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Abstract

We study a new partial order semantics of Petri nets with read arcs� where

read arcs model reading without consuming� which is often more adequate than

the destructive�read�and�rewrite modelled in ordinary nets� As basic observations

we take ST�traces� which are sequences of transition starts and ends� We de�ne

processes of our nets and derive two partial orders modelling causality and start

precedence� These partial orders are related to observations and system states

just as in the ordinary approach the single partial order of a process is related to

�ring sequences and reachable markings� Our approach also supports a new view

of concurrency as captured by steps�

� Introduction

Describing the runs of a concurrent system by sequences of actions ignores the possible
concurrency of these actions� which can be important e
g
 for judging the temporal e�
ciency of the system
 Alternatively to this so�called interleaving approach� one can take
step sequences� where a step consists of simultaneous actions� or partial orders to describe
runs � resulting in a so�called �true concurrency� semantics
 We will use safe Petri nets to
model concurrent systems� for these models� the most prominent partial order semantics
are so�called processes
 A process of a net N is essentially a very simple net consisting
of events �transition �rings in N� and conditions �tokens in N produced during the run��
the process gives a partial order on these events and conditions


The beauty of the approach is that operationally de�ned entities of N can now be
derived order�theoretically� Each linearization of the events is a �ring sequence of N � and
vice versa� each �ring sequence of N is a linearization of a unique process
 We can view the
process as a run and its linearizations as observations of the run� essentially by Szpilrajn�s
Theorem� we can reconstruct the partial order of the events simply as intersection of
the total orders given by all these observations
 Furthermore� unordered conditions are

�Work on this paper was partially supported by the DFG �Project �Halbordnungstesten��� An extended
abstract is to appear in the proceedings of MFCS ���
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coexisiting tokens� and each slice �maximal set of unordered conditions� is a reachable
marking of N � each reachable marking is a slice of some process and each step is a set of
unordered events


Recently� Petri nets with read arcs have found considerable interest �CH��� JK���
MR��� BG��� BP���� read arcs � as the lines from s in Figure � � describe reading
without consuming� e
g
 reading in a database� consequently� a and b in N� can occur
concurrently
 In ordinary nets� loops �arcs from a to s and from s to a and similarly for
b� would be used instead� which describe a destructive�read�and�rewrite and do not allow
concurrency� this is certainly often not adequate
 �MR��� JK��� BP��� de�ne processes of
nets with read arcs and generalize some of the results listed above� taking step sequences
as observations
 Whereas in Figure � �MR��� BP��� allow a step fa� bg only for N��
�JK��� allows this step also for N� and N�� the reason is that �JK��� views these nets as
translations from nets with inhibitor arcs and there these steps are intuitively reasonable
if we assume that a and b both start and then end some time later
 For read arcs� this
intuition does not seem so convincing
 Also� an undesirable e�ect is that in N� the step
reaches a marking that is not reachable by �ring sequences
 �Correspondingly� �JK���
allows more processes than �MR��� BP���
�

a b
N1 a b

N2 a b
N3

s

Figure �

The purpose of the present paper is a partial order semantics under the assumption
that activities have durations� consequently� observations of runs are ST�traces �Gla���
Vog��� where we see transitions start and then end
 The respective states are ST�markings
consisting of marked places and currently �ring transitions� hence� ST�markings treat
places and transitions on an equal footing just as nets themselves do
 An advantage of
using ST�traces is that their de�nition is �hopefully� indisputable� a transition can start
if it is enabled� when it starts� it removes a token from each place in the preset and
leaves the places in the read set untouched� after the start� it can end and produce a
token for each place in the postset
 Furthermore� �ring and step sequences can be seen
as special ST�traces � similarly as �ring sequences can be seen as special step sequences�
thus� ST�traces give a reference point for a suitable de�nition of steps for nets with read
arcs


We will show that� for nets with read arcs� the operationally de�ned ST�traces and
ST�markings are interrelated with spc�structures� our new partial order semantics� just as
in the ordinary approach �ring sequences and reachable markings are interrelated with
the classical partial order semantics as described above


If transitions start and end� we have the following phenomenon in N� above� when a

starts� b remains enabled and can start during the occurrence of a� thus� a and b overlap
in time and fa� bg is observably a step� note that for a and b both to occur� a has to
start before b
 This view allows more concurrency than that of �MR��� BP���
 In fact�
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in the latter approach each net with read arcs can be translated to an ordinary net with
the same partial order semantics
 Such a translation does not exist for N� in our setting�
fa� bg is a step of N� but ba is not a �ring sequence� this is impossible for ordinary nets

Hence� read arcs really make a di�erence in our approach� see also �Vog��a�
 On the other
hand� if in N� one of a and b starts� the other is disabled� in general� our approach is a
conservative extension of the ordinary setting since steps only reach markings that are
also reachable by �ring sequences


Our processes are the same as those in �MR���� but the relational structures we derive
from them are new� our spc�structures have two partial orders � and�modelling causality
and start precedence� e� f means that e necessarily ends before f starts �causality��
while e� f means that e necessarily starts before f starts � that this is important is
demonstrated by a and b in N� above


In Section �� we de�ne ST�traces� �ring and step sequences for nets with read arcs and
relate them to each other
 Section � studies spc�structures� General spc�structures model
general partial�order runs� while sequences� step sequences and ST�traces can be identi�ed
with special spc�structures
 Thus� analogously to partial orders for ordinary nets� spc�
structures give a framework for a variety of behaviour descriptions in the interleaving��true
concurrency� spectrum for nets with read arcs
 The main result of this section is a suitable
analogue of Szpilrajn�s Theorem� each spc�structure is �essentially� the intersection of its
so�called ST�linearizations
 �Other generalizations of Szpilrajn�s Theorem can be found in
�JK���� but these cannot be applied here
� In Section �� we de�ne processes and the spc�
structures they induce� and we show� Each order�theoretically derived ST�linearization of
a process of some net N is an ST�trace of N � each cut �maximal causally unordered set of
events and conditions� is an ST�marking reached along such an ST�trace
 Vice versa� for
each ST�trace of N we can construct a unique corresponding process� each reachable ST�
marking is a cut of some process and each step corresponds to a set of causally unordered
events in some process
 For ordinary nets without read arcs� our spc�structures coincide
with the ordinary partial order semantics based on processes� our results are also of interest
in this case� since they study the relation of ST�traces and ST�markings to processes� this
is a re�nement of the usual results since� as mentioned above� ST�traces generalize step
and �ring sequences
 Finally� we also have a look at so�called lines


For the results on cuts� it is important that the spc�structures are de�ned on events and
conditions
 �JK��� also derives from a process a relational structure with two relations�
but these are only de�ned on events� and they aim at step sequences� consequently� neither
the ST�markings nor the ST�traces of a net can be obtained
 The paper closes with a
more detailed comparison to the existing approaches in Section �


� Petri nets� read arcs� steps and ST�traces

In this section� we introduce safe Petri nets �place	transition�nets� with read arcs� also
called positive contexts �MR���� test arcs �CH��� or activator arcs �JK���
 In particular�
we will discuss what a suitable notion of step is for such nets� and we will introduce
ST�traces which are useful to describe runs where activities have a duration
 For general
information on ordinary Petri nets� the reader is referred to e
g
 �Pet��� Rei���
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We start with some relational notions� a �binary� relation on a �nite set X is some
R � X�X� we often write xRy in lieu of �x� y� � R � or sometimes xy � R if we view R as
the directed edges of a graph with vertex set X
 Composition of relations on X is de�ned
by R�S � f�x� z� j �y � X � �x� y� � R � �y� z� � Sg� with this notation� R is transitive
i� R�R � R
 We assume that � binds stronger than �� thus e
g
 R��S�T � � R�S�R�T 

We write R� and R� for the transitive and the re�exive�transitive closure of R� and R��

for its inverse
 If a relation is written � or �� we write x	 y for x� y 
 x � y and xv y

for x� y 
 x � y as usual
 Thus� transitivity of � means that 	�� � � � ��	

Assume � is a partial order on X� i
e
 it is irre�exive and transitive
 A linearization of

� is a sequence containing each element of X once such that x occurs before y whenever
x� y� if we speak of a linearization of a set without mentioning a partial order� then we
assume the empty partial order
 We write x co� y if neither x� y nor y�x
 Y � X is
a co��set if x co� y for all x� y � Y 
 The set of the ��maximal elements in Y � X is
max��Y � � fy � Y j y�x for no x � Y g� min��Y � is de�ned analogously
 We call Y
left�closed under � � if x� y � Y implies x � Y 


A Petri net with read arcs N � �S� T�W�R�MN� �or just a net for short� consists of
�nite disjoint sets S of places and T of transitions� the �ordinary� arcsW � S�T �T �S

�which all have weight ��� the set of read arcs R � S � T � and the initial marking
MN � S � f�� �g� we always assume �R �R��� �W � 
 When we introduce a net N or
N� etc
� then we assume that implicitly this introduces its components S� T � W � � � � or
S�� T�� � � �� etc
 and similarly for other tuples later on
 In general� we will not distinguish
isomorphic nets �nor isomorphic partial orders etc
�
 The tuple �S� T�W�R� is called a net
graph
 A net is called ordinary� if R � 


As usual� we draw transitions as boxes� places as circles and arcs as arrows� read arcs
are drawn as lines without arrow heads


For each x � S � T � the preset of x is �x � fy j �y� x� � Wg� the read set of x is
�x � fy j �y� x� � R �R��g� and the postset of x is x� � fy j �x� y� � Wg
 These notions
are extended pointwise to sets� e
g
 �X �

