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Abstract

We study a new partial order semantics of Petri nets with read arcs, where
read arcs model reading without consuming, which is often more adequate than
the destructive-read-and-rewrite modelled in ordinary nets. As basic observations
we take ST-traces, which are sequences of transition starts and ends. We define
processes of our nets and derive two partial orders modelling causality and start
precedence. These partial orders are related to observations and system states
just as in the ordinary approach the single partial order of a process is related to
firing sequences and reachable markings. Our approach also supports a new view
of concurrency as captured by steps.

1 Introduction

Describing the runs of a concurrent system by sequences of actions ignores the possible
concurrency of these actions, which can be important e.g. for judging the temporal effi-
ciency of the system. Alternatively to this so-called interleaving approach, one can take
step sequences, where a step consists of simultaneous actions, or partial orders to describe
runs — resulting in a so-called ‘true concurrency’ semantics. We will use safe Petri nets to
model concurrent systems; for these models, the most prominent partial order semantics
are so-called processes. A process of a net N is essentially a very simple net consisting
of events (transition firings in N) and conditions (tokens in N produced during the run);
the process gives a partial order on these events and conditions.

The beauty of the approach is that operationally defined entities of N can now be
derived order-theoretically: Each linearization of the events is a firing sequence of N, and
vice versa, each firing sequence of N is a linearization of a unique process. We can view the
process as a run and its linearizations as observations of the run; essentially by Szpilrajn’s
Theorem, we can reconstruct the partial order of the events simply as intersection of
the total orders given by all these observations. Furthermore, unordered conditions are
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abstract is to appear in the proceedings of MFCS 97.



coexisiting tokens, and each slice (maximal set of unordered conditions) is a reachable
marking of N; each reachable marking is a slice of some process and each step is a set of
unordered events.

Recently, Petri nets with read arcs have found considerable interest [CH93, JK95,
MR95, BG95, BP96|; read arcs — as the lines from s in Figure 1 — describe reading
without consuming, e.g. reading in a database; consequently, a and b in N; can occur
concurrently. In ordinary nets, loops (arcs from a to s and from s to a and similarly for
b) would be used instead, which describe a destructive-read-and-rewrite and do not allow
concurrency; this is certainly often not adequate. [MR95, JK95, BP96] define processes of
nets with read arcs and generalize some of the results listed above, taking step sequences
as observations. Whereas in Figure 1 [MR95, BP96| allow a step {a,b} only for Ny,
[JK95] allows this step also for Ny and N3; the reason is that [JK95] views these nets as
translations from nets with inhibitor arcs and there these steps are intuitively reasonable
if we assume that a and b both start and then end some time later. For read arcs, this
intuition does not seem so convincing. Also, an undesirable effect is that in N3 the step
reaches a marking that is not reachable by firing sequences. (Correspondingly, [JK95]
allows more processes than [MR95, BP96].)
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Figure 1

The purpose of the present paper is a partial order semantics under the assumption
that activities have durations; consequently, observations of runs are ST-traces [Gla90,
Vog92] where we see transitions start and then end. The respective states are ST-markings
consisting of marked places and currently firing transitions; hence, ST-markings treat
places and transitions on an equal footing just as nets themselves do. An advantage of
using ST-traces is that their definition is (hopefully) indisputable: a transition can start
if it is enabled; when it starts, it removes a token from each place in the preset and
leaves the places in the read set untouched; after the start, it can end and produce a
token for each place in the postset. Furthermore, firing and step sequences can be seen
as special ST-traces — similarly as firing sequences can be seen as special step sequences;
thus, ST-traces give a reference point for a suitable definition of steps for nets with read
arcs.

We will show that, for nets with read arcs, the operationally defined ST-traces and
ST-markings are interrelated with spc-structures, our new partial order semantics, just as
in the ordinary approach firing sequences and reachable markings are interrelated with
the classical partial order semantics as described above.

If transitions start and end, we have the following phenomenon in N, above: when a
starts, b remains enabled and can start during the occurrence of a; thus, a and b overlap
in time and {a,b} is observably a step; note that for a and b both to occur, a has to
start before b. This view allows more concurrency than that of [MR95, BP96]. In fact,



in the latter approach each net with read arcs can be translated to an ordinary net with
the same partial order semantics. Such a translation does not exist for N, in our setting;
{a,b} is a step of N, but ba is not a firing sequence; this is impossible for ordinary nets.
Hence, read arcs really make a difference in our approach, see also [Vog96a]. On the other
hand, if in N3 one of a and b starts, the other is disabled; in general, our approach is a
conservative extension of the ordinary setting since steps only reach markings that are
also reachable by firing sequences.

Our processes are the same as those in [MR95], but the relational structures we derive
from them are new; our spc-structures have two partial orders < and  modelling causality
and start precedence: e < f means that e necessarily ends before f starts (causality),
while e C f means that e necessarily starts before f starts — that this is important is
demonstrated by a and b in N, above.

In Section 2, we define ST-traces, firing and step sequences for nets with read arcs and
relate them to each other. Section 3 studies spc-structures: General spc-structures model
general partial-order runs, while sequences, step sequences and ST-traces can be identified
with special spc-structures. Thus, analogously to partial orders for ordinary nets, spc-
structures give a framework for a variety of behaviour descriptions in the interleaving—‘true
concurrency’ spectrum for nets with read arcs. The main result of this section is a suitable
analogue of Szpilrajn’s Theorem: each spc-structure is (essentially) the intersection of its
so-called ST-linearizations. (Other generalizations of Szpilrajn’s Theorem can be found in
[JK93], but these cannot be applied here.) In Section 4, we define processes and the spc-
structures they induce, and we show: Each order-theoretically derived ST-linearization of
a process of some net N is an ST-trace of N; each cut (maximal causally unordered set of
events and conditions) is an ST-marking reached along such an ST-trace. Vice versa, for
each ST-trace of N we can construct a unique corresponding process, each reachable ST-
marking is a cut of some process and each step corresponds to a set of causally unordered
events in some process. For ordinary nets without read arcs, our spc-structures coincide
with the ordinary partial order semantics based on processes; our results are also of interest
in this case, since they study the relation of ST-traces and ST-markings to processes; this
is a refinement of the usual results since, as mentioned above, ST-traces generalize step
and firing sequences. Finally, we also have a look at so-called lines.

For the results on cuts, it is important that the spc-structures are defined on events and
conditions. [JK95] also derives from a process a relational structure with two relations,
but these are only defined on events, and they aim at step sequences; consequently, neither
the ST-markings nor the ST-traces of a net can be obtained. The paper closes with a
more detailed comparison to the existing approaches in Section 5.

2 Petri nets, read arcs, steps and ST-traces

In this section, we introduce safe Petri nets (place/transition-nets) with read arcs, also
called positive contexts [MR95], test arcs [CH93| or activator arcs [JK95]. In particular,
we will discuss what a suitable notion of step is for such nets, and we will introduce
ST-traces which are useful to describe runs where activities have a duration. For general
information on ordinary Petri nets, the reader is referred to e.g. [Pet81, Rei85].



We start with some relational notions: a (binary) relation on a finite set X is some
R C X x X; we often write z Ry in lieu of (z,y) € R — or sometimes zy € R if we view R as
the directed edges of a graph with vertex set X. Composition of relations on X is defined
by RoS = {(z,2) | Iy € X : (z,y) € RA (y,2z) € S}; with this notation, R is transitive
iff RoR C R. We assume that o binds stronger than U, thus e.g. Ro(SUT) = RoSURoT.
We write Rt and R* for the transitive and the reflexive-transitive closure of R, and R™!
for its inverse. If a relation is written < or [, we write z <y for e <yVez =y and zCy
for z Cy V ¢ = y as usual. Thus, transitivity of < means that <o< =< = <o0=.

Assume < is a partial order on X, i.e. it is irreflexive and transitive. A linearization of
< is a sequence containing each element of X once such that # occurs before y whenever
z < y; if we speak of a linearization of a set without mentioning a partial order, then we
assume the empty partial order. We write = co. y if neither z <y nor y<z. ¥ C X i1s
a cog-set if xcoyy for all z,y € Y. The set of the <-mazimal elements in ¥ C X i1s
maz<(Y)={y €Y |y<z for no z € Y}; mins(Y) is defined analogously. We call Y’
left-closed under < ,if x <y € Y implies z € Y.

A Petri net with read arcs N = (S,T,W, R, My) (or just a net for short) consists of
finite disjoint sets S of places and T of transitions, the (ordinary) arcs W C SxTUT x S
(which all have weight 1), the set of read arcs R C S x T, and the initial marking
My : S — {0,1}; we always assume (RU R™')NW = (. When we introduce a net N or
N; etc., then we assume that implicitly this introduces its components S, 7', W, ... or
S1, 11, . . ., etc. and similarly for other tuples later on. In general, we will not distinguish
isomorphic nets (nor isomorphic partial orders etc.). The tuple (S, T, W, R) is called a net
graph. A net is called ordinary, if R = 0.

As usual, we draw transitions as boxes, places as circles and arcs as arrows; read arcs
are drawn as lines without arrow heads.

For each ¢ € SUT, the preset of z is *z = {y | (y,z) € W}, the read set of z is
¢ ={y|(y,z) € RUR'}, and the postset of z is z* = {y | (z,y) € W}. These notions
are extended pointwise to sets, e.g. *X = U,cx *z. If ¢ € *y N y®, then 2 and y form
a loop. A marking is a function S — INy,. We sometimes regard sets as characteristic
functions, which map the elements of the sets to 1 and are 0 everywhere else; hence, we
can e.g. add a marking and a postset of a transition or compare them componentwise.
Vice versa, a function with images in {0, 1} is sometimes regarded as a set such that we
can e.g. apply union to it.

