N,Z,Q and R are trichotomic.

Lemma 16.4.

1. If a is trichotomic then it is irreflexive.
2. If a is irreflexive and transitive then it is trichotomic.

Proof.

1. Suppose x · a · x 6= 0 for some point x. Then by Lm. 4.6 we have x ≤ 〈a|x and x ≤ |a〉x, hence
x ≤ 〈a|x · |a〉x and therefore 〈a|x · |a〉x 6= 0, a contradiction to a being trichotomic.

2. Consider a point x and assume there is a point y ≤ 〈a|x · |a〉x, i.e., y ≤ 〈a|x and y ≤ |a〉x. Then by
Lm. 4.6 also x ≤ 〈a|y. Therefore, by isotony of diamond (10) and transitivity, x ≤ 〈a|〈a|x ≤ 〈a|x and
hence by Cor. 4.7 x · a · x 6= 0, contradicting irreflexivity of a.

ut
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