S
x�X

�x
 If x � �y � y�� then x and y form
a loop
 A marking is a function S � IN�
 We sometimes regard sets as characteristic
functions� which map the elements of the sets to � and are � everywhere else� hence� we
can e
g
 add a marking and a postset of a transition or compare them componentwise

Vice versa� a function with images in f�� �g is sometimes regarded as a set such that we
can e
g
 apply union to it


We now de�ne the basic �ring rule� which extends the �ring rule for ordinary nets by
regarding the read arcs as loops


� A transition t is enabled under a marking M � denoted by M �ti� if �t � �t �M 


If M �ti and M � � M � t� � �t � then we denote this by M �tiM � and say that t can
occur or �re under M yielding the marking M �
 Thus� when t �res� it checks its pre�
and read�set� removes a token from each place in its preset and puts a token onto
each place in its postset


� This de�nition of enabling and occurrence can be extended to sequences as usual�
a sequence w of transitions is enabled under a marking M � denoted by M �wi� and
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yields the follower marking M � when occurring� denoted by M �wiM �� if w � � and
M � M � or w � w�t� M �w�iM �� and M ���tiM � for some marking M ��
 If w is enabled
under the initial marking� then it is called a �ring sequence


A marking M is called reachable if �w � T � � MN �wiM 
 The net is safe if M�s� � �
for all places s and reachable markings M 


General assumption All nets considered in this paper are safe and T�restricted� i
e

each transition has a nonempty preset and a nonempty postset �where we sometimes omit
the postsets in �gures�


Now we will de�ne ST�traces� see e
g
 �Gla��� Vog���� a suitable behaviour notion if
we assume that the �ring of a transition takes time
 �Using ST�traces and partial orders�
�Vog��� studies durational transitions for ordinary nets
� The key idea is that the �ring
of a transition t consists of a beginning t� and an end t�� t� checks the enabledness of
t and consumes the input of t� and t� produces the output
 We will need the following
general notions� where the notion ST�sequence will not be applied to transitions� but � in
the next section � to events� i
e
 transition �rings


� For a �nite set X� X� denotes the union of two disjoint copies of X� for x � X�
the copies of x are denoted by x�� called the start of x� and x�� the end of x
 A
sequence over X� is closed� if it contains each x� as often as the respective x�


An ST�sequence over X is a sequence containing each x� once and each x� at most
once and only after the corresponding x�
 It is closed� if it contains each x� once


If transitions have a beginning and an end� a system state cannot adequately be de�
scribed by a marking alone� instead� it consists of a marking together with some transitions
that have started� but have not �nished yet
 We call such a system state an ST�marking
�S � Stellen� T � Transitionen �German��� ST�markings were introduced in �GV��� in a
slightly di�erent version


� An ST�marking of a net N is a pair Q � �M�C�� where M is a marking of N
and C � T � C is the set of currently �ring transitions
 The initial ST�marking is
QN � �MN � �


� The elements of T� are called transition parts
 For an ST�marking Q � �M�C��
a transition start t� is enabled under Q� Q�t�i� if M �ti� a transition end t� is
enabled under Q� Q�t�i� if t � C
 Firing yields a follower ST�marking given by
Q�t�i�M � �t� C � ftg� and Q�t�i�M � t�� C � ftg�


� We extend this de�nition to sequences� and if we have QN �wiQ for a sequence w of
transition parts� then w is an ST�trace and Q a reachable ST�marking of N 


We have the following observations� which show in particular that ST�traces are a
fairly conservative� re�ned version of �ring sequences� in particular� i� shows that we can
view a �ring sequence as a special ST�trace
 Observe that by the last part of ii�� it is
adequate to consider a set �instead of a multiset� of currently �ring transitions
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Proposition ��� Let N be a net�

i� For a reachable marking M and transitions t�� � � � � tn� we have M �t�iM� � � � �tniMn

i� �M� ��t�� t
�
� i�M�� � � � � �t�n t

�
n i�Mn� ��

ii� If �M�C� is a reachable ST�marking� then M �
P

t�C t
� is a reachable marking� in

particular� we have M � t�� �  for t� � C� and �M�C��t��i implies t� �� C�

iii� A marking M is reachable i� �M� � is a reachable ST�marking�

iv� If w is an ST�trace� then t� and t� occur alternatingly in w starting with t� for
each t � T � If w� is obtained from w by moving some t� to an earlier position that
is still after the preceding t�� then w� is an ST�trace as well and reaches the same
ST�marking� �In particular� w� could be obtained by replacing some t�� t

�
� in w by

t�� t
�
� ��

Proof� Part i� is obvious
 Part ii� can be shown by induction on the length of the
respective ST�trace using the safety of N � see �Vog��� for details �in the case that N
is ordinary�� to see why t� �� C� assume to the contrary and take some s � t��� since
M �

P
t�C t

� is reachable and has one token on s� we have M�s� � � and thus s �� �t� by
M �t��i� �ring t� under M �

P
t�C t

� violates the safety for s
 Now iii� follows from i� and
ii�


To prove the �rst statement of iv�� we apply the last statement of ii�
 To see the second
statement� observe that along w� we simply have more tokens than along w since they are
produced earlier� but at the end the same tokens have been produced and consumed in w

and w�
 �

While the de�nitions of �ring sequence and ST�trace are quite unquestionable� there
are at least two di�erent de�nitions of a step for nets with read arcs� and we de�ne a
third one
 Our notion is more general than the one of �MR���� it is more restrictive than
the one of �JK��� and also more conservative� because our steps only reach markings that
are reachable by �ring sequences as well


A step is meant to be a set of transitions that can �re concurrently
 We have already
argued in the introduction that� in N� shown in Figure �� �ring a does not disable b�
since a does not take away any tokens needed by b� therefore� b should be able to �re
concurrently to a and fa� bg should be a step
 Generalizing this idea� we get the following
de�nition


De�nition ��� A transition t of a net N can �re concurrently to a set G � T under a
marking M � if �M � �G��ti
 A set G with  �� G � T is a step enabled under a marking
M if for some linearization t�t� � � � tn of G �equipped with the empty partial order� we
have for i � �� � � � � n that ti can �re concurrently to ft�� � � � � ti��g under M � t� � � � tn is a
generation ordering for G under M 
 The marking M � reached by �ring G is M � �G�G�

and we write M �GiM �� this is generalized to step sequences as usual
 �
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In the net N� above� fa� bg is a step� but ba is not a �ring sequence
 This cannot
happen with the usual de�nition of a step for ordinary nets
 This shows that� with our
step de�nition� nets with read arcs cannot be simulated by ordinary nets � in contrast
with results in �CH��� MR���
 That our de�nition is nevertheless a conservative extension
is demonstrated in the following theorem in parts iv� and v� �and in Corollary �
� below�

Part ii� establishes that steps and� thus� step sequences can be seen as special ST�traces�
part iii� shows that steps are sets of transitions that can appear as currently �ring �and
thus concurrent� transitions in reachable ST�markings
 Part i� shows that steps should
be sets and not multisets in our setting of safe nets


Theorem ��� Let N be a net and M be a reachable marking�

i� If t can �re concurrently to G under M � then t �� G�

ii� Let G ��  have a linearization t� � � � tn� Then G is a step under M with gen�
eration ordering t� � � � tn i� �M� ��t�� � � � t

�
n i� In this case� �G � �G � M and the

�ti are disjoint� furthermore for M � with M �GiM �� we have �M� ��t�� � � � t
�
n i�M �

�G�G��t�� � � � t
�
n i�M

�� ��

iii� If G is a step under M � then there exists a reachable ST�marking �M �� G��

iv� If G is a step with M �GiM � and generation ordering w� then M �wiM ��

v� The markings reachable by step sequences are exactly the reachable markings�

Proof� i� If t � G and s � �t� then s is empty under M � �G

ii� For the following� observe that M�s� � � for all s � S by safety of N 
 G is a

step as required i�� for i � �� � � � � n� we have �ti � �ti � M � �ft�� � � � � ti��g
 This im�
plies the desired inclusion and disjointness� and it is equivalent to �M � �ft�� � � � � ti��g�
ft�� � � � � ti��g��t

�
i i�M � �ft�� � � � � tig� ft�� � � � � tig� for i � �� � � � � n� which in turn is equiva�

lent to �M� ��t�� � � � t
�
n i
 The ST�marking reached after this sequence is �M � �G�G� and

obviously �M � �G�G��t�� � � � t
�
n i�M

�� �

iii� follows from ii�

iv� If w � t� � � � tn� then by ii� �M� ��t�� � � � t

�
n t

�
� � � � t

�
n i�M

�� �
 Now we can rearrange
t�� � � � t

�
n t

�
� � � � t

�
n to t�� t

�
� � � � t

�
n t

�
n reaching �M �� � by Proposition �
� iv�� and �
� i� implies

M �wiM �

v� Follows from iv�� observe that �ring sequences can be seen as special step sequences


�

An interesting question is whether a converse of iii� holds� i
e
 whether C is a step
whenever �M�C� is a reachable ST�marking
 In ordinary nets� this is the case� but in
the net N of Figure �� we can start a� �re b and then start c reaching �� fa� cg�� no
reachable marking M exists where we can �re the step fa� cg� i
e
 where �M� ��a�c�i or
�M� ��c�a�i � compare ii� above