We now define the basic firing rule, which extends the firing rule for ordinary nets by
regarding the read arcs as loops.

e A transition ¢ is enabled under a marking M, denoted by M[t), if *t Ut < M.

If M[t) and M' = M +t* — °t , then we denote this by M[t)M' and say that ¢ can
occur or fire under M yielding the marking M’'. Thus, when ¢ fires, it checks its pre-
and read-set, removes a token from each place in its preset and puts a token onto
each place in its postset.

e This definition of enabling and occurrence can be extended to sequences as usual:
a sequence w of transitions is enabled under a marking M, denoted by M[w), and



yields the follower marking M’ when occurring, denoted by M[w)M', if w = X and
M= M orw=uw't, Mw)M" and M"[t)M' for some marking M". If w is enabled

under the initial marking, then it is called a firing sequence.

A marking M is called reachable if 3w € T* : My[w)M. The net is safeif M(s) <1

for all places s and reachable markings M.

General assumption All nets considered in this paper are safe and T-restricted, i.e.
each transition has a nonempty preset and a nonempty postset (where we sometimes omit
the postsets in figures).

Now we will define ST-traces, see e.g. [Gla90, Vog92], a suitable behaviour notion if
we assume that the firing of a transition takes time. (Using ST-traces and partial orders,
[Vog95] studies durational transitions for ordinary nets.) The key idea is that the firing
of a transition ¢ consists of a beginning ¢* and an end ¢t~; ¢t checks the enabledness of
t and consumes the input of ¢, and ¢t~ produces the output. We will need the following
general notions, where the notion ST-sequence will not be applied to transitions, but — in
the next section — to events, i.e. transition firings.

e For a finite set X, X* denotes the union of two disjoint copies of X; for z € X,
the copies of z are denoted by z*, called the start of z, and z~, the end of z. A
sequence over X7 is closed, if it contains each z1 as often as the respective z~.

An ST-sequence over X is a sequence containing each 1 once and each z~ at most
once and only after the corresponding z*. It is closed, if it contains each £~ once.

If transitions have a beginning and an end, a system state cannot adequately be de-
scribed by a marking alone; instead, it consists of a marking together with some transitions
that have started, but have not finished yet. We call such a system state an ST-marking
(S = Stellen, T = Transitionen (German)); ST-markings were introduced in [GV87] in a
slightly different version.

e An ST-marking of a net N is a pair Q@ = (M,C), where M is a marking of N
and C C T; C is the set of currently firing transitions. The initeal ST-marking is

QN = (MN,@)

e The elements of 7% are called transition parts. For an ST-marking Q = (M, C),
a transition start ¢* is enabled under @, Q[t*), if M]t); a transition end ¢~ is
enabled under Q, Q[t7), if t € C. Firing yields a follower ST-marking given by
QIETYM —*t,C U{t}) and Q[¢t ") (M +¢*,C — {t}).

e We extend this definition to sequences, and if we have Qn[w)@Q for a sequence w of
transition parts, then w is an ST-trace and @) a reachable ST-marking of N.

We have the following observations, which show in particular that ST-traces are a
fairly conservative, refined version of firing sequences; in particular, i) shows that we can
view a firing sequence as a special ST-trace. Observe that by the last part of ii), it is
adequate to consider a set (instead of a multiset) of currently firing transitions.

5



Proposition 2.1 Let N be a net.

i) For a reachable marking M and transitions t,...,t,, we have M[t,)M; ... [t,) M,
iff (M, 0)[tft7)(Mi,0). .. [tht,) (M, 0).

it) If (M,C) is a reachable ST-marking, then M + > ,cct* is a reachable marking; in
particular, we have M Nt* =0 fort' € C, and (M, C)[t'") implies t' ¢ C.

1) A marking M s reachable iff (M,0) is a reachable ST-marking.

w) If w is an ST-trace, then t* and t~ occur alternatingly in w starting with t* for
each t € T. If w' is obtained from w by moving some t~ to an earlier position that
is still after the preceding t*, then w' is an ST-trace as well and reaches the same
ST-marking. (In particular, w' could be obtained by replacing some t;t, in w by

tyt7.)

Proof: Part i) is obvious. Part ii) can be shown by induction on the length of the
respective ST-trace using the safety of N, see [Vog92] for details (in the case that N
is ordinary); to see why t' ¢ C, assume to the contrary and take some s € t'*: since
M + ¥ ,cct® is reachable and has one token on s, we have M(s) = 0 and thus s ¢ *t' by
M(t'"); firing t' under M + 3>, t* violates the safety for s. Now iii) follows from i) and
ii).

To prove the first statement of iv), we apply the last statement of ii). To see the second
statement, observe that along w’ we simply have more tokens than along w since they are
produced earlier, but at the end the same tokens have been produced and consumed in w
and w'. O

While the definitions of firing sequence and ST-trace are quite unquestionable, there
are at least two different definitions of a step for nets with read arcs, and we define a
third one. Our notion is more general than the one of [MR95]; it is more restrictive than
the one of [JK95] and also more conservative, because our steps only reach markings that
are reachable by firing sequences as well.

A step is meant to be a set of transitions that can fire concurrently. We have already
argued in the introduction that, in Ny shown in Figure 1, firing a does not disable b,
since a does not take away any tokens needed by b; therefore, b should be able to fire
concurrently to a and {a, b} should be a step. Generalizing this idea, we get the following
definition.

Definition 2.2 A transition ¢ of a net N can fire concurrently to a set G C T under a
marking M, if (M —*G)[t). A set G with § # G C T is a step enabled under a marking
M if for some linearization tits...t, of G (equipped with the empty partial order) we

have for ¢« = 1,...,n that ¢; can fire concurrently to {¢;,...,¢;_1} under M; ¢;... ¢, is a
generation ordering for G under M. The marking M’ reached by firing G is M —*G + G*
and we write M[G)M’; this is generalized to step sequences as usual. a



In the net N, above, {a,b} is a step, but ba is not a firing sequence. This cannot
happen with the usual definition of a step for ordinary nets. This shows that, with our
step definition, nets with read arcs cannot be simulated by ordinary nets — in contrast
with results in [CH93, MR95]. That our definition is nevertheless a conservative extension
is demonstrated in the following theorem in parts iv) and v) (and in Corollary 2.6 below).
Part ii) establishes that steps and, thus, step sequences can be seen as special ST-traces;
part iii) shows that steps are sets of transitions that can appear as currently firing (and
thus concurrent) transitions in reachable ST-markings. Part i) shows that steps should
be sets and not multisets in our setting of safe nets.

Theorem 2.3 Let N be a net and M be a reachable marking.
i) Ift can fire concurrently to G under M, then t € G.

i) Let G # 0 have a linearization t;...t,. Then G is a step under M with gen-
eration ordering t...t, iff (M,0)[t{ ... tS). In this case, *G U G C M and the
*t; are disjoint; furthermore for M' with M[G)M', we have (M,Q)[t{ ... tJ)(M —
*G,G)[ty ...t (M',0).

it1) If G is a step under M, then there exzists a reachable ST-marking (M',G).
w) If G is a step with M[G)M' and generation ordering w, then M[w)M'.
v) The markings reachable by step sequences are exactly the reachable markings.

Proof: i) If t € G and s € °t, then s is empty under M — *G.

ii) For the following, observe that M(s) < 1 for all s € S by safety of N. G is a
step as required iff, for i = 1,...,n, we have *t; Ut; C M — *{t;,...,t;_1}. This im-
plies the desired inclusion and disjointness, and it is equivalent to (M — *{¢t1,...,t;i-1},
{ti,.. i P[EHM —*{t1,...,t;},{t:,...,t;}) for i = 1,... n, which in turn is equiva-
lent to (M, Q)[t] ...tF). The ST-marking reached after this sequence is (M — *G, G) and
obviously (M —*G,G)[t; ...t ) (M, D).

iii) follows from ii).

iv) Ifw =t¢,...t,, then by i) (M,D)[t] ...t t; ...t )(M',0). Now we can rearrange
tf...tTtr ...t totft; ...ttt reaching (M',0) by Proposition 2.1 iv), and 2.1 i) implies
Mw)M'.

v) Follows from iv); observe that firing sequences can be seen as special step sequences.

O

An interesting question is whether a converse of iii) holds, i.e. whether C is a step
whenever (M, C) is a reachable ST-marking. In ordinary nets, this is the case; but in
the net N of Figure 2, we can start a, fire b and then start ¢ reaching (0, {a,c}); no
reachable marking M exists where we can fire the step {a,c}, i.e. where (M, 0)[a*c") or
(M,0)[cta®) — compare ii) above.

The definition of a step requires a suitable linearization; the next theorem describes
how such a linearization can be found, and it prepares our partial order approach. Observe
that in N, of Figure 1, a has to start before b because b takes the token a has to read, i.e.
because a(R; " oW,)b.
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Figure 2

N

Theorem 2.4 Let N be a net, M a reachable marking and 0 +# G C T. Then G is a step
under M if and only if

i) *GUGC M
it) For all t;,t; € G, t; # t; implies *t; N *t; =0

i4i) The relation R~'oW is acyclic on G, i.e. (R™1oW)™ is irreflezive and thus a partial
order.

