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1. Introduction and motivation  

Personnel planning and scheduling is a topic of interest since the early 20th century. As physicians 

constitute a subgroup of personnel having specific characteristics, the personnel planning prob-

lem is discussed first in general before bridging to the physician scheduling problem. Since em-

ployees are a crucial resource for business success, the necessity to improve efficiency in produc-

tion processes to increase productivity and outcomes, e.g. by division of work and responsibilities 

(Scherm and Süß 2016), rises. Personnel planning mainly decomposes into three parts: Staffing 

decisions on a strategic level are to be made to ensure an appropriate number of employees to 

cover demand and provide the desired quality of service. Secondly, rosters/schedules have to be 

generated efficiently on an operational level to prevent possible negative consequences such as 

unnecessary overtime hours for personnel (Wabro et al. 2010). Thirdly, re-planning problems re-

schedule personnel in short term due to unforeseen absences, e.g. in case of illness. Since this 

dissertation focuses mainly on staffing problems combined with an operational offline evaluation, 

re-planning problems are not discussed in the following.  

 

Staffing. On a strategic level, the management of an institution has to determine the required 

size of the workforce to be able to handle operations as expected in terms of quality and quantity. 

Staffing decisions therefore are comprised of two separate decisions: The determination of qual-

itative manpower requirements by defining a profile and the appropriate level of qualification, 

education, and experience for a specific employment position as well as the quantitative investi-

gation of staff size requirements. The latter decision needs to respect quantitative and time-de-

pendent staffing requirements (Wabro et al. 2010). In general, staffing decisions are governed by 

a predefined immutable framework given by organization-internal and organization-external fac-

tors (Scherm and Süß 2016). For a detailed overview, see Figure 1.  

 

Fig. 1: Framework for staffing decisions (based on Scherm and Süß 2016, p. 8) 
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Organization-external factors such as governmental regulations are given by law and are there-

fore to be considered mandatorily. Moreover, there are various other aspects, depending on em-

ployees’ individual preferences, which might influence management’s decision making, such as 

the importance of work-life balance or the desired employment relationship. Internal factors are 

requirements of the institution itself affecting staffing decisions: Several facets such as organiza-

tional structure and culture as well as the production program and service range generate specific 

staff requirements, which are to be met to cover demand (Spengler 1999).  

 

Rostering. When scheduling personnel, it is of major importance to investigate some key aspects 

to create a roster of high quality which satisfies the expectations of the workforce. Ozcan (2017) 

defines five different factors influencing the scheduling process: Costs, coverage of demand, ros-

ter quality, flexibility, and robustness. Especially due to the increasing relevance of generating an 

annual surplus and being profitable in the face of rising operating costs, the reduction of upcom-

ing costs is a main concern for institutions (Ozcan 2017). A leverage point to decrease these costs 

can be seen in a better utilization of scarce resources such as staff (Bölt 2014) or expensive equip-

ment with limited capacity. Another very important aspect in scheduling is the coverage of de-

mand (Ozcan 2017): Even though meeting demand is a central aspect for every type of industry, 

it is especially important for the service sector. There are certain service-specific characteristics 

which vary significantly from industry and manufacturing such as the impossibility of stockpiling 

and the volatile provision and consumption of services (Aggarwal 1982). This makes coverage of 

demand in every period of each day essential. Another central issue is the quality of the roster 

(Ozcan 2017) which is determined by the degree of matching supply and demand and the level of 

accounting for fairness criteria, e.g. an equal distribution of unfavorable shifts across the work-

force and individual features and preferences of staff (Gross et al. 2018). A generated schedule of 

a high quality leads to possible positive consequences such as an increasing quality of the deliv-

ered work and services as well as a high job satisfaction and motivation for personnel (Aiken et 

al. 2002). The remaining two aspects, flexibility and robustness, are positively correlated with 

each other. Ozcan (2017) defines flexibility in this context as the level of variability of the gener-

ated schedule, i.e. the ability to adopt changes and modifications of the initial plan derived by 

unforeseen events as well as short-term rescheduling due to illness. As part of this, robustness 
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describes the reliability of the created roster (Ozcan 2017). 

This illustrates the general aspects and difficulties that arise when making staffing and 

scheduling decisions in an institution. In this dissertation, different hierarchical planning aspects 

are partially combined. As will be seen in the remainder, a more detailed point of view and the 

tool of mathematical programming can provide more realistic and precise opportunities to im-

prove and automate the process of scheduling personnel.  

 

1.1. Mathematical programs and key aspects in personnel scheduling 

In this subsection, mathematical modeling as a mechanism to support decision making units with 

staffing and scheduling personnel is presented. First, different modules of personnel planning 

discussed in literature are presented and second, one of the first mathematical models for per-

sonnel scheduling problems, i.e. the set covering approach based on Dantzig (1954), is introduced 

since this model provides the basis for the modeling approaches in this thesis. 

 

1.1.1. Modules of personnel scheduling 

In general, the required workforce size can either be approximated by a specific measure or a 

precise mathematical model. The former approach, approximating the number of personnel by 

an indicator, is not very time consuming and does not involve a multitude of key figures and in-

formation. There are several approximation mechanisms: For example, using the estimated peak 

in demand to determine the required staffing level is a common approach. Among others, an-

other approximation mechanism is to determine the workforce size by the ratio of demand hours 

to the available working hours for each servant (Jarr 1973). However, since only few influencing 

factors are taken into account, these staffing decisions might be of rather low quality due to a 

significant underestimation of the actually required workforce size. In contrast, implementing a 

mathematical model may lead to a more realistic estimation of the required number of personnel 

since staffing and working environment can be represented: Mathematical modeling approaches 

can account for a higher number of operational constraints and regulations (Brunner et al. 2010) 

which lead to a more realistic and valid estimation of the number of required personnel. There-

fore, Ernst et al. (2004) separate the staffing and rostering process into diverse modules to evolve 
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a guideline for selecting which aspects are to be implemented in a mathematical model, depend-

ing on the purpose of the formulation. 

 

Tab. 1: Rostering taxonomy (based on Ernst et al. 2004, p. 5-6) 

 

The taxonomy of Ernst et al. (2004) defines six different modules, which are presented in Table 1: 

Demand modeling, days off scheduling, shift scheduling, line of work construction, and staff as-

signment. Not each module is required in every mathematical model. Depending on the aim of 

the decision maker, the stated objective function for the mathematical formulation as well as the 

type and quantity of the considered modules vary significantly (Ernst et al. 2004). 

 

Module 1, demand modeling, determines the quantity of required personnel for each time period 

within the planning horizon. Demand can either be deterministic, i.e. shift or task based, or sto-

chastic, i.e. flexible by implementing probabilities for the occurrence of specific demand levels. 