The de�nition of a step requires a suitable linearization� the next theorem describes
how such a linearization can be found� and it prepares our partial order approach
 Observe
that in N� of Figure �� a has to start before b because b takes the token a has to read� i
e

because a�R��

� �W��b


�



a

b c
N

Figure �

Theorem ��� Let N be a net� M a reachable marking and  �� G � T � Then G is a step
under M if and only if

i� �G � �G �M

ii� For all ti� tj � G� ti �� tj implies �ti � �tj � 

iii� The relation R���W is acyclic on G� i�e� �R���W �� is irre�exive and thus a partial
order�

If G is a step� then the linearizations of �R���W �� on G are exactly the generation
orderings�

Proof� Let G be a step under M with generation ordering t� � � � tn
 Conditions i� and
ii� are satis�ed by Theorem �
� ii�
 For i � j we have �tj � M � �ft�� � � � � tj��g� i
e

�ti � �tj � 
 Thus� we can only have tk�R���W ��tl if k � l� hence iii�� it also implies that
a generation ordering must be a linearization of �R���W �� on G


Now assume that G satis�es i��iii� and t� � � � tn is a linearization of �R���W �� on G�
which exists by iii�
 We are done once we have shown that t� � � � tn is a generation ordering
for G under M 
 We show �ti � �ti � M � �ft�� � � � � ti��g for i � �� � � � � n
 Since �G � M �
ii� implies �ti � M � �ft�� � � � � ti��g
 If we had s � �ti and s �� M � �ft�� � � � � ti��g� then
by �G � M we would �nd some j � i with s � �tj� i
e
 ti�R���W �tj and t� � � � tn is not a
linearization as required
 �

Corollary ��� Let N be a net� G a step under a reachable marking M � and  �� G� � G�
Then G� is a step under M �

The last corollary of this section shows that our de�nition of a step restricted to
ordinary nets coincides with the usual de�nition


Corollary ��� Let N be an ordinary net�  �� G � T � and M be a reachable marking�
Then G is a step under M i� for all t� t� � G we have M �ti and t �� t� � �t � �t� � � in
this case� M �wi for each linearization w of G�

Proof� Follows from Theorem �
� since �R���W �� is empty
 �
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� Structures for causality and start precedences

Usually� a partial order description of a system run is a set of events �and possibly condi�
tions� ordered by some partial order � � where � models causality� i
e
 for events e and
f � e� f means that e necessarily ends before f starts
 As argued in the introduction� we
also have to consider for some events e and f that e necessarily starts before f starts� we
will write e� f in this case
 It is clear that � should be a partial order� too
 Furthermore�
if e ends before f starts� then it also starts before f � �nally� if e ends before f starts and
f starts before g starts� then e ends before g starts
 Hence� � and � should satisfy the
requirements of the following de�nition


De�nition ��� An spc�order p � �E����� consists of a �nite set E� whose elements we
call events in this section� and two partial orders � and � on E such that

i� � � �

ii� ��� � � �i
e
 e� f � g implies e� g for all e� f� g � E� or equivalently ��v � �

An spc�structure is a labelled spc�order p � �E����� l� where �E����� is an spc�
order and l � E � X some function� the labelling� and such that e co� f � e �� f implies
l�e� �� l�f� for all e� f � E


By this label requirement� the events with a given label x are totally ordered by �
and we can speak of the i�th event with label x� p is canoncial� if E � X � IN and each
�x� i� � E is the i�th event with label x
 �

We will see that the requirements for spc�orders are complete in the sense that for
each spc�order p there exists a run of some net which is modelled using p
 In this paper�
we will only need labelled spc�orders that satisfy the label requirement
 Obviously� each
spc�structure is isomorphic to a canonical spc�structure� i
e
 we can restrict attention to
canonical spc�structures whenever this seems to be an advantage
 The next proposition
gives some �rst useful properties


Proposition ��� Let E be a �nite set with a partial order � and an arbitrary relation
� � � satisfying ��� � ��

i� � is a partial order� i�e� �E����� is an spc�order�

ii� If e� f � then �f � e�

Proof� i� Since � � �� irre�exivity of � is implied by that of � 
 Furthermore� ��� �
��� � �


ii� e� f implies e� f and � is irre�exive
 �

Graphically� we present an spc�order by writing down the events of E and connect e
and f by an arrow if e� f and by a dashed arrow if e� f 
 �For spc�structures� we replace
the events of E by their labels
� Arrows implied by De�nition �
� i� and ii� are often
omitted� in particular we never draw an ordinary and a dashed arrow from e to f 
 If the
arrows of such a drawing seen as arcs of a directed graph are acyclic� then the drawing
represents an spc�order� which is described in the next proposition


�



Proposition ��� Let E be a �nite set with relations R� and R� such that R� � R� is
acyclic� i�e� � �� �R� �R��� is irre�exive� Then p � �E����� is an spc�order� where �
is de�ned as R� � v�

For all spc�orders p� with R� � �� and R� � ��� we have � � �� and � � ���

Proof� Since � is a partial order� we only have to show � � � and ��� � � and apply
�
� i� to get the �rst claim
 Since R� � �� we get � � R��v � � �v � �
 Furthermore�
��� � R� � v�� � R� �� � �


For the second claim� observe that R� � �
� and R� � �� � �

� implies � � �R� �
R��� � �� by transitivity of ��
 Hence� � � R� � v � �� �v� � ��
 �

If we regard the ordinary arrows of an acyclic drawing as discussed above as R� and
the dashed arrows as R�� then the p of this proposition contains just all the orderings
implied by the arrows� we call p the spc�order induced by the arrows


De�nition ��� Let E be a �nite set with relations R� and R� such that R��R� is acyclic�
then we call the spc�order p according to Proposition �
� induced by R� and R�
 �

From a partial order� we can derive its augmentations �or extensions� to total or�
ders� total orders obviously represent sequences and vice versa� the derived sequences
are called linearizations
 Similarly� one can order�theoretically de�ne the derived step�
sequences
 This shows that various behaviour descriptions in the interleaving��true con�
currency� spectrum can be studied in the partial�order framework
 From the set of derived
sequences� one can reconstruct the partial order as the intersection of the respective total
orders


In the case of spc�orders� we will analogously de�ne which spc�orders correspond to
sequences� step�sequences and ST�sequences� then� from a given spc�order� we can again
derive sequences etc
 order�theoretically as augmentations
 Finally� as the main result
of this section� we show that an spc�order can be reconstructed from the collection of
its corresponding ST�sequences
 First� we identify the spc�orders that correspond to
sequences� step sequences and � more or less � to ST�sequences


De�nition ��� Let p be an spc�order
 Then� p is an spc�sequence� if � is a total order�
the obvious linearization w of E is the corresponding sequence
 If co� is an equivalence
relation� p is an spc�step�sequence� the obvious sequence w of the equivalence classes
ordered according to � is the corresponding step�sequence
 For an spc�structure p� p is
analogously an spc�trace or an spc�step�trace� if w is the corresponding �step� sequence of
�E������ then replacing each e � E in w by its label gives the corresponding trace or
step�trace with w as underlying sequence or step�sequence


Finally� if � is total� p is an interval�spc�order
 An ST�sequence w over E is a cor�
responding ST�sequence if it satis�es for all e� f � E� e� occurs before f� if and only
if e� f � e� occurs before f� if and only if e� f 
 As above� we derive from this the
de�nitions of interval�spc�structure� corresponding ST�trace �a sequence over X�� and
underlying ST�sequence
 �

��



The de�nitions of the �rst part are straightforward generalizations from the case of
partial orders
 Note that the labelling l of an spc�structure is injective on the equivalence
classes of co� by the label requirement� hence� the corresponding step trace is a sequence
of sets �and not multisets�


The second part needs more explanations
 A partial order � on E is an interval order�
if for all e� e�� f� f � � E we have� if e� e� and f � f �� then e� f � or f � e�� in this case� we
can associate each e � E with an interval of real numbers such that e� f i� the interval
of e lies completely before that of f � a basic reference for interval orders is �Fis��� Chapter
��
 The following result explains the name interval�spc�order


Proposition ��� If p is an interval�spc�order� then � is an interval order�

Proof� Let e� e� and f � f �
 If fe� e�g � ff� f �g �� � then we are done
 Otherwise� we
have e�� f � without loss of generality� which together with e� e� implies e� f �
 �

Di�erent from the case of sequences and step�sequences� an interval�spc�order does
not have a unique corresponding ST�sequence� but a set of such sequences
 The next
result shows that these sequences coincide up to simple modi�cations� by de�nition� each
of the sequences allows to reconstruct the interval�spc�order� i
e
 an interval�spc�order is
a simple abstraction of an ST�sequence


Proposition ��	 Let p be an interval�spc�order and I the set of its corresponding ST�
sequences�

i� There exists a closed w in I�

ii� I is the set of sequences v that can be obtained from w by repeatedly replacing some
e�f� by f�e� and deleting some e� at the end of w�

Proof� i� Assume E � fe�� � � � � eng and e�� e�� � � � en� thus� w contains e�� � � � � � e
�
n in

this order
 For i � f�� � � � � ng we have that ei� ej � ek implies ei� ek� hence� fj j ei� ejg
is some set fl � �� � � � � ng with l � f�� � � � � ng
 We simply have to insert e�i somewhere
after the respective e�l and� for l �� n� before e�l��


ii� This is clear from the way w has to be constructed in i�
 �

This proposition immediately carries over to interval�spc�structures� as stated in Corol�
lary �
� below
 The following lemma tells us that from a corresponding ST�trace of a
canonical interval�spc�structure we can determine the underlying ST�sequence� hence� we
can additionally reconstruct such a structure from each of its ST�traces by de�nition of a
corresponding ST�sequence