If G is a step, then the linearizations of (R™'oW)* on G are ezactly the generation
orderings.

Proof: Let G be a step under M with generation ordering ¢;...t,. Conditions i) and
ii) are satisfied by Theorem 2.3 ii). For i < j we have £; C M — *{t1,...,t;_1}, ie.
*t;Nt; = 0. Thus, we can only have tx(R~*oW)*t; if k < [, hence iii); it also implies that
a generation ordering must be a linearization of (R™*oW)* on G.

Now assume that G satisfies i)-iii) and ¢; ...%, is a linearization of (R"*oW)* on G,
which exists by iii). We are done once we have shown that ¢; .. .¢, is a generation ordering
for G under M. We show *t; Ut; C M — *{t1,...,ti_1}fori=1,... n. Since °*G C M,
i) implies *t; C M — *{t1,...,t;—1}. If we had s € {; and s & M —*{t1,...,t;_1}, then
by G C M we would find some j < 1 with s € *t;, i.e. t;(R"'oW)t; and ¢, ...t, is not a
linearization as required. a

Corollary 2.5 Let N be a net, G a step under a reachable marking M, and § # G' C G.
Then G' is a step under M.

The last corollary of this section shows that our definition of a step restricted to
ordinary nets coincides with the usual definition.

Corollary 2.6 Let N be an ordinary net, 0 # G C T, and M be a reachable marking.
Then G s a step under M iff for all t,t' € G we have M[t) andt £t = *tN*t' =0, in
this case, M[w) for each linearization w of G.

Proof: Follows from Theorem 2.4 since (R™'oW)* is empty. O



3 Structures for causality and start precedences

Usually, a partial order description of a system run is a set of events (and possibly condi-
tions) ordered by some partial order < , where < models causality; i.e. for events e and
f, e < f means that e necessarily ends before f starts. As argued in the introduction, we
also have to consider for some events e and f that e necessarily starts before f starts; we
will write e C f in this case. It is clear that [ should be a partial order, too. Furthermore,
if e ends before f starts, then it also starts before f; finally, if e ends before f starts and
f starts before g starts, then e ends before g starts. Hence, < and [ should satisfy the
requirements of the following definition.

Definition 3.1 An spc-order p = (E, <, C) consists of a finite set E, whose elements we
call events in this section, and two partial orders < and  on E such that

i) <CC
i) <o C < (i.e. e< fCgimplies e<g for all e, f,g € E) or equivalently <o = <

An spc-structure is a labelled spc-order p = (E, <, C,[l) where (E,<,C) is an spc-
order and [ : E — X some function, the labelling, and such that e co; f A e # f implies
lle) £ I(f)for alle, f € E.

By this label requirement, the events with a given label z are totally ordered by <
and we can speak of the i:-th event with label z; p is canoncial, if E C X x IN and each
(z,1) € E is the i-th event with label z. O

We will see that the requirements for spc-orders are complete in the sense that for
each spc-order p there exists a run of some net which is modelled using p. In this paper,
we will only need labelled spc-orders that satisfy the label requirement. Obviously, each
spc-structure is isomorphic to a canonical spc-structure, i.e. we can restrict attention to
canonical spc-structures whenever this seems to be an advantage. The next proposition
gives some first useful properties.

Proposition 3.2 Let E be a finite set with a partial order T and an arbitrary relation
< C C satisfying <oC C <.

i) < 1is a partial order, i.e. (E,<,C) is an spc-order.
it) If e< f, then ~f Ce.

Proof: i) Since < C [, irreflexivity of < is implied by that of = . Furthermore, <0< C
<ol C <.
ii) e < f implies e C f and [ is irreflexive. a

Graphically, we present an spc-order by writing down the events of £ and connect e
and f by an arrow if e < f and by a dashed arrow if e — f. (For spc-structures, we replace
the events of E by their labels.) Arrows implied by Definition 3.1 i) and ii) are often
omitted, in particular we never draw an ordinary and a dashed arrow from e to f. If the
arrows of such a drawing seen as arcs of a directed graph are acyclic, then the drawing
represents an spc-order, which is described in the next proposition.



Proposition 3.3 Let E be a finite set with relations R; and R, such that Ry U Ry is
acyclic, i.e. C := (R U Ry)™ is wrreflezive. Then p = (E,~<,C) is an spc-order, where <
1s defined as Ry o C.

For all spc-orders p' with Ry C <' and Ry C ', we have < C <" and _ C .

Proof: Since [ is a partial order, we only have to show < C [ and <o C < and apply
3.2 1) to get the first claim. Since R; C [, we get < = RjoC C C oL = . Furthermore,
<oC =RjoCoC=RjoC C<.

For the second claim, observe that Ry C ' and R; C <’ C ' implies — = (R; U

R,)t C [’ by transitivity of —'. Hence, < = RjoC C <'oC' C <. O

If we regard the ordinary arrows of an acyclic drawing as discussed above as R; and
the dashed arrows as Rj, then the p of this proposition contains just all the orderings
implied by the arrows; we call p the spc-order induced by the arrows.

Definition 3.4 Let E be a finite set with relations R; and R, such that R;U R, is acyclic;
then we call the spc-order p according to Proposition 3.3 induced by R; and R,. O

From a partial order, we can derive its augmentations (or extensions) to total or-
ders; total orders obviously represent sequences and vice versa; the derived sequences
are called linearizations. Similarly, one can order-theoretically define the derived step-
sequences. This shows that various behaviour descriptions in the interleaving—‘true con-
currency’ spectrum can be studied in the partial-order framework. From the set of derived
sequences, one can reconstruct the partial order as the intersection of the respective total
orders.

In the case of spc-orders, we will analogously define which spc-orders correspond to
sequences, step-sequences and ST-sequences; then, from a given spc-order, we can again
derive sequences etc. order-theoretically as augmentations. Finally, as the main result
of this section, we show that an spc-order can be reconstructed from the collection of
its corresponding ST-sequences. First, we identify the spc-orders that correspond to
sequences, step sequences and — more or less — to ST-sequences.

Definition 3.5 Let p be an spc-order. Then, p is an spc-sequence, if < is a total order;
the obvious linearization w of E is the corresponding sequence. If co. is an equivalence
relation, p is an spc-step-sequence; the obvious sequence w of the equivalence classes
ordered according to < is the corresponding step-sequence. For an spc-structure p, p is
analogously an spc-trace or an spc-step-trace; if w is the corresponding (step) sequence of
(E,<,C), then replacing each e € E in w by its label gives the corresponding trace or
step-trace with w as underlying sequence or step-sequence.

Finally, if  is total, p is an wnterval-spc-order. An ST-sequence w over E is a cor-
responding ST-sequence if it satisfies for all e, f € E: et occurs before f* if and only
if eC f; e occurs before f* if and only if e < f. As above, we derive from this the
definitions of interval-spc-structure, corresponding ST-trace (a sequence over X*) and
underlying ST-sequence. O

10



The definitions of the first part are straightforward generalizations from the case of
partial orders. Note that the labelling [ of an spc-structure is injective on the equivalence
classes of co. by the label requirement; hence, the corresponding step trace is a sequence
of sets (and not multisets).

The second part needs more explanations. A partial order < on F is an interval order,
if for all e, €, f, f' € E we have: if e <€’ and f < f’, then e < f' or f <¢€’; in this case, we
can associate each e € F with an interval of real numbers such that e < f iff the interval
of e lies completely before that of f; a basic reference for interval orders is [Fis85, Chapter
2]. The following result explains the name interval-spc-order.

Proposition 3.6 If p is an interval-spc-order, then < is an interval order.

Proof: Let e<e' and f<f'. If {e, '} N{f, f'} # 0, then we are done. Otherwise, we
have e’ C f’ without loss of generality, which together with e < e’ implies e < f'. O

Different from the case of sequences and step-sequences, an interval-spc-order does
not have a unique corresponding ST-sequence, but a set of such sequences. The next
result shows that these sequences coincide up to simple modifications; by definition, each
of the sequences allows to reconstruct the interval-spc-order, i.e. an interval-spc-order is
a simple abstraction of an ST-sequence.

Proposition 3.7 Let p be an interval-spc-order and I the set of its corresponding ST-
sequences.

i) There exists a closed w in I.

it) I is the set of sequences v that can be obtained from w by repeatedly replacing some
e" f~ by f~e” and deleting some e~ at the end of w.

Proof: i) Assume E = {e;,...,e,} and e; CeyC...e,; thus, w contains ej,..., e}
this order. For 7 € {1,...,n} we have that e; < e; C e} implies e; < eg; hence, {j | e; < e;}
is some set {{+1,...,n} with [ € {1,...,n}. We simply have to insert e; somewhere
after the respective e;f and, for [ # n, before el":_l.

ii) This is clear from the way w has to be constructed in i). a

in

This proposition immediately carries over to interval-spc-structures, as stated in Corol-
lary 3.9 below. The following lemma tells us that from a corresponding ST-trace of a
canonical interval-spc-structure we can determine the underlying ST-sequence; hence, we
can additionally reconstruct such a structure from each of its ST-traces by definition of a
corresponding ST-sequence.

Lemma 3.8 Let p be a canonical interval-spc-structure and w be a corresponding ST-

trace, = a label. Then, z7 and =~ alternate in w starting with z*, and the i-th z* and

}
z~ correspond to (z,1)" and (z,1)” in the underlying ST-sequence.