An appropriate number of days off between two consecutive sequences on duty are handled in 

Module 2. Module 3 is the scheduling of shifts: This module determines both, the types of shifts 

that are available and the number of personnel that has to be assigned to each of the formerly 

selected shift types. Entire lines of work are generated in Module 4. In this module, individual 

lines of work, i.e. working schedules with an appropriate assignment of shifts, are constructed for 

each individual employee. It is therefore necessary to consider several different aspects and reg-

ulations, e.g. a minimum number of rest periods between two consecutive shifts, a maximum 

number of working hours within the planning horizon, and the structure of demand. Module 5 

assigns one or more tasks to shifts while accounting for potential additional challenges deter-

mined by the type of duty and the thereby required level of education or experience. The last 

module, staff assignment, assigns personnel to specific lines of work constructed in Module 4 

(Ernst et al. 2004). Again, personnel scheduling problems are different between business sectors 

and vary with respect to the considered modules and the purpose of the objective function.  
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1.1.2. The set covering approach as crucial mathematical modeling formulation 

The personnel scheduling problem is highly constrained due to the diversity of different govern-

mental rules, regulations, agreements, and environmental as well as workforce-specific aspects 

that are to be taken into account. Since mathematical modeling provides a tool to account for a 

high number of constraints simultaneously, decision makers and schedulers can benefit from the 

hereby provided support (Ernst et al. 2004). Even though there are several approaches (e.g. Blöch-

linger (2004), Bechtold et al. (1991), and Aykin (2000)), Dantzig (1954) is one of the first authors 

who state a mathematical formulation for a generic personnel scheduling problem (based on Edie 

(1954)). This rather small mathematical model often builds the basic approach which is to be ex-

tended depending on specific regulations determined by a precise Rostering problem. Dantzig 

(1954) formulates the set covering problem as the following mixed-integer programming model 

(MIP):  

 

Sets with indices 

𝑗 ∈ 𝑱 Set of schedules with index 𝑗 

𝑡 ∈ 𝑻 Set of periods with index 𝑡 

 

Parameters 

𝑎𝑡𝑗  1 if schedule 𝑗 covers period 𝑡, 0 otherwise 

𝑏𝑡 Demand in period 𝑡  

 

Integer decision variables 
𝑥𝑗  Number of employees being assigned to schedule 𝑗 

 

Minimize ∑ 𝑥𝑗

𝑗∈𝑱

 (1) 

 

subject to 

∑ 𝑎𝑡𝑗𝑥𝑗

𝑗∈𝑱

≥ 𝑏𝑡  ∀ 𝑡 ∈ 𝑻 (2) 
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𝑥𝑗 ≥ 0 and integer ∀ 𝑗 ∈ 𝑱 (3) 

As Edie (1954) determines the number of required toll booths over the year without specifying 

the number of required employees that are to be scheduled to run the booths, Dantzig (1954) 

extends this approach by proposing a set covering approach to assign personnel. The objective 

function therefore minimizes the number of employees which are assigned to a working se-

quence. 

Constraints (2) ensure demand for personnel to be covered in each time interval by forcing 

the total number of assigned personnel to be larger or equal to the demand 𝑏𝑡 in each period 𝑡. 

To ensure the assignment of feasible working patterns, the parameter 𝑎𝑡𝑗  contains various infor-

mation concerning allowed working hours and sequences. The variables are defined in (3).  

 

By applying this approach, a minimum number of personnel, starting their working sequence in 

different periods of the planning horizon, can be determined to cover demand in each time inter-

val. If there are several issues to be considered, the presented modeling approach can easily be 

extended by implementing weights and different goals in the objective function, i.e. making use 

of a weighted set covering formulation (Balinski 1965). A variation of the set covering approach 

by Dantzig (1954) is the set partitioning model: Pursuing a similar objective function, the only 

difference is the formulation of the demand constraints. In a set partitioning approach, it is not 

allowed to assign more employees than required in any period. Instead, this approach forces de-

mand to be met accurately in each time interval which commonly leads to a highly restricted 

solution space (Garfinkel and Nemhauser 1969). 

The mathematical models in this thesis make use of the presented set covering approach and 

state modifications and extensions to apply a more precise mathematical model to tackle the 

physician scheduling problem.  

 

1.2. Importance of physician scheduling  

In Germany, there are three different types of hospital administrations: Private agency, public 

agency, and non-profit agency (Bölt and Graf 2012). As private hospitals are privately owned and 

non-profit hospitals are funded by associations and foundations, solely public hospitals are owned 
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by federal government and related institutions. As a result, only public hospitals are obliged by 

law to provide a full spectrum of health care services to protect the population against sickness 

and disease whereas non-profit and privately held hospitals commonly specialize their treat-

ments, e.g. as an orthopedic clinic (Fournier and Mitchell 1992). It is therefore not completely 

possible for public hospitals to select patients based on their diagnosis related group (DRG) and 

the associated expected revenue to generate an annual surplus. Instead, these institutions are 

commonly maximum care providers that ensure the overarching treatment of every disease.  

However, since around one third of the hospitals in Germany generate an annual loss each 

year (Blum et al. 2017), the number of hospitals is continuously decreasing while the number of 

patients grows each year. 

 

 

Fig. 2: Trends in number of hospitals and number of patients  

 

As Figure 2 shows, the number of hospitals has been decreasing from 2’411 hospitals in total 

(Statistisches Bundesamt 2016) (996 public institutions) in 1991 (Bölt and Graf 2012) to 1’951 

hospitals in total (570 public institutions) in 2015, indicating a decrease of around 10% in total 

(43% public hospitals) within 25 years. In contrast, the number of patients has been increasing 

from 14’576’000 patients in 1991 to 19’239’000 patients in 2015 (Statistisches Bundesamt 2016). 

As a result, hospitals are forced to treat more patients with almost similar (or less) available re-

sources. Since supply and demand occur at the same point in time and demand cannot be back-

logged due to the negative consequences on the health of patients, e.g. severe secondary failures 

or death, it is of major importance to cover demand in each period of every day within the year 
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(Aggarwal 1982). Due to the capacity limitation of resources, an efficient handling is essential: 

The employees, especially physicians, are considered a bottleneck resource in the care providing 

process, which makes it mandatory to schedule them carefully (Santos and Eriksson 2014). Plan-

ning and scheduling physicians in an efficient way leads to several benefits: Unnecessary overtime 

hours for physicians might decrease due to a better match of demand and supply, preventing a 

growth in resulting staffing costs (Villarreal and Keskinocak 2016), increasing the possibility to 

maintain a high quality of care while working conditions of staff are not deteriorated (for example 

by increasing working hours and personnel utilization each week), and maintaining job satisfac-

tion for physicians to decrease turnover rates and associated costs (Aiken et al. 2002). 

The resulting problem is referred to as the physician scheduling problem. The objective is 

to determine an optimal number of physicians who are subsequently scheduled efficiently subject 

to coverage of demand and legal working regulations. Moreover, various soft constraints can ad-

ditionally (not mandatorily) be taken into account, e.g. individual preferences and fairness as-

pects. Analyzing the problem of physician scheduling drives the motivation for the presented es-

says. These are summarized and discussed in the following sections with the main aim to answer 

the following research questions: 

 

Research question 1: Which characteristics and aspects of physician scheduling in hospitals are 

already covered in literature and what are promising areas for future re-

search? 

 

Research question 2: How does flexibility in the assignment of shifts and breaks affect the overall 

number of required physicians? How can we build a more realistic estima-

tion for approximating the total size of the workforce? 

 

Research question 3: What is the value of implementing flexibility in the process of physician 

scheduling?  
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1.3. Content of the thesis  

The remainder of this thesis is structured as follows: Section 2 summarizes the three contributions 

with the full version of the appropriate papers attached in the appendix. In section 3, the contri-

butions of this dissertation are discussed. The discussion encompasses the summary of the find-

ings, resulting insights for hospital’s management and various ideas for future research. Finally, 

section 4 concludes the dissertation.  
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2. Summary of the contributions 

In this section, each of the contributions to the body of research is discussed. The individual con-

tributions are attached in the appendix.  