Lemma ��
 Let p be a canonical interval�spc�structure and w be a corresponding ST�
trace� x a label� Then� x� and x� alternate in w starting with x�� and the i�th x� and
x� correspond to �x� i�� and �x� i�� in the underlying ST�sequence�

Proof� By de�nition of an ST�sequence� �x� i�� occurs before �x� i��� which occurs before
�x� i� ��� since �x� i���x� i� ��
 �

��



Corollary ��� Let p be a canonical interval�spc�structure and I the set of its correspond�
ing ST�traces�

i� There exists a closed w in I�

ii� I is the set of sequences v that can be obtained from w by repeatedly replacing some
x�y� by y�x� and deleting some x� at the end of w�

iii� For an arbitrary v � I� put �x� i����y� j� if the i�th x� occurs in v before the j�th
y� and put �x� i����y� j� if the i�th x� occurs in v before the j�th y�� Then � � ��

and � � ���

This corollary shows that an interval�spc�structure corresponds to a set of closely
related ST�traces� and that it can be reconstructed from each of these up to isomorphism

Thus� interval�spc�structures are a moderate abstraction of ST�traces
 Observe that this
abstraction is compatible with the application to nets� if w in the above corollary is an
ST�trace of a net� then the modi�cations v according to ii� are also ST�traces of the net
by Proposition �
� iv� � independently of the net


Now we will describe how we can order�theoretically derive sequences etc
 from an
arbitrary spc�order


De�nition ���� An spc�order p� � �E������� is an augmentation of an spc�order p� if
� � �� and � � �

�
 If p� is additionally an spc�sequence� an spc�step�sequence or an
interval�spc�order� then it is called a linear� step or interval augmentation


A linearization of p is the corresponding sequence of a linear augmentation of p
 Anal�
ogously� a step linearization and an ST�linearization correspond to a step and an interval
augmentation of p


This de�nition carries over to spc�structures� note that augmenting � cannot violate
the label requirement
 Linearizations etc
 are analogously de�ned as corresponding traces�
step traces and ST�traces with underlying sequences as in De�nition �
�
 �

The following theorem shows how to read o� the ST�linearizations etc
 directly� this
demonstrates how � and � describe relationships between starts and ends of the events
in E


Theorem ���� Let p be an spc�order�

i� w is an ST�linearization of p i� it is an ST�sequence over E such that e� occurs
before f� if e� f and e� occurs before f� if e� f �

ii� w is a linearization of p i� it is a linearization of �E� � such that e� f implies that
e occurs before f �

iii� w is a step linearization of p i� it is a sequence of sets that form a partition of
E with the following two properties	 e� f implies that the set containing e occurs
before the set containing f � e� f implies that the set containing e does not occur
later than the set containing f �

��



Proof� i� For the only�if case� let w be an ST�linearization and p� be a respective interval
augmentation of p
 Then e� f implies e�� f and this implies that e� occurs before f�

in w� the case of � is similar

For the if�case� let w be given with the required properties and de�ne �� and ��

such that they make w a corresponding ST�sequence to p� � �E������� according to
De�nition �
�
 We show that p� is an interval�spc�order� then it is clearly an interval�
augmentation
 First� �� is a total order
 Now observe that e�� f implies that e�� e�

and f� occur in w in this order� thus� �� is contained in �� and� furthermore� e�� f �� g

implies e�� g


ii� Let w be a linearization of �E� � and �� be the respective total order on E
 Then�
w is a linearization of p i� �E������� is an augmentation of p i� � � � � �� i� e� f

�and thus e� f� implies that e occurs before f 


iii� Let w be a sequence of sets that form a partition of E and �� be the respective
partial order on E such that the sets are the equivalence classes of co��
 We observe that

��� e�� f i� the set containing e occurs before the set containing f 

Also� w is a step linearization of p i�
���� for some �� �E������� is an augmentation of p


On the one hand� we can conclude from ���� that e� f implies e�� f � hence the �rst
desired ordering of the sets by ���
 Furthermore� if the set containing e occurs later than
the set containing f � then f �� e and �e�� f by Proposition �
�� which implies �e� f �
this shows the second desired implication


On the other hand� given the two implications for the ordering of sets in w� we de�ne
�
� � ����
 As a union of two irre�exive relations� �� is also irre�exive
 From the

implication for � and ���� we conclude that � ��� � �� and �� �� � ��
 On the one
hand� this implies that �� ��� � ��� i
e
 �� is transitive
 On the other hand� it also implies
�� ��� � ��
 Clearly� �� � �� by de�nition� hence p� � �E������� is an spc�order


Furthermore� � � �� by de�nition
 We have that e� f implies that the set containing
e occurs before the set containing f � which implies e�� f by ���
 Thus� ���� is satis�ed


�

�JK��� also studies relational structures with two relations to describe system runs�
these are tuned to obtain a result as Theorem �
�� iii�
 We discuss at the end of this
section why step sequences are not expressive enough for some purposes


Theorem �
�� also tells us how to read o� the ST�linearizations etc
 of an spc�structure
p� we simply read o� the ST�linearizations of the spc�order �E����� and apply the
labelling
 The next theorem implies that ST�linearizations are all we need� since they
have �more or less� linearizations and step linearizations as special cases


Theorem ���� a� Let p be an spc�order� ei � E and  �� Ei � E for i � �� � � � � n�

i� e� � � � en is a linearization of p i� e�� e
�
� � � � e

�
n e

�
n is an ST�linearization of p�

ii� E� � � �En is a step linearization of p i� for some indexing Ei � fei�� � � � � eimi
g

for i � �� � � � � n and e��� � � � e
�
�m�

e��� � � � e
�
�m�

� � � e�n� � � � e
�
nmn

is an ST�linearization
of p�

��



b� Let p be an spc�structure� xi � X and  �� Xi � X for i � �� � � � � n� Then	

i� x� � � � xn is a linearization of p i� x�� x
�
� � � � x

�
nx

�
n is an ST�linearization of p�

ii� X� � � �Xn is a step linearization of p i� for some indexing Xi � fxi�� � � � � ximi
g

for i � �� � � � � n and x��� � � � x
�
�m�

x��� � � � x
�
�m�

� � � x�n� � � � x
�
nmn

is an ST�lineariza�
tion of p�

Proof� a� i� e� � � � en is a linearization of p i� there exists a linear augmentation p� of
p where e��� e� � � ��� en
 Since in this case �� � �� is also total� this is equivalent to�
e�� e

�
� � � � e

�
n e

�
n is an ST�linearization of p


ii� If E� � � � En is a step linearization of p� then for the respective step augmentation p�

�
� is a partial order on each Ei and for all i � j� e � Ei and f � Ej we have e�� f 
 We

can augment �� to a total order ���
 Then we have for all e� f� g � E with e�� f ��� g that
e � Ei� f � Ej � g � Ek for i � j � k� i
e
 e�� g
 Thus� �E�������� is a step augmentation
giving rise to the same step sequence and an interval augmentation


Thus� E� � � �En is a step linearization of p i� there exists a suitable step augmen�
tation p� that is an interval augmentation as well � i
e
 for some indexing we have
Ei � fei�� � � � � eimi

g and ei��� � � ��� eimi
for i � �� � � � � n
 This clearly implies that for some

indexing Ei � fei�� � � � � eimi
g for i � �� � � � � n and e��� � � � e

�
�m�

e��� � � � e
�
�m�

� � � e�n� � � � e
�
nmn

is
an ST�linearization of p
 Vice versa� given such an indexing� ST�linearization and suit�
able interval augmentation p� of p� we see that eik �� ejl i� i � j� thus eik co�� ejl i� i � j�
therefore p� is also a step augmentation in this case� suitable for E� � � �En


b� follows now from a�
 �

Observe that Theorem �
�� �ts Proposition �
� i� and Theorem �
� ii�� if we have an
spc�structure p and a net N such that all ST�linearizations of p are ST�traces of N � then
all linearizations �step linearizations� of p are �ring sequences �step sequences� of N � vice
versa� if we can �nd for each ST�trace w of N an spc�structure p of a certain type such
that w is an ST�linearization of p� then we can also �nd for each �ring sequence or step
sequence w of N an spc�structure p of this type such that w is a linearization or step
linearization of p
 Hence� if we want to study the behaviour of nets using spc�structures�
it is enough to relate such spc�structures to ST�traces of nets � the relationship to �ring
and step sequences is then immediate


Clearly� for each spc�order p� we can extend � to a total order �� and put �� �� ���
hence� linear augmentations exist� and they are also step and interval augmentations
 To
construct more interesting interval augmentations we give three lemmata


Lemma ���� Given an spc�order p and a partial order �� with � � �
�� de�ne �� as

��v�� Then p� � �E������� is an spc�order and an augmentation of p�

Proof� By Proposition �
� with � as R� and �� as R� �and hence as �� of �
�� p� is an
spc�order and obviously an augmentation of p
 �

Lemma ���� Let �E��� be a partial order with di�erent e and f in E such that �f � e�
Then there exists a linearization �E���� of �E��� where e�� f and fg j e� g� fg � fg j
e�� g�� fg�

��



Proof� If �e� f � we can extend � as a �rst step to the partial order ���f�e� f�g���
which satis�es the desired equality
 Hence� we can assume that e�f 