Proof: By definition of an ST-sequence, (z,%)" occurs before (z,%)~, which occurs before

(z,7+ 1) since (z,2) <(z,7 + 1). O

11



Corollary 3.9 Let p be a canonical interval-spc-structure and I the set of its correspond-
ing ST-traces.

i) There exists a closed w in I.

it) I is the set of sequences v that can be obtained from w by repeatedly replacing some
"y~ by y x~ and deleting some ¢~ at the end of w.

i11) For an arbitrary v € I, put (z,1) <'(y,j) if the i-th = occurs in v before the j-th
yT and put (z,7) T'(y, J) of the i-th ™ occurs in v before the j-th y*. Then < = <’
and _ ="

This corollary shows that an interval-spc-structure corresponds to a set of closely
related ST-traces, and that it can be reconstructed from each of these up to isomorphism.
Thus, interval-spc-structures are a moderate abstraction of ST-traces. Observe that this
abstraction is compatible with the application to nets: if w in the above corollary is an
ST-trace of a net, then the modifications v according to ii) are also ST-traces of the net
by Proposition 2.1 iv) — independently of the net.

Now we will describe how we can order-theoretically derive sequences etc. from an
arbitrary spc-order.

Definition 3.10 An spc-order p' = (E,<',C') is an augmentation of an spc-order p, if
< C <"and C C . If p’ is additionally an spc-sequence, an spc-step-sequence or an
interval-spc-order, then it is called a linear, step or interval augmentation.

A linearization of p is the corresponding sequence of a linear augmentation of p. Anal-
ogously, a step linearization and an ST-linearization correspond to a step and an interval
augmentation of p.

This definition carries over to spc-structures; note that augmenting < cannot violate
the label requirement. Linearizations etc. are analogously defined as corresponding traces,
step traces and ST-traces with underlying sequences as in Definition 3.5. O

The following theorem shows how to read off the ST-linearizations etc. directly; this
demonstrates how < and [ describe relationships between starts and ends of the events

in E.
Theorem 3.11 Let p be an spc-order.

i) w is an ST-linearization of p iff it is an ST-sequence over E such that e* occurs
before f+ if e f and e~ occurs before f+ if e < f.

it) w is a linearization of p iff it is a linearization of (E,0) such that e C f implies that
e occurs before f.

1) w is a step linearization of p iff it is a sequence of sets that form a partition of
E with the following two properties: e < f wmplies that the set containing e occurs
before the set containing f; e C f tmplies that the set containing e does not occur
later than the set containing f.

12



Proof: i) For the only-if case, let w be an ST-linearization and p’ be a respective interval
augmentation of p. Then e[ f implies e ' f and this implies that e™ occurs before f+
in w; the case of < is similar.

For the if-case, let w be given with the required properties and define <’ and [’
such that they make w a corresponding ST-sequence to p' = (E,<',') according to
Definition 3.5. We show that p’ is an interval-spc-order; then it is clearly an interval-
augmentation. First, [’ is a total order. Now observe that e <’ f implies that e, e~
and f1 occur in w in this order; thus, <’ is contained in ' and, furthermore, e <’ f ' g
implies e <’ g.

ii) Let w be a linearization of (F, () and <’ be the respective total order on E. Then,
w is a linearization of p iff (E,<’,<') is an augmentation of piff < C - C <" iff e f
(and thus e < f) implies that e occurs before f.

iii) Let w be a sequence of sets that form a partition of £ and <’ be the respective
partial order on E such that the sets are the equivalence classes of co.;. We observe that

() e <' f iff the set containing e occurs before the set containing f.

Also, w is a step linearization of p iff

(#x) for some ' (E, <',C') is an augmentation of p.

On the one hand, we can conclude from (%) that e < f implies e <’ f, hence the first
desired ordering of the sets by (). Furthermore, if the set containing e occurs later than
the set containing f, then f <'e and —e”’ f by Proposition 3.2, which implies —eC f;
this shows the second desired implication.

On the other hand, given the two implications for the ordering of sets in w, we define

C' = CU='". As a union of two irreflexive relations, ' is also irreflexive. From the

implication for C and (x), we conclude that Co~<' C <" and <o C <'. On the one

hand, this implies that ' o' C ', i.e. ' is transitive. On the other hand, it also implies
<o C <. Clearly, <’ C ' by definition, hence p’ = (E, <’,C') is an spc-order.

Furthermore, — C ' by definition. We have that e < f implies that the set containing

e occurs before the set containing f, which implies e <’ f by (). Thus, (*x*) is satisfied.

O

[JK95] also studies relational structures with two relations to describe system runs;
these are tuned to obtain a result as Theorem 3.11 iii). We discuss at the end of this
section why step sequences are not expressive enough for some purposes.

Theorem 3.11 also tells us how to read off the ST-linearizations etc. of an spc-structure
p: we simply read off the ST-linearizations of the spc-order (E, <,) and apply the
labelling. The next theorem implies that ST-linearizations are all we need, since they
have (more or less) linearizations and step linearizations as special cases.

Theorem 3.12  a) Let p be an spc-order, e; € E and 0 £ E; CE fori=1,...,n.

i) €1...e, is a linearization of p iff efer ...efe; is an ST-linearization of p.

it) E1...E, is a step linearization of p iff for some indexing E; = {e;1, ..., €im;}
fori=1,...,nandef;...el €51 ..€5m, - -€n ... €nm,, 8 an ST-linearization
of p.

13



b) Let p be an spc-structure, z; € X and 0 # X; C X fori=1,...,n. Then:

i) ®1...z, is a linearization of p iff efzy ...z} z, is an ST-linearization of p.
it) X1 ...X, s a step linearization of p iff for some indezing X; = {zi1, ..., Tim,;}
fori=1,...,n and zf, ... 2}, =5, ... ¢, ... o ... 2, is an ST-lineariza-

tion of p.

Proof: a) i) e;...e, is a linearization of p iff there exists a linear augmentation p' of
p where e; <'ey...<"e,. Since in this case ' = <’ is also total, this is equivalent to:
efer ...efe; is an ST-linearization of p.

ii) If E; ... E, is a step linearization of p, then for the respective step augmentation p’
[’ is a partial order on each E; and for all : < j, e € E; and f € E; we have e ' f. We
can augment ' to a total order C”. Then we have for all e, f,g € E with e <’ f " g that
ec B, feE;j,g€ Efori<j<k ie e<'g. Thus, (E,<',") is a step augmentation
giving rise to the same step sequence and an interval augmentation.

Thus, E;...E, i1s a step linearization of p iff there exists a suitable step augmen-

tation p’ that is an interval augmentation as well — i.e. for some indexing we have

E;,={ex,....im;tand ey C'...C' €im, fori =1,...,n. This clearly implies that for some
. . L i i . _ _l_ _l_ — — — — .
indexing E; = {ei1,...,em;y fori =1,...,n and e];...el, e57...€n ... €5 ...€,, s

an ST-linearization of p. Vice versa, given such an indexing, ST-linearization and suit-
able interval augmentation p’ of p, we see that e;; <" e;; iff 7 < 7, thus e; cosreji iff 1+ = j;
therefore p' is also a step augmentation in this case, suitable for E; ... E,.

b) follows now from a). O

Observe that Theorem 3.12 fits Proposition 2.1 i) and Theorem 2.3 ii): if we have an
spc-structure p and a net N such that all ST-linearizations of p are ST-traces of N, then
all linearizations (step linearizations) of p are firing sequences (step sequences) of N; vice
versa, if we can find for each ST-trace w of N an spc-structure p of a certain type such
that w 1s an ST-linearization of p, then we can also find for each firing sequence or step
sequence w of N an spc-structure p of this type such that w is a linearization or step
linearization of p. Hence, if we want to study the behaviour of nets using spc-structures,
it 1s enough to relate such spc-structures to ST-traces of nets — the relationship to firing
and step sequences is then immediate.

Clearly, for each spc-order p, we can extend [ to a total order ' and put <’ := /;
hence, linear augmentations exist, and they are also step and interval augmentations. To
construct more interesting interval augmentations we give three lemmata.

Lemma 3.13 Given an spc-order p and a partial order ' with T C ['; define <' as
<oLC'. Then p' = (E,<',C') is an spc-order and an augmentation of p.

Proof: By Proposition 3.3 with < as R; and ' as R, (and hence as ) of 3.3, p’ is an
spc-order and obviously an augmentation of p. a

Lemma 3.14 Let (E,C) be a partial order with different e and f in E such that ~f Ce.
Then there ezists a linearization (E,') of (E,C) wheree "' f and {g |eCgC f} ={g |
eC'gC' f}.
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Proof: If —eC f, we can extend [ as a first step to the partial order (CZ U{(e, f)})™,
which satisfies the desired equality. Hence, we can assume that e f.

Define a partition of £ by E; = {g | —eC g}, E» = {g | eCgLC f} and Ez = {g |
eCgA—gLC f}. Obviously, e and f are the minimum and the maximum of E,; if we have
for 1,7 = 1,2,3 that g; € E; and ¢; Cg;, then¢ < j. (E.g. ¢ = 2 and j = 1 would give
eC gy g1,ie g1 € E1.) Hence, CUE; X (E;U E3)U Ey X Ej is a partial order extending
C , it satisfies the desired equality, and so does any linearization of it. a

Lemma 3.15 Let p be an spc-order and e, f € E be different.
i) If meC f, then there exists an interval augmentation p' with e’ f and —e <’ f.