 

2.1. State of the art in physician scheduling 

In practice, hospitals commonly face a great fluctuation in demand, especially for physicians. The 

requirement for care can vary from one hour to another and from one day to the next, which 

might lead to negative consequences for the scheduled staff size due to the inability to match 

supply and demand efficiently. As a result, overstaffing in periods of low demand or understaffing 

for high demand level hours can occur. Both leads to negative effects on patient care and physi-

cian’s job satisfaction and utilization level. Scheduling physicians efficiently can therefore reduce 

upcoming personnel costs and prevent over- and understaffing. Due to the importance of the 

problem under consideration, there is a large body of research studying the physician scheduling 

problem. Erhard et al. (2018) review current literature in this field and discuss several ideas for 

future research. This paper provides the first literature overview on the physician scheduling 

problem: A framework is defined to classify literature according to topic-related features: The 

hierarchical level, modeling approach (problem-specific characteristics, uncertainty, and mathe-

matical methodologies), and real life implementation. Subsequently, the transfer of research into 

practice is discussed and an agenda for further research is established. 

In general, the physician scheduling problem is a subcategory of the field of personnel 

scheduling containing several problem-specific facets that differ from other areas, e.g. individual 

agreements between hospital and physician (Charles et al. 2013) or an increasing bargaining 

power of the workforce due to their central importance (Santos and Erikson 2014). The literature 

review discusses 60 papers, published between 1985 and 2015, which proves the relevance of 

the physician scheduling problem and the increasing attention in research within the last decades. 

Especially in European countries, research has been increasing since 2004 due to the introduction 

of the DRG compensation system.  

The heart of the literature review is a classification of the physician scheduling problem 

according to the former mentioned framework. In general, there are three different hierarchical 

levels: Staffing, Rostering, and Re-planning problems. Staffing problems consider strategic or 
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long-term decisions concerning the appropriate size of staff and educational aspects in residency 

programs, whereas Rostering problems focus on a midterm tactical or operational offline level. 

The latter constitute the majority of literature with the aim of creating a repeatable (cyclic) roster 

or detailed lines of work for personnel covering a planning horizon of several weeks. Moreover, 

Re-planning problems have only been considered in one publication up to now and focus on op-

erational online rescheduling mechanisms in case of unforeseen absences.  

Physicians can be classified based on two different criteria: Educational level and working 

hours. First, the educational level differentiates between residents and fully educated physicians 

as residents can perform some tasks of physicians but are still in education, leading to a restricted 

task set. Second, working hours define staff as full or part timers, independent of the level of 

education. Residents are considered in several publications, whereas part timers are mainly ne-

glected. 

To schedule physicians, there are two different types of shifts: Predefined and flexible 

shifts. Flexible shifts have various starting and ending periods and diverse lengths in contrast to 

predefined shifts. Even though flexible shifts are superior when it comes to matching supply and 

demand due to the uncertainty in hospital surroundings, the majority of literature solely consid-

ers predefined shifts, e.g. three eight hour shifts. Moreover, breaks are not explicitly assigned in 

current literature and mainly neglected.  

Concerning employee-related aspects, fairness in terms of evenly distributed working 

hours and granting of individual preferences are considered in literature. In total, around one 

third of the papers considers either one of these or all staff-related features. However, this num-

ber has increased significantly within the last years due to the increasing awareness of the im-

portance of personnel satisfaction.  

Objectives in physician scheduling literature can either be financial or non-financial. Fi-

nancial objectives focus on direct costs measured in monetary value, whereas non-financial goals 

consider patient- or employee-related aspects. In-line with personnel aspects, the number of pub-

lications implementing non-financial objectives increased significantly during past years.  

The requirement for care is commonly uncertain in hospitals and governed by stochastic-

ity. In literature, there are two ways of assuming demand: Deterministic or stochastic. Even 
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though stochastic demand is more realistic, current literature mostly assumes demand to be de-

terministic to reduce complexity of the mathematical problem formulation and improve solvabil-

ity. Concerning mathematical modeling and solution methodologies in use for the physician 

scheduling problem, the majority of research applies mathematical programming techniques, e.g. 

linear programming (LP), integer programming (IP), and mixed-integer programming (MIP). Other 

methods such as non-linear programming (NLP) and queuing models (QM) are barely in use. After 

modeling, the considered problem can either be solved exactly or by using a heuristic solution 

procedure. Despite the advantage of receiving a near optimal solution within short computation 

times by heuristic approaches, more than two thirds of the papers solve their mathematical 

model exactly. This leads to an optimal solution or at least an upper or lower bound for the ob-

jective function value as well as the optimality gap as indicator for the solution quality. 

With respect to applicability, almost all papers use real life data in their experimental 

study to evaluate their model for real world demand. Almost one third of the approaches is im-

plemented in a hospital department at least in a test phase. Most of these papers were published 

after the year 2000 and derive from Northern America which indicates a geographically higher 

willingness to investigate new methods in scheduling processes. 

Summarizing, research interest in the physician scheduling problem has been steadily in-

creasing for the last 30 years. Depending on the hierarchical level of the considered problem and 

the purpose of research, there are various aspects that are to be considered which affect the 

applied modeling approach and corresponding solution technique.  

 

2.2. Physician staffing levels and absence planning under special consideration of breaks 

– A case study on anesthetists 

The trend of constantly increasing annual costs of hospitals has been occurring for several dec-

ades and will continue into the future. As the workforce of a hospital, especially physicians, are 

known as a main cost driver in hospital surroundings, it is necessary to investigate the physician 

scheduling problem in detail. Up to now, staffing decisions are commonly based on simple ap-

proximation methods that significantly underestimate the required number of physicians due to 

neglecting various crucial planning aspects, e.g. the assignment of breaks or rest periods, even 

though these are mandatory by law. It is therefore the main goal of this paper to determine a 
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realistic lower bound for the required workforce size in short computation time subject to cover-

age of the forecasted demand. 

The contribution is a mixed-integer programming model that ensures a maximum amount 

of flexibility in terms of shift types and breaks. Shifts are allowed to have a multitude of different 

starting and ending periods and various lengths, whereas breaks are allowed to be assigned flex-

ibly for each shift within a predetermined range of periods. In current literature, the assignment 

of a break is mostly neglected even though it is a central aspect in real life since physicians are 

commonly not able to take their break while being on duty. Here, we provide the first extension 

of the mathematical modeling approach of Bechtold and Jacobs (1990) for the assignment of 

breaks to periods in a way that accounts for overlapping shifts. We show the importance of ac-

counting for breaks when scheduling or staffing physicians. Moreover, we consider additional key 

elements when determining the appropriate staffing level such as working regulations given by 

law and rest periods. Lastly, we improve absence planning by determining a weekly lower bound 

for the required staffing level over one entire year. By doing so, weekly variation and seasonality 

in the workforce size can be detected and used for vacation planning and scheduling of foreseen 

absences, such as conferences and further educational programs/workshops. 

In our problem formulation, we estimate the required workforce size as realistic as possi-

ble. To this end, we use an aggregated formulation which determines a minimum number of phy-

sicians required, selects a number of shift types, and assigns a break. In our model, we assign 

shifts and breaks flexibly and ensure the coverage of demand in every period of every day and 

the adherence to legal and working time regulations. Moreover, since this model serves as an 

estimator for the workforce size, we propose a second mathematical model which uses the out-

put of the first model as an input and creates individual lines of work, which can be assigned to 

the physicians.  

The validation of the model and the examination of its performance in the experimental 

study uses two randomly generated demand scenarios as well as demand derived from a hospital. 

For both random profiles, 50 instances were generated and solved twice, with and without ac-

counting for breaks, to evaluate the effect of considering breaks when determining physician 

staffing levels. As a result, solution times are rather low for each test instance. Moreover, neglect-

ing breaks leads to a significant underestimation of the required workforce size, independent of 
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the demand profile. This is the case for more than 90% of the test sets, which shows understaffing 

of one to five physicians when not taking breaks into account. This shows that neglecting breaks 

leads to a realistic estimation of the workforce size in less than 10% of the considered test set-

tings. Moreover, this effect becomes even more severe the shorter the length of a planning day, 

i.e. when demand could be covered by one single shift type (without accounting for a break) and 

an additional physician is only required when breaks are considered.  