De�ne a partition of E by E� � fg j �e� gg� E� � fg j ev gv fg and E� � fg j
e� g ��gv fg
 Obviously� e and f are the minimum and the maximum of E�� if we have
for i� j � �� �� � that gi � Ei and gi� gj � then i � j
 �E
g
 i � � and j � � would give
ev g�� g�� i
e
 g� �� E�
� Hence� ��E�� �E��E���E��E� is a partial order extending
� � it satis�es the desired equality� and so does any linearization of it
 �

Lemma ���� Let p be an spc�order and e� f � E be di�erent�

i� If �e� f � then there exists an interval augmentation p� with �e�� f and �e�� f �

ii� If e� f and �e� f � then there exists an interval augmentation p� with �e�� f �

Proof� i� De�ne �� as a linearization of the partial order ���f�f� e�g��� and apply
Lemma �
��� observe that �� is irre�exive and �� � ��


ii� By �f � e� we can apply Lemma �
�� to get �� and then apply Lemma �
�� to de�ne
the interval augmentation p�
 If we had e�� f � then there would be g with e� g�� f � i
e

e�� g�� f and e� g� f � this would imply e� g� f and e� f 
 �

We will use spc�orders to model system runs� an ST�sequence is an observation and�
as we have seen� an interval�spc�order is a moderate abstraction of an observation� such
abstract observations can be derived order�theoretically from a run� they are the interval
augmentations
 The following theorem shows that we can reconstruct a run from the set
of its abstract observations


Theorem ���� Let p be an spc�order and I the set of its interval augmentations� Then
� �

T
p��I �

� and � �
T
p��I �

��

Proof� The inclusion is in both cases obvious
 For the reverse inclusion� we can apply
Lemma �
�� i� for �� for � and �e� f � we either have �e� f and apply �
�� i�� or we
have e� f and apply �
�� ii�
 �

Again� this result carries over to spc�structures
 The resulting corollary is the most
important result of this section� it is an analogue to Szpilrajn�s Theorem and will be
applied in Corollary �
��


Corollary ���	 Let p be an spc�structure and I the set of its interval augmentations�
Then � �

T
p��I �

� and � �
T
p��I �

��

We have seen in Proposition �
� and Corollary �
� that we can reconstruct an interval�
spc�order or �structure �up to isomorphism� from each of its ST�sequences or �traces

Furthermore� we can reconstruct an spc�order or �structure from the set of its interval
augmentations and� hence� �up to isomorphism� from the set of its ST�linearizations by
Theorem �
�� and Corollary �
��


��
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Figure �

Corollary ���
 If spc�orders p and p� have the same set of ST�linearizations� then they
are equal� If spc�structures p and p� have the same set of ST�linearizations� then they are
isomorphic� i�e� an spc�structure can be reconstructed �up to isomorphism� from its set of
ST�linearizations�

The above results that lead to this corollary do not hold for step sequences
 Fig�
ure � shows on the right an spc�step�sequence� where we cannot derive e� f from its
corresponding step sequence

�
e

f

�
g
 The spc�order p on the left cannot be reconstructed

from its two step augmentations � which are also shown �� because we cannot derive that
�e� g


If we are only interested in step sequences� it is irrelevant whether e� g or only e� g

But if we are interested in the durations of events and runs� this di�erence is important�
assume e
g
 that e has duration � and f and g have duration � in p� then e can start time
� before f and later carry on in parallel with g� such that the whole run p takes time �

If we had e� g� the whole run would take at least time �
 The relation between partial
order semantics and temporal eciency of ordinary nets where events have durations has
been explored in �Vog���


� Processes of nets with read arcs

A process is essentially a so�called occurrence net describing one run of another net N 

Transitions of occurrence nets are called events and model the �rings of transitions of N �
places of occurrence nets are called conditions and model tokens� i
e
 they correspond to
statements �s is marked� that hold at some stage of a run
 We will extend the de�nition of
processes to nets with read arcs� essentially following �MR���
 Occurrence nets are usually
very simple� they are acyclic� i
e
 give a partial order on their elements� and conditions are
unbranched� here� these requirements are a little more dicult to de�ne� since read arcs
allow some sort of branching and since we deal with two partial orders
 We will explain
the following de�nition below


De�nition ��� For a T�restricted net graph O � �B�E�F�A�� we de�ne two relations
on B � E� � is �F �A �A���F �� and � is F�v


O is an occurrence net if

i� j�bj� jb�j � � for all b � B� i
e
 conditions are unbranched�

ii� F �A �A���F is acyclic� i
e
 � is a partial order


��



The spc�order �B �E����� induced by F and A�A���F according to De�nition �
�
is denoted by spc�O�
 We call the places b � B conditions� the transitions e � E events

�F stands for �ow� A for activator arcs as read arcs are called in �JK���
� We denote
min��B � E� by �O� max��B � E� by O� and the restrictions of � and � to E by �E

and �E

We also consider a graph with vertices B�E and �directed� edges F �A�A���F 
 We

have x� y i� x �� y and there exists a path in this graph from x to y� and x� y i� x �� y

and there exists such a path starting with an edge in F � we call such a path justifying for
x� y� x� y resp
 �

As usual� there is �at most� one event that produces a token and �at most� one event
that consumes it� in this sense� conditions are unbranched in an occurrence net� but
additionally a condition might be incident to some read arcs


For events e� f and a condition b� eFb means that e produces b� i
e
 the �ring e starts
and ends before b starts holding� similarly� bFe means that e consumes b� i
e
 the holding
of b starts and ends before the �ring e starts
 In the case bAe e reads b� i
e
 the holding
of b starts before the �ring e starts
 Actually� e has to start before the end of b in this
case� which is not modelled in spc�O�� modelling this would make the theory much more
clumsy� and the omission creates almost no problems
 Finally� we have already discussed
in the introduction �using N� of Figure �� that bAe and bFf enforce that e starts before f 

Thus� it is intuitively clear that � gives an ordering of starts and should be acyclic� and
that according to Proposition �
� spc�O� should model the necessary relations between
starts and ends of conditions and events in the run described by O� in our graphical
notation for spc�orders� F gives the ordinary arrows while A � A���F gives the dashed
arrows


Observe that for A �  O is an occurrence net according to the classical de�nition
and that � � � � F�


Lemma ��� Let O be an occurrence net� c a condition and x � B � E�

i� x� c implies that there is an event e with xv e and e � �c�

ii� x� c implies that there is an event e with x	 e and e � �c�

iii� There is some b � �O with bF �x�

iv� There is some b � O� with xF �b�

v� �O � fb � B j �b � g � min��B � E�

vi� O� � fb � B j b� � g

vii� �E��E��E� is the spc�order induced by F�F � F�A and A���F �

Proof� i� and ii� The last edge of a justifying path cannot be in A or in A���F � hence it
must be in F 


iii� One can construct a path with edges in F backwards from x
 If we have found y

with yF �x� then either y is an event and by T�restrictedness there is some z with z � �y�

��



i
e
 zFy� or y is a condition� which is in �O giving the claim or has some f with f � �y

by ii�� i
e
 fFy
 Since F is acyclic and B � E is �nite� the construction stops at some
condition b � �O


iv� is shown analogously� where this time each condition y �� O� must have an outgoing
edge in F � since a justifying path for y� y� must start with such an edge


v� We have seen in the proof of iii� that �O � B
 If b � �O and there is some e � �b�
then e� b� a contradiction� this gives the �rst inclusion
 If b � B and for some x x� b�
then we can by i� �nd some e � �b� which shows the second inclusion
 The third set is
contained in the �rst one� since � � �


vi� We have already seen in the proof of iv� that O� � B
 If e � b�� then b� e� hence
inclusion holds
 For the reverse inclusion� observe that b� �  implies b � O� by iv�


vii� For events e and f � e� f i� there is a path from e to f with edges in F�A�A���F 

The �rst edge can be in F reaching a condition c� then the next edge can be in F or in
A reaching an event
 If the �rst edge is not in F � then it must be in A���F reaching
an event
 Thus� the path consists of portions in F��F �A� �A���F � and stringing such
portions together always gives a suitable path


Similarly� e� f i� there is a path as above starting with an edge in F � i
e
 with a portion
in F��F � A� reaching some event g with gv f 
 In other words� �E � F��F � A��vE


�

Part vii� of the above lemma shows that we can directly construct the spc�order on
events we will mostly be interested in� this result also makes the comparison to other
approaches in the literature easier


Now we de�ne a process of a net N as in the classical setting� i
e
 as an occurrence
net O whose events correspond to transitions of N and whose conditions to places of N �
�O corresponds to the initial marking of N � and F and A correspond to the arcs and read
arcs of N 


De�nition ��� A process � � �O� l� of a net N consists of an occurrence net O and a
labelling l � B � E � S � T such that

i� l�B� � S� l�E� � T

ii� l is injective on �O and l��O� � MN

iii� For all e � E� l is injective on �e� e� and �e with l��e� � �l�e�� l�e�� � l�e��� l��e� � �l�e�


We put �� � �O and �� � O�
 We call fspc��� � �B �E����� l� the full spc�structure
of � and its restriction spc��� to E �in all components� the spc�structure of �
 An ST�
linearization of � is an ST�linearization of spc��� and similarly for �step� linearizations


A cut of � is a maximal co��set of fspc���� a slice is a cut D � B
 A cut D corresponds
to the ST�marking �fl�b� j b � B � Dg� fl�e� j e � E �Dg� and a slice D corresponds to
the marking l�D�
 �

��



The last sentence of this de�nition makes sense� because it will turn out that l is
injective on all cuts
 Observe that De�nition �
� coincides for ordinary nets with the
usual de�nition of a process