1) If eC f and —e < f, then there exists an interval augmentation p' with —e <’ f.
) IfeC f , g p

Proof: i) Define [’ as a linearization of the partial order (C U{(f,€e)})*, and apply
Lemma 3.13; observe that ' is irreflexive and <’ C .

ii) By - f C e, we can apply Lemma 3.14 to get ' and then apply Lemma 3.13 to define
the interval augmentation p'. If we had e <’ f, then there would be g with e<g[' f, i.e.
e'gC’' f and e g f; this would imply e <g f and e < f. O

We will use spc-orders to model system runs; an ST-sequence is an observation and,
as we have seen, an interval-spc-order is a moderate abstraction of an observation; such
abstract observations can be derived order-theoretically from a run: they are the interval
augmentations. The following theorem shows that we can reconstruct a run from the set
of its abstract observations.

Theorem 3.16 Let p be an spc-order and I the set of its interval augmentations. Then
~< = mp’EI '<I and C = mp’EI |:I.

Proof: The inclusion is in both cases obvious. For the reverse inclusion, we can apply
Lemma 3.15 i) for ; for < and —e < f, we either have —e _ f and apply 3.15 i), or we
have e f and apply 3.15 ii). O

Again, this result carries over to spc-structures. The resulting corollary is the most
important result of this section; it is an analogue to Szpilrajn’s Theorem and will be
applied in Corollary 4.14.

Corollary 3.17 Let p be an spc-structure and I the set of its interval augmentations.
Then < = mpleI '<I and C = mpleI |:I.

We have seen in Proposition 3.7 and Corollary 3.9 that we can reconstruct an interval-
spc-order or -structure (up to isomorphism) from each of its ST-sequences or -traces.
Furthermore, we can reconstruct an spc-order or -structure from the set of its interval
augmentations and, hence, (up to isomorphism) from the set of its ST-linearizations by

Theorem 3.16 and Corollary 3.17.

15



P ‘f#g e— »f —»gQ f—»g

Figure 3

Corollary 3.18 If spc-orders p and p’' have the same set of ST-linearizations, then they
are equal. If spc-structures p and p' have the same set of ST-linearizations, then they are
isomorphic; i.e. an spc-structure can be reconstructed (up to isomorphism) from its set of
ST-linearizations.

The above results that lead to this corollary do not hold for step sequences. Fig-
ure 3 shows on the right an spc-step-sequence, where we cannot derive eC f from its
corresponding step sequence ; g. The spc-order p on the left cannot be reconstructed
from its two step augmentations — which are also shown —, because we cannot derive that
—e<g.

If we are only interested in step sequences, it is irrelevant whether e < g or only e g.
But if we are interested in the durations of events and runs, this difference is important:
assume e.g. that e has duration 3 and f and g have duration 1 in p; then e can start time
1 before f and later carry on in parallel with g, such that the whole run p takes time 3.
If we had e < g, the whole run would take at least time 4. The relation between partial
order semantics and temporal efficiency of ordinary nets where events have durations has
been explored in [Vog95].

4 Processes of nets with read arcs

A process is essentially a so-called occurrence net describing one run of another net N.
Transitions of occurrence nets are called events and model the firings of transitions of N,
places of occurrence nets are called conditions and model tokens, i.e. they correspond to
statements ‘s is marked’ that hold at some stage of a run. We will extend the definition of
processes to nets with read arcs, essentially following [MR95]. Occurrence nets are usually
very simple: they are acyclic, i.e. give a partial order on their elements, and conditions are
unbranched; here, these requirements are a little more difficult to define, since read arcs
allow some sort of branching and since we deal with two partial orders. We will explain
the following definition below.

Definition 4.1 For a T-restricted net graph O = (B, E, F, A), we define two relations
on BUE: Cis (FUAUA 'oF)" and < is FoL.

O is an occurrence net if

i) |*b],]6°| < 1for all b € B, i.e. conditions are unbranched,;

i) FUAUA'oF is acyclic, i.e. C is a partial order.
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The spc-order (BU E, <, ) induced by F and AU A™'oF according to Definition 3.4
is denoted by spc(O). We call the places b € B conditions, the transitions e € E events.
(F stands for flow, A for activator arcs as read arcs are called in [JK95].) We denote
min<(B U E) by *O, maz<(B U E) by O°® and the restrictions of < and  to £ by <g
and Cg.

We also consider a graph with vertices BU E and (directed) edges FUAU A o F. We
have z Cy iff # # y and there exists a path in this graph from z to y, and z <y iff z £y
and there exists such a path starting with an edge in F'; we call such a path justifying for
z[y, x <y resp. O

As usual, there is (at most) one event that produces a token and (at most) one event
that consumes it; in this sense, conditions are unbranched in an occurrence net, but
additionally a condition might be incident to some read arcs.

For events e, f and a condition b, e 'b means that e produces b, i.e. the firing e starts
and ends before b starts holding; similarly, bF'e means that e consumes b, i.e. the holding
of b starts and ends before the firing e starts. In the case bAe e reads b, i.e. the holding
of b starts before the firing e starts. Actually, e has to start before the end of b in this
case, which is not modelled in spc(O); modelling this would make the theory much more
clumsy, and the omission creates almost no problems. Finally, we have already discussed
in the introduction (using N, of Figure 1) that bAe and bF f enforce that e starts before f.
Thus, it is intuitively clear that C gives an ordering of starts and should be acyclic, and
that according to Proposition 3.3 spc(O) should model the necessary relations between
starts and ends of conditions and events in the run described by O; in our graphical
notation for spc-orders, F' gives the ordinary arrows while A U A~'oF gives the dashed
arrows.

Observe that for A = () O is an occurrence net according to the classical definition
and that < = C = F.

Lemma 4.2 Let O be an occurrence net, ¢ a condition and ¢ € BUE.

i) © C c tmplies that there is an event e with x Ce and e € *c.

it) @ < c implies that there is an event e with x <e and e € *c.

i11) There is some b € *O with bF*z.

i) There is some b € O°® with ¢ F*b.
v) *O={be B|°*b=0}=min-(BU E)

vi) O°* ={be B|b* =0}

vit) (E,<g,CEg) ts the spc-order induced by FoF U FoA and A™'oF.

Proof: i) and ii) The last edge of a justifying path cannot be in A or in A™'oF, hence it
must be in F.

iii) One can construct a path with edges in F backwards from z. If we have found y
with yF*z, then either y is an event and by T-restrictedness there is some z with z € *y,
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1.e. zFy; or y i1s a condition, which is in *O giving the claim or has some f with f € *y
by ii), i.e. fFy. Since F is acyclic and B U E is finite, the construction stops at some
condition b € *0.

iv) is shown analogously, where this time each condition y ¢ O® must have an outgoing
edge in F, since a justifying path for y <y’ must start with such an edge.

v) We have seen in the proof of iii) that *O C B. If b € *O and there is some e € *b,
then e < b, a contradiction; this gives the first inclusion. If b € B and for some = z b,
then we can by i) find some e € *b, which shows the second inclusion. The third set is
contained in the first one, since < C .

vi) We have already seen in the proof of iv) that O®* C B. If e € b*, then b<e, hence
inclusion holds. For the reverse inclusion, observe that b* = () implies b € O°® by iv).

vii) For events e and f, e C f iff there is a path from e to f with edges in FUAUA™'oF.
The first edge can be in F reaching a condition c; then the next edge can be in F or in
A reaching an event. If the first edge is not in F', then it must be in A~'oF reaching
an event. Thus, the path consists of portions in Fo(F U A) U A *oF, and stringing such
portions together always gives a suitable path.

Similarly, e < f iff there is a path as above starting with an edge in F', i.e. with a portion
in Fo(F U A) reaching some event g with gC f. In other words, <g = Fo(F U A)oCp.

O

Part vii) of the above lemma shows that we can directly construct the spc-order on
events we will mostly be interested in; this result also makes the comparison to other
approaches in the literature easier.

Now we define a process of a net N as in the classical setting, i.e. as an occurrence
net O whose events correspond to transitions of N and whose conditions to places of N;
*O corresponds to the initial marking of N, and F' and A correspond to the arcs and read

arcs of N.

Definition 4.3 A process m = (O,1) of a net N consists of an occurrence net O and a

labelling I : BUE — S UT such that
i) (B)C S, I(E)C T
ii) 1 is injective on *O and I(*0) = My
iii) Forall e € E, lis injective on *e, e® and & with [(*¢) = *I(e), [(e*) = I(e)*, I(&) = I(e).

We put *m = *0 and n* = O°*. We call fspe(r) = (BUE, <,,1) the full spc-structure
of m and its restriction spc(w) to E (in all components) the spc-structure of 7. An ST-
linearization of 7 is an ST-linearization of spc(w) and similarly for (step) linearizations.

A cut of 7 is a maximal co<-set of fspc(r); a sliceis a cut D C B. A cut D corresponds
to the ST-marking ({{(b) | b € BN D},{l(e) | e € EN D}) and a slice D corresponds to
the marking I(D). O
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The last sentence of this definition makes sense, because it will turn out that [ is
injective on all cuts. Observe that Definition 4.3 coincides for ordinary nets with the
usual definition of a process.

Figure 4 shows a net, which is its own process 7 (if we remove the marking and add
the identity as labelling); also spc(w) is shown.
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<«
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' |
<
@‘PE—PQ 56—>d—>57

Figure 4

We want to show that ST-linearizations of m correspond to ST-traces of N, that cuts
correspond to ST-markings reached along such an ST-trace and similarly for slices. We
start with a technical lemma.