In the second step of the experimental study, real life data from one entire year is in use. 

Demand is decomposed into 52 one-week planning periods and solved separately for each week. 

First, flexible shifts are allowed and second, to simulate shift settings found in real life, only three 

eight hour shifts are available. Again, each test instance is solved twice: Neglecting breaks and 

accounting for breaks. Even though the resulting optimal workforce size varies from one week to 

another, neglecting breaks leads to a significant underestimation of the required number of phy-

sicians. Especially when reducing the number of available shift types, the needed workforce size 

increases significantly if breaks are considered, i.e. neglecting breaks underestimates the required 

size of personnel by six physicians.  

Summarizing, a reduced set covering approach is presented, which provides two types of 

flexibility when determining a lower bound for the staffing level of physicians. Flexibility in terms 

of shift types and the assignment of breaks enable a better match of supply and demand and 

ensure a rest period for each physician on duty. As our results indicate, our approach provides a 

superior method to determine a realistic lower bound for the workforce size compared to other 

approximation mechanisms in use, e.g. maximum demand and the ratio of total demand and 

available working hours of personnel, due to the consideration of breaks and several key aspects 

such as rest periods and total working hours. This way of estimating a lower bound for the number 

of required personnel therefore leads to the ability to cover demand in each period while creating 

planned idle time to handle stochasticity in demand and emergency patients.  

 

2.3. Flexible staffing of physicians with column generation 

Hospitals, especially physicians, face a great fluctuation in demand every hour of each day with 

high peaks (commonly) around noon. To be able to cover expected peaks in demand, hospitals 

schedule a large number of physicians. However, as this maximum level in demand declines after 
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several hours, hospitals are overstaffed afterwards. As current practice commonly uses a small 

number of predefined shift types, e.g. three eight hour shifts, it is not possible to match supply 

and demand adequately. Implementing an increasing amount of flexibility in the scheduling pro-

cess leads to the ability to better match supply and demand due to the large number of starting 

periods of shifts and various different shift lengths.  

It is therefore the major contribution of this research to test and evaluate the effect and 

value of flexibility in the scheduling process of physicians. In this research, a MIP model is devel-

oped which provides a maximum level of flexibility in the scheduling process with respect to the 

sequences of working days, starting and ending times of shifts as well as the allowed shift lengths, 

and the placement of the break. The objective is to generate cost-minimal schedules covering the 

entire planning horizon for each physician, i.e. the total salary costs are minimized in our objective 

function, subject to coverage of demand and several legal and labor regulations. Due to the com-

plexity of the problem, a column generation (CG) approach is applied as solution approach, which 

provides at least a good lower bound to estimate the total labor costs, if it is not possible to solve 

the considered problem to optimality.  

In the solution process, the compact formulation decomposes by physician (based on Dan-

tzig-Wolfe 1960) to build an individual line of work for each employee that covers the whole plan-

ning period. The resulting optimization problems, restricted Master Problem (MP) and Subprob-

lem (SP), are solved iteratively to optimality. The column with the smallest reduced costs gener-

ated by the SP is added to the linear restricted MP which is solved again. This loop continues until 

no column that prices out can be found. We additionally implement a second criterion for the 

termination of the algorithm making use of the objective function value of the linear restricted 

MP and the SP of the current iteration: A lower bound for the linear restricted MP is calculated in 

each iteration of the solution process and terminates the algorithm if the current value of the 

linear restricted MP is smaller than the actual value of the calculated bound (rounded off). Even-

tually, the restricted MP is subsequently solved as an IP, which might lead to a solution which is 

not optimal any longer.  

To evaluate the performance of the proposed solution approach as well as to analyze the 

effect of flexibility in the scheduling process, an experimental study is conducted. In the first step, 
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we account for robustness and evaluate the performance of the CG approach by testing four dif-

ferent lengths for the planning horizon: One, two, four, and six weeks. Additionally, we consider 

three different scenarios for the level of demand: Mean demand level, 75% quantile demand, and 

maximum (100%) demand level (based on aggregated data derived from real life). Solving the 

considered instances leads to an optimal solution only for a one week problem. The remaining 

instances cannot be solved to optimality by the compact formulation. The results from our exper-

imental study indicate that our CG heuristic provides a good solution in appropriate computation 

time for each test set, which is evidence of the high quality of our solution approach. In the second 

step of our experimental study, a factorial analysis is conducted to evaluate the value of flexibility 

in the scheduling process. Day, shift, and break parameters are varied, which results in a total of 

168 test sets. Each parameter setting can be solved using the CG heuristic within at most one 

hour of computation time, which is quite reasonable. Moreover, the study shows the central rel-

evance of flexibility: Solution values range from 55’250€ to 198’250€ when varying day parame-

ters and from 55’250€ to 81’250€ when varying shift and break parameters. This means, increas-

ing flexibility in terms of sequences of working days leads to a significant reduction in the resulting 

total salary costs. This is also true for flexibility in shift types: The more shift types are available, 

the lower the required labor costs and with this, the required workforce size to cover demand. 

Variation in break parameters however has either a positive or no effect. The positive effect oc-

curs especially in surrounding which provide a minimum level of flexibility in shift types.  

Concluding, we formulated a MIP based on a reduced set covering approach accounting 

for a maximum level of flexibility in the scheduling process of physicians and apply a CG heuristic 

as solution approach. As the results indicate, a high level of flexibility has a significant positive 

effect on the total labor costs and on the required number of physicians: The less flexible the 

scheduling circumstances, the higher the resulting labor costs due to the inability to match supply 

and demand.   
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3. Discussion of the contributions 

In this section, the basic findings and results are summarized and presented. Moreover, manage-

rial insights derived from the contributions are provided and discussed. Eventually, approaches 

and areas for future research are presented. 

 

3.1. Summary of major findings and critical evaluation of limitations 

Based on the research questions proposed in an earlier subsection, the main findings are summa-

rized in this subsection. Additionally, appropriate limitations concerning the findings are dis-

cussed. 

 

Research question 1: Which characteristics and aspects of physician scheduling in hospitals are 

already covered in literature and what are promising areas for future re-

search? 

Within the last decades, the importance of the physician scheduling problem in research and 

practice has increased significantly. The research question addressed here is summarized und al-

ready partially answered in subsection 2.1.. Literature investigates the specific features of the 

physician scheduling problem in contrast to general personnel scheduling literature and the nurse 

scheduling problem with respect to the type of problem, problem characteristics such as em-

ployee type, experience level of physicians, shift types in use, break assignment, and fairness and 

individual personnel aspects as well as modeling approaches, uncertainty, solution approaches, 

and real life implementation. As our analysis indicates, the number of papers increases signifi-

cantly and a growing number of diverse aspects is considered. However, it is necessary to define 

the purpose of modeling and, based on this, the relevant aspects that need to be taken into ac-

count. For example for Rostering problems, it is not sufficient to solely generate a schedule for 

each physician. Instead, individual lines of work, which account for personnel aspects and require-

ments, are to be constructed to ensure an appropriate job satisfaction and consequently a high 

quality of care. Thus, current literature aims to identify key concerns of the specific problem type 

that it focuses on to ensure taking into account all relevant aspects.  

General research gaps identified in this first contribution are the consideration of an ade-
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quate length for the planning period in Rostering problems to ensure predictability for the work-

force and a higher planning granularity to better match supply and demand and adopt realistic 

assumptions. Moreover, even though fairness aspects are gaining importance, the perception of 

staff is not measured. Therefore, individual perceptions and evaluation of the performance of 

such metrics in the scheduling process should be adopted to potentially adjust modeling criteria. 