Figure � shows a net� which is its own process � �if we remove the marking and add
the identity as labelling�� also spc��� is shown
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Figure �

We want to show that ST�linearizations of � correspond to ST�traces of N � that cuts
correspond to ST�markings reached along such an ST�trace and similarly for slices
 We
start with a technical lemma


Lemma ��� Let N be a net� � one of its processes� Let P � B � E satisfy

a� �� � P �

b� P is left�closed under � �

c� for all events e� e� � P ��  implies e� � P �

Then we have for D � max��P � that

i� for all x � P � we have x � D or x� � P �

ii� D is a cut�

Proof� i� If x � P �D� then x� d for some d � D
 By de�nition of � � there exists some
y with xFyv d and by b� we have y � P 
 If x is a condition� then x� � fyg � P 
 If x is
an event� c� implies the claim


ii� Clearly� D is a co��set
 So consider some z �� D
 If z � P � then z	 d for some
d � D by de�nition of D
 If z �� P � then by a� and Lemma �
� iii�� there is some b � P

with a path from b to z with edges in F � this path must leave P somewhere� say with xy�
justifying x� z� but now x � D by i�
 Hence� D is a maximal co��set
 �

As a corollary� we see that �� and �� are slices� since these should correspond to
the markings where � starts and ends� this result is a �rst indication that slices indeed
correspond to markings


Corollary ��� For a process �� �� and �� are slices�

��



Proof� Use Lemma �
� with P � �� �left�closed under � by Lemma �
� v�� and P �
B � E
 �

The next lemma shows that ST�linearizations are ST�traces and that the ST�markings
reached along such an ST�trace correspond to cuts


Lemma ��� Let w � �� � � � �m with �i � E� be an ST�sequence underlying an ST�
linearization v of a process �� De�ne for i � �� � � � �m

Pi � fx j some e� with xv e occurs in �� � � � �ig� fe� j e� occurs in �� � � � �ig� �� and
Di � max��Pi��
Then each Pi satis�es Lemma 
�
� each Di is a cut� l is injective on Di� and for the

ST�markings Qi corresponding to the Di we have	 QN � Q��l����iQ��l����i � � � Qm�

Proof� For this proof� we use the characterization of ST�linearizations given in Theo�
rem �
��


�i� Each Pi is left�closed under � 

Proof of �i�	 Clearly� the �rst and the third set constituting Pi are left�closed under � �
see Lemma �
� v�
 If b � e� with e� in �� � � � �i and x� b� then xv e by Lemma �
� i�
since b is unbranched� hence� x is in Pi since e� is in �� � � � �i� too
 �

�ii� If for events e and f we have e�f � Pi� then e� occurs in �� � � � �i

Proof of �ii�	 If e� f � then e� occurs before f� in w
 If f � Pi� then there exists some
event g with f v g � i
e
 f� occurs not later than g� � and g� occurs in �� � � � �i
 �

�iii� For an event e� e� � Pi ��  i� e� � Pi i� e� is in �� � � � �i

Proof of �iii�	 The if�cases being clear by T�restrictedness and de�nition of Pi� take some
b � e� � Pi� b is not in the third set of Pi� and if it is in the second we are done
 Hence�
assume b� f and f� occurs in �� � � � �i� i
e
 f � Pi
 Then e� b� f � i
e
 e� f � Pi� and
we can apply �ii� to see that b is in the second set as well
 �

Thus� each Pi satis�es Lemma �
�� precondition a� is clear� b� is �i� and c� is contained
in �iii�� this implies that each Di is a cut


�iv� For an event e� e � Pi i� e� occurs in �� � � � �i

Proof of �iv�	 The if�case is clear� hence take e � Pi� e can only be in the �rst set of Pi�
hence ev g with g� occurring in �� � � � �i
 Then� e� occurs in w not later than g� and we
are done
 �

We show the remaining claims by induction on i� where l is injective on P� � D� � ��

and �� corresponds to QN by de�nition of �
 Assume the statements for i� �� then there
are two cases�

a� �i � e�

We check the enabledness of l�e�� under Qi��� consider b � �e��e
 Either b � �� � Pi�� or
there is some event f with b � f�
 In the latter case� f � e � Pi� and �ii� implies b � Pi��
in this case� too
 Assume b�x � Pi��
 By de�nition of �� there exists some event g with
bFgvx
 Now either e � g or e�A���F �g� hence evx � Pi�� and e � Pi�� by �i�
 By �iv�
e� already occurs in �� � � � �i��� a contradiction to being in case a�
 Hence� b � Di�� and
Qi���l�e��i


��



�v� This also implies by Proposition �
� ii� that no event in Di�� is labelled l�e� in
case a�


We will now show that Di � Di�� � �e � feg
 Consider x � Pi � Pi��� from the
de�nition of Pi� we must have xv e
 If x � E� then x � e � or x� occurs before e��
i
e
 in �� � � � �i��� a contradiction to x �� Pi��
 If x � B� then the path justifying x� e

contains some y � �e��e � Pi�� or some event y with y� e� in the latter case� y� occurs in
�� � � � �i�� since w is an ST�linearization� i
e
 y � Pi�� in any case
 Since Pi�� is left�closed
under � � we get x � Pi��� a contradiction


We conclude that Pi � Pi�� � feg and therefore Di � Di�� � feg� since �e �Di � �
we even get Di � Di�� � �e � feg
 This shows by induction and �v� that l is injective on
Di


Since Pi�� is left�closed under � � hence under � � e is ��maximal in Pi
 To show
Di � Di�� � �e � feg� we only have to prove that �x� e for x � Di�� � �e
 But x� e

implies for some y that xFyv e� since x �� �e� this gives y� e and y � Pi � feg � Pi���
since x� y� this is a contradiction to x � Di��


This equality for Di shows Qi���l�e
��iQi


b� �i � e�

We check the enabledness of l�e�� under Qi��� i
e
 e � Di��
 Obviously� e is in the �rst
set of Pi��� hence� assume e�x � Pi��� i
e
 eFbvx � Pi�� for some b
 By �i� b � Pi���
which gives a contradiction to �iii�
 Hence Qi���l�e��i and by Proposition �
� ii�

�vi� no condition in Di�� has a label in l�e�� � l�e��


From the de�nition and �iii�� Pi is the disjoint union of Pi�� and e�
 Thus� Di �
Di�� � feg � e� and l is injective on Di by induction and �vi�


We prove Di � Di���feg� e�
 Assume c � e� and c� y � Pi� since Pi�� is left�closed
under � and � � but c �� Pi��� we get y � e�
 With Lemma �
� ii� �for c and condition y�
we get c� e� c� a contradiction to � being irre�exive


Now assume x � Di���feg and x� y � Pi� by de�nition of Di��� we get again y � e��
and again by Lemma �
� ii� we �nd x	 e
 Since x �� e � Di��� this contradicts the
de�nition of Di��


Thus� Di � Di�� � feg � e
� and Qi���l�e

��iQi
 �

Lemma ��	 Let D be a cut of a process �� and let X � fx � B � E j �d � D � x	 dg�
Then	

i� X � fx � B � E j �d � D � xv dg� thus� X is left�closed under ��

ii� max��X� � D

iii� X satis�es the conditions of Lemma 
�
�

Furthermore� l is injective on D and D corresponds to a reachable ST�marking which is
reached along an ST�linearization of ��

��



Proof� i� Inclusion follows from � � �
 For the reverse inclusion� observe that D � X�
hence� we consider x �� D and d � D with x� d
 Since D is a cut� we have some
d� � D with x� d�� i
e
 x � X� or we have some d� � D with d��x� which gives d�� d� a
contradiction


ii� Inclusion is immediate from the de�nition of X� if some d � D were not ��maximal
in X� then d� x for some x � X� i
e
 d� x	 d� for some d� � D� a contradiction


iii� Since b � �� is ��minimal and D a cut� there is some d � D with b	 d� i
e

�� � X
 X is left�closed under � by i�
 Finally� take b� c � e� and b � X� which implies
e� b and thus e � X � D by ii�
 Assume c �� X
 Then there is some d � D with d� c�
by Lemma �
� ii�� this gives d	 e� b and d �� max��X�� a contradiction to ii�


For the remaining claims� we will construct an ST�sequence underlying a suitable ST�
linearization of � and apply Lemma �
�
 Let E� � X � E� E� � E �E�� and let vi � E�

i

be a linearization of �Ei��Ei
�� i � �� �
 By i�� v�v� is a linearization of �E��E�� let v��

be a linearization of E � D
 We construct w� from v� by replacing each e � E� �D by
e�e� and each e � E �D �� E� �D� by e�� we construct w� from v��v� by replacing each
e � E � D by e� and each e � E� by e�e�
 We will show that w�w� is an ST�sequence
underlying an ST�linearization of �


Take events e and f � If e� f � then e starts before f in w�w� because v�v� is a lin�
earization of �E��E�
 If e� f � then e starts before f in w�w� and� by construction� e
ends before f starts provided e �� D
 If e � D� then f � E� by de�nition of X and since
D is a co��set� hence� e ends in the �rst part of w� �corresponding to v��� before f starts
in the second part of w� �corresponding to v��
 Thus� w is an ST�sequence underlying an
ST�linearization as desired


We now show that X is the Pi from Lemma �
� corresponding to �� � � � �i � w�
 By
iii�� �� � X
 If e� occurs in w� and x� e� then e � X and X is left�closed under �� hence
x � X
 If e� occurs in w�� then e � E� � D� a path justifying e�d with d � D shows
that some b � e� is in X� hence e� � X by iii�
 We conclude that Pi � X