Lemma 4.4 Let N be a net, m one of its processes. Let P C B U E satisfy
a) *mr C P;
b) P is left-closed under C ;
c) for all events e, e* N P #£ () implies e* C P.
Then we have for D = maz <(P) that
i) for all x € P, we have x € D or z* C P;
it) D is a cut.

Proof: i) If € P — D, then z < d for some d € D. By definition of < , there exists some
y with FyC d and by b) we have y € P. If z is a condition, then z°* = {y} C P. If z is
an event, c) implies the claim.

i) Clearly, D is a co-set. So consider some z ¢ D. If z € P, then z<d for some
d € D by definition of D. If z ¢ P, then by a) and Lemma 4.2 iii), there is some b € P
with a path from b to z with edges in F'; this path must leave P somewhere, say with zy,
justifying ¢ < z; but now € D by i). Hence, D is a maximal co<-set. a

As a corollary, we see that *m and #n* are slices; since these should correspond to
the markings where m starts and ends, this result is a first indication that slices indeed
correspond to markings.

Corollary 4.5 For a process w, *nw and ©° are slices.
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Proof: Use Lemma 4.4 with P = *x (left-closed under C by Lemma 4.2 v)) and P =
BUE. O

The next lemma shows that ST-linearizations are ST-traces and that the ST-markings
reached along such an ST-trace correspond to cuts.

Lemma 4.6 Let w = €;...e, with ¢, € E* be an ST-sequence underlying an ST-
linearization v of a process w. Define fori=0,...,m
P, ={z | some et withzCTe occursine;...g;}U{e* | e™ occursine;...e;}Ur and
D; = maz(P;).
Then each P; satisfies Lemma /4.4, each D; is a cut, | is injective on D;, and for the

ST-markings Q; corresponding to the D; we have: Qn = Qo[l(€1))Q1[l(€2)) . .. Qm.

Proof: For this proof, we use the characterization of ST-linearizations given in Theo-
rem 3.11.

(1) Each P; is left-closed under [ .
Proof of (i): Clearly, the first and the third set constituting P; are left-closed under [
see Lemma 4.2 v). If b € e* with e” in €;...¢; and z C b, then 2 Ce by Lemma 4.2 i)
since b is unbranched; hence, z is in P; since e is in €; ...¢;, too. O

(ii) If for events e and f we have e < f € P;, then e~ occursin €;...€;.
Proof of (ii): If e < f, then e~ occurs before f* in w. If f € P;, then there exists some
event g with f C g —i.e. fT occurs not later than gt — and g* occurs in g;...¢;. O

(iii) For an event e, e* NP, AP iff e* C P, iff e” isin g;...¢;.
Proof of (iii): The if-cases being clear by T-restrictedness and definition of P;, take some
b€ e*N P; bis not in the third set of P;, and if it is in the second we are done. Hence,
assume b[_ f and f occurs in €;...¢;, i.e. f € P;. Then e<bC f, i.e. e<f € P;, and
we can apply (ii) to see that b is in the second set as well. O

Thus, each P; satisfies Lemma 4.4: precondition a) is clear, b) is (i) and c) is contained
in (iii); this implies that each D; is a cut.

(iv) For an event €, e € P; iff et occurs in ¢ .. . €;.
Proof of (iv): The if-case is clear, hence take e € P;; e can only be in the first set of P,
hence e C g with g% occurring in €; ...¢g;. Then, e™ occurs in w not later than gt and we
are done. O

We show the remaining claims by induction on i, where [ is injective on Py = Do = 7
and °*7 corresponds to () by definition of 7. Assume the statements for ¢ — 1; then there
are two cases:

a) e =et

We check the enabledness of I(e™) under Q;_;; consider b € *eUé. Either b € *r C P;_; or
there is some event f with b € f*. In the latter case, f <e € P;, and (ii) implies b € P;_;
in this case, too. Assume b <z € P,_;. By definition of <, there exists some event g with
bFgC z. Now either e = g or e(A™'oF)g, henceeCz € P,_; and e € P,_; by (i). By (iv)
et already occurs in €; ...€;_1, a contradiction to being in case a). Hence, b € D;_; and

Qi-1[l(e")).
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(v) This also implies by Proposition 2.1 ii) that no event in D;_; is labelled I(e) in
case a).

We will now show that D; = D;_; — *e U {e}. Consider z € P; — P;_;; from the
+ +

occurs before e™,

definition of P;, we must have £ Ce. If ¢ € F, then ¢ = e —or z
ie.in €;...€;_1, a contradiction to # € P,_;. If # € B, then the path justifying zCe
contains some y € *eUé C P;_; or some event y with y [ e; in the latter case, y™ occurs in
€1 ...€;_1 since w is an ST-linearization, i.e. y € P;_; in any case. Since P;_; is left-closed
under [ , we get € P;_;, a contradiction.

We conclude that P; — P,_; = {e} and therefore D; C D; ; U {e}; since *e N D; = 0,
we even get D; C D;_; — *e U {e}. This shows by induction and (v) that [ is injective on
D;.

Since P;_; is left-closed under  , hence under < , e is <-maximal in P;. To show
D; = D;_; —*e U {e}, we only have to prove that -z <e for z € D;_; — ®e. But z<e
implies for some y that zFyCe; since z ¢ *e, this gives yCe and y € P, — {e} = P,_y;
since ¢ <y, this is a contradiction to ¢ € D;_;.

This equality for D; shows @Q;_1[l(e™))Q;.

b) E;, =€

We check the enabledness of I(e”) under @Q;_1, i.e. e € D;_;. Obviously, e is in the first
set of P,_1; hence, assume e<z € P;,_;, i.e. eFbC 2z € P,_; for some b. By (i) b € P4,
which gives a contradiction to (iii). Hence @;_1[l(e”)) and by Proposition 2.1 ii)

(vi) no condition in D;_; has a label in I(e)* = [(e*).

From the definition and (iii), P; is the disjoint union of P,_; and e*. Thus, D; C
D; 1 — {e} Ue® and [ is injective on D; by induction and (vi).

We prove D; = D;_; —{e}Ue®. Assume c € e®* and ¢ <y € P;; since P,_; is left-closed
under C and <, but ¢ ¢ P;_;, we get y € e*. With Lemma 4.2 ii) (for ¢ and condition y)
we get ¢ < e < ¢, a contradiction to < being irreflexive.

Now assume z € D;_; —{e} and z <y € P;; by definition of D;_;, we get again y € e,
and again by Lemma 4.2 ii) we find # <e. Since z # e € D;_;, this contradicts the
definition of D;_;.

Thus, D; = D;_1 — {e} Ue® and Q;_1[l(e7))Q;. a

Lemma 4.7 Let D be a cut of a process w, and let X ={x € BUE |3d € D : z=<d}.
Then:

i) X={x € BUE |3d€ D :zCd}, thus, X is left-closed under .
it) mazs(X) =D
i11) X satisfies the conditions of Lemma 4.4.

Furthermore, | 1s injective on D and D corresponds to a reachable ST-marking which is
reached along an ST-linearization of w.
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Proof: i) Inclusion follows from < C . For the reverse inclusion, observe that D C X
hence, we consider ¢ ¢ D and d € D with zCd. Since D is a cut, we have some
d € D with £ <d', i.e. ¢ € X, or we have some d' € D with d' <z, which gives d' <d, a
contradiction.

i) Inclusion is immediate from the definition of X; if some d € D were not <-maximal
in X, then d <z for some z € X, i.e. d<z <d for some d' € D, a contradiction.

iii) Since b € °m is <-minimal and D a cut, there is some d € D with b=<d, i.e.
*m C X. X is left-closed under by i). Finally, take b,c € e* and b € X, which implies
e <b and thus e € X — D by ii). Assume ¢ ¢ X. Then there is some d € D with d<¢;
by Lemma 4.2 ii), this gives d < e <b and d & maz<(X), a contradiction to ii).

For the remaining claims, we will construct an ST-sequence underlying a suitable ST-
linearization of = and apply Lemma 4.6. Let £, = X N E, E; = E — E;, and let v; € E;
be a linearization of (E;,Cg;), ¢ = 1,2. By i), vjvs is a linearization of (E,Cg); let v,
be a linearization of £ N D. We construct w; from v; by replacing each e € E; — D by
ete” and each e € END (= E;N D) by e*; we construct w, from vjv, by replacing each
e € END by e~ and each e € E5 by eTe”. We will show that w;w, is an ST-sequence
underlying an ST-linearization of .

Take events e and f; If eC f, then e starts before f in w;w, because vivs is a lin-
earization of (E,Cg). If e< f, then e starts before f in wyw, and, by construction, e
ends before f starts provided e ¢ D. If e € D, then f € E, by definition of X and since
D is a co<-set; hence, e ends in the first part of wy (corresponding to vj) before f starts
in the second part of w, (corresponding to vs). Thus, w is an ST-sequence underlying an
ST-linearization as desired.

We now show that X is the P; from Lemma 4.6 corresponding to €;...e; = w;. By
iii), *w C X. If et occurs in w; and = C e, then e € X and X is left-closed under [, hence
z € X. If e~ occurs in wy, then e € E; — D; a path justifying e <d with d € D shows
that some b € €® is in X, hence e®* C X by iii). We conclude that P, C X.