A more detailed overview on ideas for future research is given in subsection 3.3.. 

 

Research question 2: How does flexibility in the assignment of shifts and breaks affect the overall 

number of required physicians? How can we build a more realistic estima-

tion for approximating the total size of the workforce? 

Up to now, it is common practice to estimate the required number of physicians simply by using 

an approximation mechanism such as the maximum level of demand or based on total demand 

and available working hours of an employee. Since these methods do not account for various 

influencing factors, the required workforce size is underestimated significantly. The second con-

tribution in section 2.1. addresses an improved mechanism to approximate staffing levels of phy-

sicians more realistically. 

The impact of accounting for the assignment of breaks in addition to several other legal 

regulations when estimating the required number of physicians is modeled using a MIP model. 

As confirmed by our results, neglecting the assignment of breaks leads to a significant underesti-

mation of the required number of personnel. Consequently, hospitals are often unable to cover 

demand within regular working hours of staff, which leads to an increasing probability of overtime 

hours for the workforce and growing staffing costs for the hospital. Especially in real word settings 

which provide less flexibility, the situation is even more severe: Neglecting breaks might under-

estimate the workforce size by around one third. This results in additional negative consequences 

for the quality of patient care and the satisfaction and job motivation of staff. Additionally, the 

explicit consideration of a break is crucial for physicians since most of them are usually unable to 

take their breaks even though it is mandatory by law. To answer the first part of our research 

question: The assignment of breaks in general leads to a more realistic estimation of the work-

force size by (majorly) increasing the number of required physicians whereas a flexible placement 

does either have a positive or no effect. Moreover, implementing flexibility in shift types increases 
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improvement further due to additional precision because of an increasing ability to better match 

supply and demand.  

In our approach, shifts and breaks are assigned in an aggregated way: Our model selects 

shifts to cover demand subject to several workforce-related legal regulations, but not on an indi-

vidual level. To generate feasible lines of work covering the entire planning horizon for each phy-

sician, an additional mathematical model is required which accounts for physician-specific indi-

vidual regulations. Similarly for the assignment of breaks: Since our model solely assigns a number 

of breaks to a specific period, a post-processing procedure is necessary to assign breaks individu-

ally to each physician on duty, e.g. by a heuristic procedure. Moreover, we assume personnel to 

be available 365 days a year as we do not account for vacation and national holidays or absences 

due to illness. For a more detailed approach, these aspects are to be taken into account or at least 

additional personnel has to be employed to smooth the resulting effect. This means for the sec-

ond part of our research question: A more detailed mathematical model investigating several 

workforce- and physicians-related working regulations improves the approximation of the esti-

mated workforce size.  

 

Research question 3: What is the value of implementing flexibility in the process of physician 

scheduling?  

In general, practice as well as research do not allow for a high level of flexibility in the physician 

scheduling process. This rigid scheduling environment prohibits an adequate matching of supply 

and demand. The third contribution therefore addresses the implementation of day, shift, and 

break flexibility in the physician scheduling problem.  

The answer for this research question depends on the degree of flexibility in the schedul-

ing process: The higher the level of flexibility, the lower the occurring total labor costs to cover 

demand and the required size of the workforce. Accounting for flexibility in patterns of working 

days leads to a significant decrease in total labor costs. In the extremes, total salary costs decrease 

by around 350% when increasing working day flexibility to a maximum level. When implementing 

flexibility in available shift types, results also show a positive effect on the occurring costs. A max-

imum level of flexibility in shift types leads to a decrease of total salary costs of around 32%. 

Inserting additional flexibility in the scheduling process by enlarging the size of the break window 
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either has a positive or no effect on the objective. For almost 50% of the different parameter 

settings, the maximum size of the break window decreases the total labor costs. Flexibility in 

break assignment therefore particularly affects settings that do not provide a high level of flexi-

bility in working days and available shift types, i.e. especially for real life assumptions.  

In the experimental study of this contribution, real life data from the central operating thea-

ter is used. Even though this data is derived from a large teaching hospital, it might be biased due 

to the planning policies of the hospital. Reported demand is mainly based on several hospital-

internal planning assumptions such as the predefined Master Surgery Schedule (MSS) for the op-

erating theater as well as the proposed Case Mix (CM) of the hospital, which is defined at the 

beginning of each year. This might affect demand and change if general long-term assumptions 

of the hospital are modified. Moreover, the proposed MIP mainly focuses on flexibility aspects in 

the scheduling process rather than considering personnel aspects of the workforce which might 

be of central relevance on a practical experimental level.  

 

3.2. Managerial insights improving hospital’s administrative and organizational system 

As hospitals are confronted with an increasing cost pressure within past years, efforts to become 

profitable have risen significantly within the last decades. Since the workforce of a hospital gen-

erates a major part of the operating costs, improving the scheduling of employees promises large 

potential cost savings. In this dissertation, we identified four different managerial insights which 

are discussed in the following that might provide potential to reduce costs and improve the pro-

cess of physician scheduling.  

 

I) Realistic estimation of the workforce size. Hospital’s management commonly uses sim-

ple approximation mechanisms to estimate the required workforce size since these 

methods are neither cost nor time intensive. Applying a single formula or basic statis-

tics does not require much time and there is no need to collect many different types 

of information. However, this leads to a rather bad estimation. Instead, hospital’s 

management should consider using several additional information to create a more 

detailed mathematical model which (for example) implements breaks to estimate the 

required number of personnel. This leads to a more precise estimation of the number 
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of required physicians and to a reduction in overtime hours and related costs.  

 

II) Improvement in absence planning. In general, hospitals use a mean level for the fore-

casted demand as basis to determine the workforce size. As a result, no conclusions 

can be made for vacation policies and absence planning throughout the year. Instead, 

when the weekly number of required physicians is determined for one entire year, 

seasonality and trends in demand can be identified and beneficially used for absence 

planning, e.g. by defining a range for vacation or improving planning of known ab-

sences, such as conferences and medical education. 

 

III) Importance of implementing flexibility in the scheduling process of physicians. In cur-

rent literature and practice, it is still quite common to assume a rigid scheduling envi-

ronment. This results in a decreasing ability to match supply and demand and there-

fore in an increasing number of required personnel and related costs. Implementing a 

higher degree of flexibility in terms of patterns of working days, available shift types, 

and the placement of breaks results in a significant decrease in total labor costs. Hos-

pital’s management should therefore consider investigating a higher amount of flexi-

bility in the scheduling process. Moreover, if the implementation of flexibility is not 

possible due to some reasons and hospitals need to stick to a small number of shifts, 

shifts having a short duration are superior to shifts with a long duration and should 

therefore be preferred when flexibility is not adoptable.  

 

IV) Considering break assignments is crucial even on high hierarchical levels. Even though 

the assignment of a break is a central aspect when generating lines of work to ensure 

an appropriate rest period for each physician while being on duty, the consideration 

of breaks is also a key aspect on higher hierarchical planning levels. Even on a strategic 

and on a tactical level, when the size of the required workforce is estimated and sea-

sonality in demand is analyzed to plan predictable absences of personnel, the assign-

ment of breaks is to be taken into account. By integrating several key elements such 

as minimum rest periods, maximum weekly working hours, and the assignment of 
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breaks, the required size of the workforce can be estimated more realistically. As a 

result, an appropriate number of physicians to cover demand is determined and em-

ployed which leads to a decrease in potential overtime hours due to inadequate plan-

ning. 