Vice versa� take x � X� if x � E� then x � E� starts in w�� hence x � Pi
 Now consider
x � X � B
 If x � ��� then x � Pi� thus� consider some event e with x � e�
 Then we
have e�x	 d for some d � D� hence e � E��D ends in w� and� also in this case� x � Pi


We now have Pi � X and D � max��Pi� by ii�� which gives the result with Lemma �
�

�

We now come to the �rst main result of this section� which shows that the order�
theoretically derived ST�linearizations� �step� linearizations� cuts and slices of a process
are ST�traces� �ring �or step� sequences� reachable ST�markings and markings� which are
behaviourally de�ned


Theorem ��
 Let � be a process of some net N � Then all ST�linearizations of � are
ST�traces of N � all �step� linearizations are �ring �or step� sequences of N � The la�
belling l is injective on all cuts� Cuts correspond exactly to those ST�markings that can
be reached along ST�linearizations of �� slices correspond exactly to those markings that
can be reached along �step� linearizations of ��

Proof� The �ST�statements� follow from Lemma �
� and �
�� the other statements then
follow with Theorem �
�� b�� Proposition �
� and Theorem �
�
 �

��



The next main result is a converse to �
�� it shows that all the operationally de�ned
entities can also be derived order�theoretically
 For this result� we need a lemma
 We have
de�ned processes in such a way that they start and end with slices� i
e
 with markings�
alternatively� one could de�ne them such that they end with an arbitrary reachable ST�
marking
 The following lemma deals with those cuts that could serve as a �nal ST�marking
in such an alternative de�nition


Lemma ��� Let � be a process and D � B�E such that D � B��E�� where E� consists
of events that are ��maximal in E and B� � �� �

S
e�E�

e�� Then

i� for all e � E� and b � e�� we have b� � �b �  and in particular b � ���

ii� D is a cut�

Proof� i� Take some suitable e and b and assume that f � b� � �b
 Then we would have
eFb�F � A�f � i
e
 e� f � a contradiction to the choice of E�
 Observe Lemma �
� vi�


ii� E� is a co��set by de�nition and so is ��� hence B�
 For e � E� and b � B�� we
cannot have b� e by de�nition of ��� so assume e� b
 By Lemma �
� ii�� this gives an
event f with e	 f and b � f�� since b � B�� we have e �� f � a contradiction to e � E�

Thus D is a co��set


Consider x � E �B�D
 If x � ��� then e�x for some e � E�
 If x �� ��� take a path
with edges in F from x to �� according to Lemma �
� iv�� this path passes through E� or
reaches B�
 Hence� x� d for some d � D
 We conclude that D is a cut
 �

Theorem ���� Let N be a net�

i� For each ST�trace v of N � there is a process � of N which has v as ST�linearization�

ii� For each �ring �or step� sequence v of N � there is a process � of N which has v as
�step� linearization�

iii� For each reachable ST�marking Q of N � there is a process � of N with a cut that
corresponds to Q�

iv� For each reachable marking M of N � there is a process � of N with a slice that
corresponds to M �

Proof� ii� follows from i� by Proposition �
� i� and Theorem �
�� b� i� and by Theorem �
�
ii� and Theorem �
�� b� ii�� iii� follows from i� and Lemma �
�� and then iv� follows from
iii� and Proposition �
� iii�
 Thus� we only have to show i�
 In a way� we will read the
proof of Lemma �
� as a construction


For each ST�trace v � �� � � � �m� �i � T�� with QN �viQ we construct by induction on
m a process � and a set D such that

� v is an ST�linearization of ��
� D corresponds to Q�
� D � B� � E�� where E� consists of events that are ��maximal in E and B� �

�� �
S
e�E�

e�


��



Then� by Lemma �
�� D is a cut and� by Lemma �
�� l is injective on D

For v � � we take the initial process ��� i
e
 the unique process � with �� � ��� and

D � B� � ���
 Assume now that � and D for v with underlying ST�sequence w are given
and Q��iQ�


a� � � t� for some t with M �ti


Since D corresponds to Q� there is a unique set Be of conditions in D labelled with
�t� �t
 We add a new event e with label t� arcs and read arcs from Be to e� new conditions
to represent e� via the labelling and arcs from e to these
 Adding e and its ingoing arcs�
we add to the edges in F � A � A���F only edges going to e� since in � we have b� � 
for all b � D� thus F �A �A���F remains acyclic
 Then� the same argument applies for
the new conditions
 Now it is easy to see that the new �� is a process� also�

��� the relations �� and �� for �� coincide with � and � for the events and conditions
of �


Hence� w� � we� is an ST�sequence underlying the ST�linearization v� of ��

We put D� � D� �e�feg
 To see that D� is a suitable union� observe that e is by the

above certainly ���maximal in E�
 The conditions in B�� �e still have an empty postset�
hence are in ���
 It remains to check that the events in E� are still ���maximal� i
e
 by
��� not less than e
 A justifying path for f �� e with f � E� would start with an edge
fb � F � but such a b has in � no outgoing edge in F �A by Lemma �
�� and it has none
in �� since b �� B�
 D� obviously corresponds to Q�


b� � � t� for some t � C


SinceD corresponds toQ� there is a unique e � D with l�e� � t
 We leave � unchanged�
de�ne D� by E�

� � E� � feg and B�
� � B� � e� and add e� to w to get w� � we�


Obviously� w� is an ST�sequence underlying an ST�linearization of � just as w� this
ST�linearization is l�w�� � v�� and D� corresponds to Q�
 Since � is unchanged� the events
in E�

� are ��maximal in E and by Lemma �
� B �
� � ��
 Thus� D� is a suitable union
 �

Our results so far also imply that steps of a net give sets of concurrent events in some
process


Corollary ���� Let N be a net and G a step under a reachable marking� Then there
exists a process � and a co��set E � � E� such that l is injective on E � and l�E�� � C�

Proof� Apply Theorem �
� iii� and Theorem �
�� iii�� l is injective by Theorem �
�
 �

We will now sharpen Theorem �
��� this time� it seems more convenient to prove our
result for �ring sequences �rst


Theorem ���� For each �ring sequence v of a net N � there is �up to isomorphism� a
unique process � of N which has v as linearization�

Proof� Existence of � follows from Theorem �
��
 Hence� we only have to show uniqueness
by induction on the length of v� the case v � � being clear
 Take a �ring sequence vt�

��



t � T � the unique process � for v and a process �� for vt
 Then� �� must have a ���maximal
event e with l��e� � t by Theorem �
�� ii�


If b � e�� then b� and �b are empty� since otherwise e would not be ���maximal
 Thus�
removing e and e� from �� gives a process with linearization v� by induction� this process
is � �up to isomorphism�


If b � �e in ��� then clearly b� is empty in �� furthermore� if b � �e� then b� is also empty
in �� since otherwise for f � b� we would have e�A����F ��f � i
e
 e�� f � a contradiction

Thus� �e� �e is a subset of ��� i
e
 l is injective on �e� �e by Corollary �
� and Lemma �
�


We see that �� can be obtained from � in two stages� �rst� add a new t�labelled event�
say e� and add arcs and read arcs from suitable conditions in �� to e� which are uniquely
determined by the injective labelling l� then� add new conditions corresponding to t� and
add arcs from e to these
 This construction is unique up to the names of the new event
and the new conditions
 Thus� �� is unique up to isomorphism
 �

Corollary ���� For each ST�trace �step sequence� w of a net N � there is �up to isomor�
phism� a unique process � of N which has w as ST�linearization �step linearization��

Proof� Existence of � for an ST�trace w follows from Theorem �
��
 Let some process
� with ST�linearization w be given
 Obtain v from w by replacing each t� by t and by
deleting all t�� this can be seen as moving the t� forward in w and contracting t�t�� hence
v is a �ring sequence by Proposition �
�
 Also� v is a linearization of � by Theorem �
��
i� and ii�
 Hence� � is unique �up to isomorphism� by Theorem �
��


By Theorem �
� ii�� a step sequence of N can be seen as an ST�trace and� by Theo�
rem �
��� a step linearization can be seen as an ST�linearization in the same way� hence
the ST�case carries over to the step�case
 �

Corollary ���� Let N be a net� denote by STLin��� the set of ST�linearizations of a
process �� Then the family of sets STLin��� with � a process of N is a partition of the
ST�traces of N � Similarly� processes induce a partition of the set of �ring sequences and
the set of step sequences of N �

From a set STLin��� the spc�structure spc��� can be determined �up to isomorphism�
without knowledge of N �

Proof� The �rst claims follow from Theorems �
� and �
��� Corollary �
�� and the fact
that each process has an ST�linearization etc
 as argued before Lemma �
��
 The last
claim follows from Corollary �
��
 �

In processes of ordinary nets� a line is usually de�ned as a maximal subset of B � E

that is totally ordered by causality� intuitively� it is the worldline of a pointlike object or
the trajectory of a signal in space and time
 A cut or slice is a global state of the system
seen by some observer
 From the intuition� it is to be expected that each line meets each
cut in exactly one element� and this is indeed true for the processes of ordinary nets� that
the intersection has at most one element is trivial from the de�nitions� that it is nonempty
is the more interesting part