Vice versa, take z € X; if ¢ € E, then € E; starts in w;, hence z € P;. Now consider
z € XNB. If z € *°r, then ¢ € P;; thus, consider some event e with z € e*. Then we
have e < < d for some d € D, hence e € E; — D ends in w; and, also in this case, ¢z € P;.

We now have P; = X and D = maz<(P;) by ii), which gives the result with Lemma 4.6.

O

We now come to the first main result of this section, which shows that the order-
theoretically derived ST-linearizations, (step) linearizations, cuts and slices of a process
are ST-traces, firing (or step) sequences, reachable ST-markings and markings, which are
behaviourally defined.

Theorem 4.8 Let m be a process of some net N. Then all ST-linearizations of m are
ST-traces of N, all (step) linearizations are firing (or step) sequences of N. The la-
belling 1 s winjective on all cuts. Cuts correspond ezactly to those ST-markings that can
be reached along ST-linearizations of 7, slices correspond exactly to those markings that
can be reached along (step) linearizations of 7.

Proof: The ‘ST-statements’ follow from Lemma 4.6 and 4.7, the other statements then
follow with Theorem 3.12 b), Proposition 2.1 and Theorem 2.3. O
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The next main result is a converse to 4.8; it shows that all the operationally defined
entities can also be derived order-theoretically. For this result, we need a lemma. We have
defined processes in such a way that they start and end with slices, i.e. with markings;
alternatively, one could define them such that they end with an arbitrary reachable ST-
marking. The following lemma deals with those cuts that could serve as a final ST-marking
in such an alternative definition.

Lemma 4.9 Let 7 be a process and D C BUE such that D = B, U E;, where E; consists
of events that are <-mazimal in E and B, = 7° — U.cg, €*. Then

i) for alle € E; and b € e*, we have b* U b=10 and in particular b € ©°;
it) D is a cut.

Proof: i) Take some suitable e and b and assume that f € b* U b. Then we would have
eFb(FUA)f,ie. e< f, a contradiction to the choice of E;. Observe Lemma 4.2 vi).

ii) E; is a co<-set by definition and so is w*, hence B;. For e € E; and b € By, we
cannot have b<e by definition of 7°; so assume e <b. By Lemma 4.2 ii), this gives an
event f with e <X f and b € f°; since b € B;, we have e # f, a contradiction to e € Ej.
Thus D is a co<-set.

Consider z € EUB — D. If ¢ € 7°, then e <z for some e € E;. If ¢ ¢ 7°, take a path
with edges in F' from z to 7* according to Lemma 4.2 iv); this path passes through E; or
reaches B;. Hence, ¢ < d for some d € D. We conclude that D is a cut. a

Theorem 4.10 Let N be a net.

i) For each ST-trace v of N, there is a process © of N which has v as ST-linearization.

it) For each firing (or step) sequence v of N, there is a process @ of N which has v as
(step) linearization.

i11) For each reachable ST-marking Q of N, there is a process © of N with a cut that
corresponds to Q).

iv) For each reachable marking M of N, there is a process m of N with a slice that
corresponds to M.

Proof: ii) follows from i) by Proposition 2.11) and Theorem 3.12 b) i) and by Theorem 2.3
i) and Theorem 3.12 b) ii); iii) follows from i) and Lemma 4.6, and then iv) follows from
iii) and Proposition 2.1 iii). Thus, we only have to show i). In a way, we will read the
proof of Lemma 4.6 as a construction.

For each ST-trace v = §; ...y, & € T%, with Qun[v)Q we construct by induction on
m a process 7w and a set D such that

— v is an ST-linearization of 7;

— D corresponds to Q);

— D = By U E;, where E; consists of events that are <-maximal in ¥ and B; =

T = UeEEl €.
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Then, by Lemma 4.9, D is a cut and, by Lemma 4.7, [ is injective on D.

For v = A we take the initial process 7o, i.e. the unique process = with *w = 7*, and
D = By = 73. Assume now that 7 and D for v with underlying ST-sequence w are given
and Q[6)Q’.
a) § =t for some ¢ with M[t).

Since D corresponds to ), there is a unique set B, of conditions in D labelled with
*t Ut. We add a new event e with label ¢, arcs and read arcs from B, to e, new conditions
to represent e® via the labelling and arcs from e to these. Adding e and its ingoing arcs,
we add to the edges in FU AU A7'oF only edges going to e, since in m we have b* = ()
for all b € D; thus FU AU A 'oF remains acyclic. Then, the same argument applies for
the new conditions. Now it is easy to see that the new 7’ is a process; also,

(%) the relations <’ and ' for 7’ coincide with < and [ for the events and conditions
of m.

Hence, w' = wet is an ST-sequence underlying the ST-linearization v§ of =’

We put D' = D —*eU{e}. To see that D' is a suitable union, observe that e is by the
above certainly <’-maximal in E’. The conditions in B; — *e still have an empty postset,
hence are in 7'*. It remains to check that the events in F; are still <-maximal, i.e. by
(*) not less than e. A justifying path for f <'e with f € E; would start with an edge
fb € F, but such a b has in m no outgoing edge in ' U A by Lemma 4.9, and it has none
in 7’ since b & B;. D’ obviously corresponds to Q’.

b) § =t~ for some t € C.

Since D corresponds to @, thereis a unique e € D with I(e) = t. We leave 7 unchanged,
define D' by E] = E; — {e} and B} = B; Ue® and add e~ to w to get w' = we™.

Obviously, w' is an ST-sequence underlying an ST-linearization of = just as w, this
ST-linearization is I(w') = vé, and D’ corresponds to @'. Since 7 is unchanged, the events
in E] are <-maximal in £ and by Lemma 4.9 B C #*. Thus, D’ is a suitable union. O

Our results so far also imply that steps of a net give sets of concurrent events in some
process.

Corollary 4.11 Let N be a net and G a step under a reachable marking. Then there
ezists a process ™ and a co<-set E' C E, such that [ is injective on E' and l[(E') = C.

Proof: Apply Theorem 2.3 iii) and Theorem 4.10 iii); [ is injective by Theorem 4.8. O

We will now sharpen Theorem 4.10; this time, it seems more convenient to prove our
result for firing sequences first.

Theorem 4.12 For each firing sequence v of a net N, there is (up to isomorphism) a
unique process ® of N which has v as linearization.

Proof: Existence of 7 follows from Theorem 4.10. Hence, we only have to show uniqueness
by induction on the length of v, the case v = A being clear. Take a firing sequence vt,
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t € T, the unique process 7 for v and a process «’ for vt. Then, 7’ must have a C'-maximal
event e with I'(e) =t by Theorem 3.11 ii).

If b € e*, then b* and b are empty, since otherwise e would not be —'-maximal. Thus,
removing e and e® from 7’ gives a process with linearization v; by induction, this process
is m (up to isomorphism).

If b € *ein 7', then clearly b° is empty in «; furthermore, if b € ¢, then b* is also empty
in 7, since otherwise for f € b* we would have e(A" ' oF")f, i.e. e’ f, a contradiction.
Thus, *eU € is a subset of 7°, 1.e. [ is injective on *e U é by Corollary 4.5 and Lemma 4.7.

We see that 7' can be obtained from 7 in two stages: first, add a new t-labelled event,
say e, and add arcs and read arcs from suitable conditions in 7w°® to e, which are uniquely
determined by the injective labelling [; then, add new conditions corresponding to £* and
add arcs from e to these. This construction is unique up to the names of the new event
and the new conditions. Thus, 7’ is unique up to isomorphism. a

Corollary 4.13 For each ST-trace (step sequence) w of a net N, there is (up to isomor-
phism) a unique process © of N which has w as ST-linearization (step linearization).

Proof: Existence of m for an ST-trace w follows from Theorem 4.10. Let some process
7 with ST-linearization w be given. Obtain v from w by replacing each ¢t* by t and by
deleting all ¢~ ; this can be seen as moving the ¢t~ forward in w and contracting tt¢~, hence
v is a firing sequence by Proposition 2.1. Also, v is a linearization of # by Theorem 3.11
i) and ii). Hence, 7 is unique (up to isomorphism) by Theorem 4.12.

By Theorem 2.3 ii), a step sequence of N can be seen as an ST-trace and, by Theo-
rem 3.12, a step linearization can be seen as an ST-linearization in the same way; hence
the ST-case carries over to the step-case. a

Corollary 4.14 Let N be a net; denote by STLin(r) the set of ST-linearizations of a
process w. Then the family of sets STLin(w) with © a process of N is a partition of the
ST-traces of N. Similarly, processes induce a partition of the set of firing sequences and
the set of step sequences of N.

From a set STLin(w ) the spc-structure spc(mw) can be determined (up to isomorphism)
without knowledge of N.

Proof: The first claims follow from Theorems 4.8 and 4.12, Corollary 4.13 and the fact
that each process has an ST-linearization etc. as argued before Lemma 3.13. The last
claim follows from Corollary 3.18. O

In processes of ordinary nets, a line is usually defined as a maximal subset of BU E
that is totally ordered by causality; intuitively, it is the worldline of a pointlike object or
the trajectory of a signal in space and time. A cut or slice is a global state of the system
seen by some observer. From the intuition, it is to be expected that each line meets each
cut in exactly one element, and this is indeed true for the processes of ordinary nets; that
the intersection has at most one element is trivial from the definitions, that it is nonempty
is the more interesting part.
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We now discuss how lines can be defined in our setting. In our discussion, we will
use the process in Figure 4 as an example; let D; be the slice {s3, 34, s6}. First observe
that s, has to start holding before s, although the two conditions can coexist. For this
reason, it might happen that a sensibly defined line could meet this slice in more than one
element; for example, L; = {s3,b, s4, a, s2} looks like it should be such a line. Hence, we
will aim for a definition of a line such that each line meets each cut, but not necessarily
in just one element.