 

3.3. Areas for future research  

The contributions that are presented in this dissertation close several existing research gaps in 

current literature. However, as the former discussion indicates, there are still diverse limitations 

that raise a variety of topics and ideas for further research. In this subsection, some ideas are 

discussed in more detail. 

 

Further aspects for modeling the physician scheduling problem to improve applicability in a 

practical environment 

As various aspects are to be considered in literature handling the physician scheduling problem, 

there are several gaps in current research leading to ideas for further research. First, further re-

search might promote the importance of considering breaks in the scheduling process since phy-

sicians are commonly not able to take their breaks in practice, even though these are mandatory 

by law. Investigating an efficient way to model the assignment of breaks mathematically might 

lead to acceptance of the increasing complexity because of the positive effect on physicians’ uti-

lization and working hours.  

Second, operational online planning provides the most potential for future research: Since 

only one publication handles Re-planning problems, further research might improve the resched-

uling process and investigate several aspects and methods to tackle unforeseen absences of per-

sonnel.  

Third, demand patterns used in research are often not entirely realistic, even though these 

are derived from historical data. Commonly, former requirements of care are aggregated over a 

specific time interval and subsequently used to estimate future demand. By doing so, seasonality 

and trends in demand are neglected. Since demand in hospitals fluctuates heavily, future research 

should investigate how to determine more realistic demand patterns, which represent real life 

demand more precisely.  
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Fourth, practice-oriented research might develop user interfaces for hospital surround-

ings to improve performance and acceptance of mathematical modeling approaches derived from 

research into practice. Commonly, research proposes a well-performing mathematical model and 

solution approach to tackle real life problems but does not account for an appealing user interface 

to increase hospital’s willingness to implement approaches from literature.  

 

Flexibility in the physician scheduling problem 

Since physicians face a great fluctuation in demand, the employment of part time workers might 

be sufficient. In our approaches, a homogenous group of full timers is considered which all have 

similar minimum and maximum working hours. Flexibility can be implemented by employing part 

time physicians to better match supply and demand especially for peaks due to the diversity in 

available working hours, i.e. part timers might be on duty for only four hours, whereas full timers 

are to be on duty for at least seven hours. Moreover, future research should investigate flexible 

sequences of working days and increase the number of available shifts by applying flexible shifts. 

Even though complexity rises due to the increasing level of flexibility, it is possible to better match 

supply and demand and with this, to prevent possible negative consequences, such as excessive 

overtime hours for personnel. 

 

Increasing importance of accounting for work-life balance of staff 

Especially when considering residents, additional ergonomic rules ensuring their wellbeing and 

job satisfaction are important. Up to now, residents’ schedules are created for a long-term per-

spective focusing on educational concerns but neglecting individual requests. Moreover, the 

schedule of teaching physicians should also be taken into account when scheduling residents to 

ensure an efficient education and medical progress.  

Furthermore, the wellbeing of the workforce also needs to be taken into account, espe-

cially on an operational level. Our approach assumes that each physician is willing to start a shift 

whenever it is necessary, but this might not be applicable in real life surroundings. Therefore, 

additional ergonomic regulations such as shift starting time windows, individual preferences, and 

the assignment of multiple breaks for long shifts are to be considered in future research. Moreo-

ver, future research might develop a guideline for the trade-off decision of hospitals: Reducing 
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costs by implementing a maximum level of flexibility vs. satisfaction and job motivation of per-

sonnel. As a result, a balanced policy between cost- and employee-satisfaction is to be deter-

mined. 
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4. Conclusion 

This dissertation on the physician scheduling problem is comprised of three parts. First, the phy-

sician scheduling problem is introduced and the content and focus of this dissertation is moti-

vated. Second, the major part of this dissertation, the three contributions of this thesis are sum-

marized. Note, the full version of each contribution is attached in the appendix. And third, each 

contribution is presented in detail and critically discussed with respect to a more comprehensive 

point of view. Additionally, resulting managerial insights derived from the contributions are pre-

sented and an agenda for further research is provided.  

The central contributions of this dissertation are as follows: The first literature overview 

containing a framework to classify research focusing on the physician scheduling problem is pro-

vided in contribution 1. The second contribution presents a mechanism to create an approxima-

tion for the required workforce size which is more realistic than approximations created using 

well-known techniques whereas the value of a maximum level of flexibility in the scheduling pro-

cess is evaluated in contribution 3. 

Since it is the main aim of this dissertation to promote the importance and complexity of 

the physician scheduling problem, this thesis extends current literature by three aspects: First, 

contribution 2 implements flexibility and various labor regulations and legal rules in the physician 

scheduling problem to build a realistic estimation of the required number of physicians. Moreo-

ver, the assignment of breaks is considered to ensure a break for each physician and prevent 

excessive overtime hours. A major advantage of the presented approach compared to other ap-

proximation mechanism is the consideration of several key aspects, such as breaks and maximum 

weekly working hours, which ensures a more precise estimation. A realistic estimation is crucial 

to prevent unnecessary overtime hours and decreasing job satisfaction. In the third contribution, 

a maximum level of flexibility, i.e. flexibility in working days, shift types, and break assignment, is 

provided to evaluate the effect of flexibility. The results from the experimental study show the 

high value of flexibility for the physician scheduling problem: Especially flexibility in working days 

and shift types results in a significant decrease in total labor costs due to the increasing ability to 

better match supply and demand especially for peak periods. 
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Concluding, applying the presented framework developed in our literature review, key 

elements of the physician scheduling problem can be investigated. Since hospitals are facing an 

increasing pressure to become profitable and physicians are still considered as a crucial and scarce 

resource, hospitals are forced to establish policies to decrease upcoming costs while ensuring 

personnel satisfaction and maintaining the desired quality of care. The physician scheduling prob-

lem is therefore of major importance and expected to gain further relevance in research and 

practice in near future.  
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A1. State of the art in physician scheduling 
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A2. Physician staffing levels and absence planning under special consideration of breaks – 

A case study on anesthetists 
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Physician staffing levels and absence planning under 

special consideration of breaks – A case study on anes-

thetists 

 

Abstract 

In hospitals, personnel generate the biggest and most important cost. This research handles the 

physician staffing problem in hospitals on an integrated tactical level by focusing on the investi-

gation of break assignments in staffing levels as major objective. In particular, we consider mod-

eling the placement of breaks within shifts to ensure an appropriate approximation for the size 

of the workforce for demand coverage. Current literature mainly neglects the consideration of 

breaks whereas practice uses manual planning approaches that are time and cost intensive. Fo-

cusing on a staffing level with tactical applicability, we minimize the number of assigned physi-

cians. To determine a more realistic lower bound for the required staffing level several essential 

rules such as demand coverage and labor regulations are thereby taken into account. Moreover, 

trends in personnel utilization throughout the year that provide a valuable contribution for ab-

sence time planning (e.g. due to vacation and conferences) are identified. We formulate a mixed-

integer program and solve it with standard software (like CPLEX). In our experimental study, real 

world data from a large hospital in Germany is used. Computational results show that the consid-

eration of breaks is highly relevant especially when approximating required personnel capacity in 

staffing level decisions: Neglecting breaks, even on a high hierarchical level, leads to a significant 

underestimation of the number of required physicians particularly under rigid real life assump-

tions when hardly any flexibility in shift types is provided. Accordingly, understaffing and an in-

crease in unplanned working hours in terms of overtime might be possible consequences. More-

over, legal regulated break periods for physicians cannot always be ensured. Therefore, we rec-

ommend the consideration of break assignments even when approximating staffing policies to 

create leeway in planned absence decision-making. 