��



We now discuss how lines can be de�ned in our setting
 In our discussion� we will
use the process in Figure � as an example� let D� be the slice fs�� s�� s�g
 First observe
that s� has to start holding before s�� although the two conditions can coexist
 For this
reason� it might happen that a sensibly de�ned line could meet this slice in more than one
element� for example� L� � fs�� b� s�� a� s�g looks like it should be such a line
 Hence� we
will aim for a de�nition of a line such that each line meets each cut� but not necessarily
in just one element


If we de�ne a line as usual to be a maximal subset of B �E that is totally ordered by
causality� i
e
 by �� then L� would not be a line
 Furthermore� fs�� b� d� s�g would be a
line that does not meet D�� this line misses s�� which establishes the link between b and
d
 This example indicates that a line should rather be related to �


If we de�ne a line as a maximal subset of B � E that is totally ordered by �� then
fs�� a� c� s�g would be a line that does not meet D�� again� this line misses s�� which
establishes the link between a and c
 This time� the reason is that actually the end of s�
is between the starts of a and c� but we have not modelled this in our relations� compare
the discussion after De�nition �
�
 An alternative would have been to derive from each
of our processes a partial order on B� �E� or maybe even on B �E �B� �E�� a severe
deviation from the ordinary setting� see e
g
 �Mur��� for a variant of event structures
where each event has an explicitly modeled start and end
 We have chosen to stay closer
to the classical approach


As a way out� we recall that a line can just as well be de�ned as a path from �� to ��

in the ordinary setting� hence� we will de�ne a line graph�theoretically on the process
 We
will de�ne two variants of a line� where in the more general variant we try to stay close to
�
 In particular� to allow a line going from a to c and including s� in the situation just
discussed� we allow to use a read arc backwards if we use an arc immediately afterwards

Lines de�ned this way are in fact close to maximal subsets of B � E totally ordered by
�� but the relation is subtle� and it does not seem worth the e�ort to work it out


De�nition ���� A line of a process � is a path from �� to �� with edges in F �A�A���
where each edge in A�� is immediately followed by an edge in F 


A line is an F�line if it only uses edges in F 
 �

Observe that each vertex is allowed to appear at most once on a path
 This excludes
the possibility to use the same edge in A forward and backward� this exclusion seems
more natural to me
 Furthermore� observe that each path starting in �� can be extended
to a line by Lemma �
� iv�


Theorem ���� Let � be a process of a net N � L a line and D a cut of �� Then L�D �� �

Proof� Consider X � fx � B � E j �d � D � x	 dg as in Lemma �
�
 By Lemma �
�
iii�� L starts in X� if it never leaves X� then its last condition is ��maximal in B �E and
hence in max��X� � D


Otherwise� L leaves X� say with the edge xy
 Assume that x �� D� i
e
 there is some
d � D with x� d
 Then� the edge xy is not in F by Lemma �
� iii� and Lemma �
� i�


First� consider xy � A� i
e
 x is a condition read by the event y
 Since x� d� there is
some event e with xFev d
 Hence� ye � A���F � i
e
 y� ev d and y � X by Lemma �
�

��



i�� a contradiction to the choice of xy
 Second� consider xy � A��� in this case� we have
directly y�xv d and hence y � X� a contradiction
 We conclude that x � D � L
 �

Corollary ���	 Let � be a process of a net N � L an F�line and D a cut of �� Then L

is a maximal subset of B �E that is totally ordered by causality� i�e� by �� Furthermore�
L �D consists of exactly one element�

Proof� Obviously� each F�line is totally ordered by causality
 Hence� assume L is an
F�line� x �� L and L � fxg is totally ordered by �
 Since L contains a ��minimal and a
��maximal element of the process� x partitions L into two sets with maximal element y
and minimal element z resp
 such that y�x� z and yz � F 
 A justifying path for y�x

starts with an edge yy� � F � and since y��x but not z�x� we have y� �� z
 Therefore�
y is an event and y� and z are conditions
 If z is a condition� then a justifying path for
x� z must end with an edge in F � this is a contradiction to z being unbranched� since y
cannot be on this path


Now the second claim follows from the last theorem and the de�nition of a cut
 �

In the discussion above� we have already mentioned that in Figure � fs�� b� d� s�g is a
maximal subset of B � E that is totally ordered by causality� observe that this is not an
F�line


We close this section by a result already announced in Section �� each spc�order
appears in the spc�structure of some process of some net


Theorem ���
 Let p � �E����� be an spc�order� Then there exists a net N and a
process � such that spc��� � �E����� l��

Proof� We take E as the set of transitions of N and give each transition a marked
place for its preset and an empty place for its postset� this guarantees T�restrictedness

Whenever e� f � we introduce a new empty place in e���f 
 Whenever e� f � we introduce
a new marked place in �e� �f 
 Clearly� this net is its own process �if we delete the marking
and take the identity as labelling� and this process satis�es the desired equation
 Observe
Lemma �
� vii� and that F�A is empty in our case
 �

Of course� it is enough in this construction to consider� instead of � and �� relations
that induce p
 Even then� the result can often be optimized by omitting some of the
places introduced to enforce T�restrictedness


e

f g

e

f g
N 2

N 1

Figure �

After optimization� p shown in Figure � leads to the net N� of Figure �� giving e� f
and g the durations discussed at the end of Section �� we see that N� can be completed
within time �� while N� needs time at least � although it has the same step sequences


��



� Related literature

We have introduced spc�structures to describe system runs and interval�spc�structures
as abstract observations of these runs� the latter abstract from ST�traces� the concrete
observations� in a way that is compatible with ST�traces of nets� ST�traces that di�er
only by the ordering of transition ends are identi�ed
 Then we have shown a suitable
analogue of Szpilrajn�s Theorem� each spc�structure is the intersection of its interval
augmentations
 Similar results are shown in �JK���� but there interval orders are taken
as abstract observations� these abstract also from the ordering of transition starts in
ST�traces �see �Vog��b��� an abstraction that is not reasonable for nets with read arcs


We have de�ned processes axiomatically and we have shown how to construct a cor�
responding process from a given ST�trace� the same is done �with step or �ring sequences
instead of ST�traces� in �MR��� BP��� and a construction of processes from step sequen�
ces without an axiomatic de�nition is given in �JK���
 These constructions give the same
processes in all approaches except that �JK��� allows some additional processes
 The
axiomatic de�nitions in �MR��� BP��� are di�erent from ours
 The recent report �JK����
a re�ned version of �JK���� gives an axiomatic de�nition similar to ours �the de�nition of
an occurrence net is di�erent�� this report gives a process semantics to nets with priorities
and to nets with generalized inhibitor arcs �so called branch inhibitor arcs� essentially by
translating these nets to nets with read arcs


�MR��� derives from a process only one relation� which is required to be a partial order
and is close but not identical to our �
 In fact� this partial order coincides on events with
our � such that concurrency �which we de�ne from �� is somewhat restricted compared
to our approach� on conditions� it is identical with our � such that the order�theoretically
de�ned slices coincide with ours
 It is required in �MR��� that the labelling is injective
on all slices and that these correspond to reachable markings� we require this only for the
initial slice and prove it for the others


�BP��� essentially extends �MR��� to general S	T�nets that besides read arcs may
have inhibitor arcs as well� an inhibitor arc �s� t� allows t to �re only if s is empty
 These
generalizations naturally lead to complications� but if we restrict �BP��� to safe nets
without inhibitor arcs� then the �linearizability requirement� in �BP��� De�nition �� states
simply that the relation derived as in �MR��� is a partial order and it makes requirements
�� � and � in �BP��� De�nition �� redundant� thus� the processes of �BP��� on this net class
are exactly those of �MR���
 �BP��� de�nes two relations which are not easy to compare
to ours� as a consequence� the slices � which are studied similarly as in the present paper
� are di�erent from ours� the de�nition in �BP��� requires that the set X de�ned in our
Lemma �
� is linearizable� something we have proven� nevertheless� some slices in �BP���
are not slices in our approach� hence they are not reachable by a linearization
 This �ts
together with the view taken in �BP��� that a process is not really one run� a process �
may contain �possible events�� and omitting them gives a di�erent run �contained in ��
reaching additional markings


Finally� �JK��� gives a more general construction for processes
 The reason is that
�JK��� views nets with read arcs only as translations from nets with inhibitor arcs
 For
example� the net N� in Figure � �essentially the net N� from Figure �� is simply the
translation of N�� instead of an inhibitor arc from a place we have in N� a read arc from

��



the complementary place
 In N�� it is intuitively convincing that a and b start together
at a time where both their postsets are empty� at a later time� they end and �ll these
postsets
 In N�� such a behaviour is intuitively less convincing� and I believe that the
approach of this paper is a convincing alternative


a

b
N4

a

b
N5

Figure �

From a process� a relational structure with two relations � only on the events � is
derived in �JK���� and this structure aims at step sequences� one relation says that some
event is necessarily in an earlier step than the other� the other relation says that some event
is not in a later step than the other� compare Theorem �
�� iii�
 We have already explained
at the end of Section � that step sequences are not sucient if we are interested e
g
 in
the durations of runs
 Also recall that our results about the correspondence between cuts
and ST�markings and between slices and markings rely on the fact that our spc�structures
are de�ned not only on events� but also on conditions


To deal with inhibitor arcs in the style of the present paper� one could extend spc�
structures by a third relation meaning that some event �e
g
 a in N�� has to start before
the end of some other event �b�
 Alternatively� one could also give a process�based partial
order semantics to nets with inhibitor arcs by translating them to nets with read arcs as
in �JK��� and transporting our semantics for these nets back to the nets with inhibitor
arcs


Lines are mentioned in �MR���� but they are not studied in any of the above papers
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