If we define a line as usual to be a maximal subset of BU E that is totally ordered by
causality, i.e. by <, then L; would not be a line. Furthermore, {s3,b,d, s;} would be a
line that does not meet D;; this line misses s4, which establishes the link between b and
d. This example indicates that a line should rather be related to .

If we define a line as a maximal subset of B U E that is totally ordered by [, then
{s1,a,¢,s5} would be a line that does not meet D;; again, this line misses s4, which
establishes the link between a and ¢. This time, the reason is that actually the end of s,4
is between the starts of a and ¢, but we have not modelled this in our relations; compare
the discussion after Definition 4.1. An alternative would have been to derive from each
of our processes a partial order on B¥ U E* or maybe even on BU E U BT U E*, a severe
deviation from the ordinary setting; see e.g. [Mur93] for a variant of event structures
where each event has an explicitly modeled start and end. We have chosen to stay closer
to the classical approach.

As a way out, we recall that a line can just as well be defined as a path from *7 to 7*
in the ordinary setting; hence, we will define a line graph-theoretically on the process. We
will define two variants of a line, where in the more general variant we try to stay close to
C. In particular, to allow a line going from a to ¢ and including s4 in the situation just
discussed, we allow to use a read arc backwards if we use an arc immediately afterwards.
Lines defined this way are in fact close to maximal subsets of B U E totally ordered by
C, but the relation is subtle, and it does not seem worth the effort to work it out.

Definition 4.15 A line of a process 7 is a path from *7 to 7* with edgesin FUAUA™!,
where each edge in A™! is immediately followed by an edge in F'.
A line is an F-line if it only uses edges in F'. O

Observe that each vertex is allowed to appear at most once on a path. This excludes
the possibility to use the same edge in A forward and backward; this exclusion seems
more natural to me. Furthermore, observe that each path starting in *7 can be extended
to a line by Lemma 4.2 iv).

Theorem 4.16 Let m be a process of anet N, L a line and D a cut of m. Then LND # (.

Proof: Consider X = {z € BUE | 3d € D : £ < d} as in Lemma 4.7. By Lemma 4.7
iii), L starts in X; if it never leaves X, then its last condition is <-maximal in BU E and
hence in maz(X) = D.
Otherwise, L leaves X, say with the edge zy. Assume that ¢ D, i.e. there is some
d € D with ¢ <d. Then, the edge zy is not in F by Lemma 4.7 iii) and Lemma 4.4 i).
First, consider zy € A, 1.e. ¢ is a condition read by the event y. Since z < d, there is
some event e with zFeC d. Hence, ye € A™'0F,ie. yCeCd and y € X by Lemma 4.7
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i), a contradiction to the choice of zy. Second, consider zy € A™'; in this case, we have
directly y C 2 C d and hence y € X, a contradiction. We conclude that € DN L. O

Corollary 4.17 Let 7 be a process of a net N, L an F-line and D a cut of ®. Then L
1s a mazimal subset of BU E that is totally ordered by causality, 1.e. by <. Furthermore,
L N D consists of exactly one element.

Proof: Obviously, each F-line is totally ordered by causality. Hence, assume L is an
F-line, # ¢ L and L U {z} is totally ordered by <. Since L contains a <-minimal and a
<-maximal element of the process, z partitions L into two sets with maximal element y
and minimal element z resp. such that y <« <z and yz € F. A justifying path for y <z
starts with an edge yy’' € F, and since y' C z but not z C z, we have y' # z. Therefore,
y is an event and y' and z are conditions. If z is a condition, then a justifying path for
z < z must end with an edge in F; this is a contradiction to z being unbranched, since y
cannot be on this path.

Now the second claim follows from the last theorem and the definition of a cut. O

In the discussion above, we have already mentioned that in Figure 4 {s3,b,d, s7} is a
maximal subset of B U E that is totally ordered by causality; observe that this is not an
F-line.

We close this section by a result already announced in Section 3: each spc-order
appears in the spc-structure of some process of some net.

Theorem 4.18 Let p = (E,<,C) be an spc-order. Then there exists a net N and a
process w such that spc(w) = (E, <,C,1).

Proof: We take E as the set of transitions of N and give each transition a marked
place for its preset and an empty place for its postset; this guarantees T-restrictedness.
Whenever e < f, we introduce a new empty place in e*N®f. Whenever e f, we introduce
a new marked place in éN°®f. Clearly, this net is its own process (if we delete the marking
and take the identity as labelling) and this process satisfies the desired equation. Observe
Lemma 4.2 vii) and that FoA is empty in our case. O

Of course, it is enough in this construction to consider, instead of < and [, relations
that induce p. Even then, the result can often be optimized by omitting some of the
places introduced to enforce T-restrictedness.
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Figure 5

After optimization, p shown in Figure 3 leads to the net N; of Figure 5; giving e, f
and g the durations discussed at the end of Section 3, we see that N; can be completed
within time 3, while N, needs time at least 4 although it has the same step sequences.
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5 Related literature

We have introduced spc-structures to describe system runs and interval-spc-structures
as abstract observations of these runs; the latter abstract from ST-traces, the concrete
observations, in a way that is compatible with ST-traces of nets: ST-traces that differ
only by the ordering of transition ends are identified. Then we have shown a suitable
analogue of Szpilrajn’s Theorem: each spc-structure is the intersection of its interval
augmentations. Similar results are shown in [JK93], but there interval orders are taken
as abstract observations; these abstract also from the ordering of transition starts in
ST-traces (see [Vog96b]), an abstraction that is not reasonable for nets with read arcs.

We have defined processes axiomatically and we have shown how to construct a cor-
responding process from a given ST-trace; the same is done (with step or firing sequences
instead of ST-traces) in [MR95, BP96] and a construction of processes from step sequen-
ces without an axiomatic definition is given in [JK95]. These constructions give the same
processes in all approaches except that [JK95] allows some additional processes. The
axiomatic definitions in [MR95, BP96] are different from ours. The recent report [JK96],
a refined version of [JK95], gives an axiomatic definition similar to ours (the definition of
an occurrence net is different); this report gives a process semantics to nets with priorities
and to nets with generalized inhibitor arcs (so called branch inhibitor arcs) essentially by
translating these nets to nets with read arcs.

[MRO5] derives from a process only one relation, which is required to be a partial order
and is close but not identical to our . In fact, this partial order coincides on events with
our [ such that concurrency (which we define from <) is somewhat restricted compared
to our approach; on conditions, it is identical with our < such that the order-theoretically
defined slices coincide with ours. It is required in [MR95] that the labelling is injective
on all slices and that these correspond to reachable markings; we require this only for the
initial slice and prove it for the others.

[BP96] essentially extends [MR95] to general S/T-nets that besides read arcs may
have inhibitor arcs as well; an inhibitor arc (s,t) allows ¢ to fire only if s is empty. These
generalizations naturally lead to complications; but if we restrict [BP96] to safe nets
without inhibitor arcs, then the ‘linearizability requirement’ in [BP96, Definition 9] states
simply that the relation derived as in [MR95] is a partial order and it makes requirements
3, 4 and 5 in [BP96, Definition 6] redundant; thus, the processes of [BP96] on this net class
are exactly those of [MR95]. [BP96] defines two relations which are not easy to compare
to ours; as a consequence, the slices — which are studied similarly as in the present paper
— are different from ours: the definition in [BP96| requires that the set X defined in our
Lemma 4.7 is linearizable, something we have proven; nevertheless, some slices in [BP96]
are not slices in our approach, hence they are not reachable by a linearization. This fits
together with the view taken in [BP96] that a process is not really one run: a process 7
may contain ‘possible events’, and omitting them gives a different run (contained in =)
reaching additional markings.

Finally, [JK95] gives a more general construction for processes. The reason is that
[JK95] views nets with read arcs only as translations from nets with inhibitor arcs. For
example, the net N, in Figure 6 (essentially the net N3 from Figure 1) is simply the
translation of Nj5: instead of an inhibitor arc from a place we have in N, a read arc from
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the complementary place. In Nj, it is intuitively convincing that a and b start together
at a time where both their postsets are empty; at a later time, they end and fill these
postsets. In Ny, such a behaviour is intuitively less convincing, and I believe that the
approach of this paper is a convincing alternative.

Figure 6

From a process, a relational structure with two relations — only on the events — is
derived in [JK95], and this structure aims at step sequences: one relation says that some
event is necessarily in an earlier step than the other, the other relation says that some event
is not in a later step than the other, compare Theorem 3.11 iii). We have already explained
at the end of Section 3 that step sequences are not sufficient if we are interested e.g. in
the durations of runs. Also recall that our results about the correspondence between cuts
and ST-markings and between slices and markings rely on the fact that our spc-structures
are defined not only on events, but also on conditions.

To deal with inhibitor arcs in the style of the present paper, one could extend spc-
structures by a third relation meaning that some event (e.g. a in N;) has to start before
the end of some other event (b). Alternatively, one could also give a process-based partial
order semantics to nets with inhibitor arcs by translating them to nets with read arcs as
in [JK95] and transporting our semantics for these nets back to the nets with inhibitor
arcs.

Lines are mentioned in [MR95], but they are not studied in any of the above papers.
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