 

Keywords: Physicians, break assignment, staffing levels, hospitals, mixed-integer programming  
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1. Introduction 

Within the last twenty years, the number of patients for hospitals is growing significantly due to 

the increasing age of society and the additional reduction in patient’s length of stay (e.g. Schel-

hase 2014). This leads to an increase in annual costs for hospitals, e.g. in Germany from 50 billion 

euro to 82 billion euro in 2011. The budget which is consumed by hospitals each year is continu-

ously ascending and this trend will not stop in near future. Since staff generates more than half 

of these costs, hospitals’ managers are forced to schedule their staff efficiently to reduce person-

nel expenses (Bölt 2014). Assigning physicians in an appropriate way enables hospitals to provide 

the same high quality of service while reducing the upcoming labor costs, e.g. for overtime hours. 

In many cases, this results in a significant growth of the number of patients which can be treated 

while increasing the time patients spent with a physician for treatment. Additionally, a decreasing 

number of working hours for physicians can be noticed (Rising et al. 1973). 

In this context, a lot of work has been done with respect to nurse rostering (e.g. see Burke 

et al. 2004 for a comprehensive overview or Van den Bergh et al. 2013 for a more recent overview 

on personnel scheduling including nurse scheduling). According to physician scheduling, there is 

still a lack in research (e.g. see Erhard et al. 2018). A reason for this deficit is the complexity of the 

physician scheduling problem since hospitals are facing a great fluctuation in demand. The level 

of required care changes from hour to hour and from one day to the next which makes it difficult 

to cover demand in every period (Brunner et al. 2009). 

The purpose of this paper is to determine a more realistic estimation of physician staffing 

levels to facilitate and support absence planning. The contribution of our work is manifold. We 

develop a mathematical model which provides full flexibility during the process of approximating 

physician staffing levels with respect to starting and ending times of shifts, the length of shifts, 

and the placement of a break for each shift. Accounting for breaks when deciding about staffing 

policies is especially important since physicians are commonly not able to take their breaks in 

practice, even though it is mandatory by law. This is partially reasoned by environmental uncer-

tainty, e.g. due to stochasticity in surgery durations (Fügener et al. 2017) as well as emergency 

patients (Venkat et al. 2015), but also due to understaffing as a result of neglecting breaks and 

unrealistic approximation techniques for the required workforce size, e.g. a simple workload 

bound. Therefore, implementing breaks is necessary in staffing level decisions on a tactical basis 
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to ensure an appropriate size of the overall workforce on duty. This effect already occurs in flexi-

ble shift settings but as an insight of our study we can show that this problem gets even worse in 

more rigid real life settings, where less flexibility is provided. 

Our main objective is to approximate the minimum number of physicians required as real-

istic as possible, subject to coverage of anticipated demand. At the same time, flexible breaks for 

each physician as well as general labor regulations, such as rest periods and working hours, are 

taken into account. The mathematical model selects specific shift types including break assign-

ments. Since we are focusing on a staffing level decision, we do not generate individual schedules 

which can be applied on an operational level when estimating the required workforce size. In lieu 

thereof, the selected shifts solely ensure the practicability of our decision by matching supply and 

demand, assigning breaks, and restraining major scheduling regulations over all personnel, when 

determining the required staffing level. But, we additionally present a second mathematical 

model which can be used in a downstream step to create appropriate, feasible individual sched-

ules that are applicable on an operational level, if necessary. Being almost neglected by current 

literature up to now, one major contribution is the first methodological extension of the modeling 

approach presented by Bechtold and Jacobs (1990) in a way that accounts for an individual break 

assignment even in case of overlapping shifts. In our computational study, we randomly gener-

ated two different demand patterns that correspond to real world settings (see Brunner et al. 

2011) to test for the effect of including breaks on the optimal workforce size. Based on our case 

study with real world demand, we finally derive substantial insights for research and practice con-

cerning the resulting utilization of personnel as well as the necessity and the effect of accounting 

for breaks in the staffing process. 

The paper is structured in the following way: In Section 2, we review the relevant literature 

concerning this topic of research. Afterwards, we provide a precise problem definition followed 

by the mathematical models (see Section 3). In Section 4, we evaluate and test our models by 

using randomly generated and real life data (in our case study) to analyze the effect of imple-

menting breaks in the scheduling process on the overall size of the workforce when approximat-

ing staffing levels. We show the high quality of the resulting staffing policy, guaranteeing a break 

for every assigned physician. Eventually, we summarize our main findings and give insights before 

concluding the paper by giving ideas for further research.  
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2. Literature review 

Unlike other branches, business in the service sector is denoted by specific characteristics, e.g. 

high variation in demand. Since demand cannot be backlogged without generating indirect costs, 

there is need for excessive (over-) capacity because institutions, especially in the health care sec-

tor, have to be prepared to handle peaks in demand. As a consequence, this leads to a large 

amount of idle time during periods of low demand (Aggarwal 1982). For hospitals, the situation 

is even more serious since there is need for care 24/7. The negative effect of unmet demand has 

already been mentioned in the early 1980s (Aggarwal 1982). In the following, we provide a review 

of the most relevant research for our work. A detailed bibliography for physician scheduling can 

be found in Erhard et al. (2018).  

Beaulieu et al. (2000) tackle the problem with a mathematical programming approach to 

schedule up to 20 physicians in a hospital in Montreal. Using predefined shifts, the corresponding 

mixed-integer programming (MIP) model is solved by a Branch and Bound (B&B) approach. The 

resulting schedule provides increased quality with respect to the number of working hours and 

rule violations. Similar work scheduling emergency room physicians is presented in Carter and 

Lapierre (2001). The authors analyze scheduling procedures in six different hospitals in Montreal 

and build feasible schedules by using tabu search. White and White (2003) apply a constraint 

programming model to schedule physicians, residents, and medical students in Ottawa hospital 

in short term. The initial schedule is created using a bin packing procedure. Rousseau et al. (2002) 

use a similar approach to schedule physicians in the emergency department of a hospital in Mon-

treal. A solution approach combining a local search and a genetic algorithm is introduced, leading 

to a generic method. A genetic algorithm is also applied in Puente et al. (2009) to solve their goal 

programming model for short term physician scheduling in a Spanish hospital. Using predefined 

shifts, the created roster violates less soft constraints than the one currently in use. Additionally, 

shifts are distributed fairly among the workforce. More recently, Ferrand et al. (2011) present a 

goal programming approach whose main concern is building a cyclic roster. Their research results 

in well-balanced working patterns and the opportunity to take care of physicians’ interests. Gierl 

et al. (1993) apply queuing theory solved by a knowledge-based system to consider fairness in the 

distribution of shifts and working hours. The system selects physicians out of a particular group 

according to several specific conditions to design a duty roster. The resulting schedule increases 



38 

 

 

job motivation while decreasing costs and absenteeism due to the increase in fairness. Carrasco 

(2010) also focusses on an equal distribution of workload: In a pediatric department in a hospital 

in Spain, night and weekend shifts are to be assigned fairly. The problem is modeled as a MIP and 

solved by using a greedy algorithm that identifies feasible solutions while satisfying fairness con-

straints. Ganguly et al. (2014) take different skill levels of physicians into account and develop a 

staff assignment algorithm to balance staffing costs and service levels.  

Focusing on more flexibility, Brunner et al. (2009) formulate their flexible shift scheduling 

problem of physicians as a MIP. They solve their model in two different ways: Exact as a MIP and 

by using a decomposition heuristic. The heuristic decomposes the planning horizon in separate 

weeks and uses the preceding week as input for the following one. The model as well as the de-

composition heuristic are tested by using real world data derived from the anesthesia department 

of a large teaching hospital in Germany. Solving the problem as a MIP generates high quality so-

lutions at the cost of huge runtimes. In comparison, the heuristic is much faster and provides 

almost similar results. The computational study shows that final schedules do not require any 

overtime. In a subsequent work, Brunner et al. (2010) introduce part time physicians and solve 

the problem by using an exact Branch and Price (B&P) approach. From a methodologic point of 

view, the authors introduce and investigate two different branching strategies in the B&P frame-

work. Computational experiments analyze the performance of the algorithm for various lengths 

of the planning horizon, i.e. two, four, and six weeks. Overall, schedules of high quality are gen-

erated. Another extension deals with different skill/experience levels (Brunner and Edenharter 

2011): Over a 1-year planning horizon, senior and junior physicians of a teaching hospital in Ger-

many are scheduled. The problem is formulated as a MIP and solved by using a column generation 

heuristic. The approach provides near optimal solutions which allow for flexibility in terms of as-

signed shifts and, at the same time, an appropriate level of service and coverage of demand. In 

contrast, Stolletz and Brunner (2011) develop a reduced set covering problem formulation which 

uses a shift matrix as input, in comparison to an implicit approach. Their main objective is to min-

imize the paid out hours by using flexible shifts. Additionally, breaks are assigned to shifts in a 

pre-processing step, i.e. breaks are considered in the shift matrix. As a result, the reduced set 

covering formulation outperforms the implicit modeling approach with respect to computation 

time and solution quality. Furthermore, the authors investigate different fairness measures and 
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conclude that minimal cost schedules can be fair. Implementing breaks in the scheduling process 

of physicians is relevant to ensure an appropriate staffing level and with this a high quality roster 

that guarantees appropriate rest periods, increases job satisfaction, and therefore the quality of 

care. Despite the considerable effect on overtime hours and coverage of demand, breaks are typ-

ically not integrated in the physician scheduling process. If the number of assigned physicians is 

not reduced by the number of personnel on break, the coverage of demand cannot be guaranteed 

for every period of each day of the planning horizon.  

Even in general personnel scheduling literature, only few authors consider the assignment 

of breaks: Gaballa and Pearce (1979) assign shifts and breaks to an airline call center’s personnel. 

Focusing on a discontinuous planning problem, breaks are assigned implicitly for each shift and 

every period. Extending this approach by multiple breaks with various lengths, Aykin (1996) de-

velops a model that further increases the flexibility in the scheduling process. A more aggregated 

implicit modeling approach is used in Bechtold and Jacobs (1990) who introduce a variable that 

determines the number of personnel on break for a specific period. 

In current research, there exists a lack with respect to the assignment of breaks for physi-

cians, as it has only been addressed in few articles to date. Our research contributes to filling this 

gap and puts the break assignment in the center of investigation. In particular, we show the im-

portance of taking account of breaks on a high hierarchical level of decision making, i.e. when 

approximating the minimum workforce size required to cover demand in staffing level policies. 

Therefore, detailed and more precise models are needed to prevent for undercoverage of de-

mand.  

 

3. Problem description 

The problem under consideration covers a planning horizon consisting of a set of 𝑫 days spanning 

several weeks which all have 𝑷 periods (e.g. 1-hour periods). We consider a number of physicians 

which are to be scheduled having specific characteristics such as the maximum (minimum) regular 

amount of working hours 𝑅 (𝑅 ) per time period which are either stated in the labor contract or 

based on special agreements between the concerned parties. We do not permit a weekly number 

of overtime hours since our tactical planning problem determines a good lower bound for the size 

of the workforce to cover the forecasted demand and facilitates planning predictable absences 
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throughout the year, i.e. by revealing required staffing levels for each week in advance. In the 

following, we consider a homogeneous group of physicians.  

We introduce two kinds of flexibility in our model. First, a set of flexible shifts 𝑠 ∈ 𝑺. Each 

shift 𝑠 is defined by a flexible starting period as well as a flexible shift length which is between a 

minimum length 𝑆𝑚𝑖𝑛 and a maximum length 𝑆𝑚𝑎𝑥, i.e. seven and 13 hours. To provide access to 

the resulting available shift types, a shift matrix is generated with the before mentioned param-

eter values. This matrix defines the binary parameter 𝐴𝑠𝑝 which indicates a working period 𝑝 for 

a specific shift 𝑠 by being equal to one and zero otherwise. The appropriate assignment of a shift 

type 𝑠 to a number of physicians on a specific day 𝑑 is ensured by the integer decision variable 

𝑧𝑠𝑑. Considering a discontinuous problem, a shift cannot span over two planning days. In other 

words, each shift starting on a (planning) day ends on the same (planning) day. Note that the 

number of planning periods per (planning) day must not span 24 hours and can overlap two real 

days. For instance, a planning day starts at 5 am and ends at 1 am the next real day, i.e. |𝑷| = 20 

1-hour periods. Between two consecutive shift assignments, a minimum rest time 𝑃𝑟𝑒𝑠𝑡 must be 

ensured. Second, we consider flexibility in setting breaks within shifts. Each shift includes a single 

break that can be assigned flexibly within a predefined break window that is determined by a 

minimum number of 𝐵𝑝𝑟𝑒 working periods before the break placement and the minimum number 

of 𝐵𝑝𝑜𝑠𝑡 working periods before a shift ends. To facilitate our study, we assume each break to 

have a duration of exactly one period, i.e. 1 hour, per shift. In case of investigating period lengths 

other than one hour, additional constraints have to be implemented to ensure an appropriate 

length for the assigned break, e.g. two periods in case of a period duration of half an hour. To 

guarantee a certain quality and quantity of service and care, the generated schedule has to ensure 

that (forecasted) demand 𝑁𝑑𝑝 is covered in each period 𝑝 of every day 𝑑 of the planning horizon. 

By using different assumptions on future demand, i.e. mean or 75th percentile of past demand, 

staffing level decisions account for the uncertainty in demand realizations. Again, these exem-

plary schedules are generated and assigned to ensure feasibility of our decision and do not claim 

to be in use on an operational level, but the provided solution guarantees a valid lower bound for 

the workforce size of superior quality compared to other estimation techniques, e.g. maximum 

demand. We formulate the problem as a MIP and assign breaks by the mathematical formulation 

to periods (labeled as Model 1 in the remainder of the paper).  
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Model 1 – Breaks to periods. We introduce the essential notation and present the identified su-

perior formulation for the break assignment. Since breaks are modeled implicitly, these have to 

be assigned to each physician in a post-processing step which is computationally easy (Bechtold 

and Jacobs 1990). Moreover, since we use an aggregated model to schedule physicians instead of 

creating individual schedules and lines of work for each employee, personalized rosters have to 

be generated in a subsequent step, e.g. by a downstream MIP. We therefore state an additional 

mathematical model (Model 2) which can be used for this purpose. Our main objective is to esti-

mate the minimum workforce size more realistic and determine a lower bound for the number 

of required physicians subject to providing an appropriate level of care, i.e. forecasted demand 

coverage. To formulate our model, we need an integer variable 𝑌 indicating the number of em-

ployed physicians and an integer 𝑧𝑠𝑑, indicating the number of physicians working a specific shift 

on a particular day. 

Sets with indices 

𝑑 ∈ 𝑫 Set of days with index 𝑑 

𝑝 ∈ 𝑷 Set of day-periods with index 𝑝 

𝑠 ∈ 𝑺 Set of shifts with index 𝑠 

𝑏𝑠𝑡𝑎𝑟𝑡 ∈ 𝑩𝒔𝒕𝒂𝒓𝒕  Set of all possible starting periods for a break within a planning day 

𝑏𝑒𝑛𝑑 ∈ 𝑩𝒆𝒏𝒅 Set of all possible ending periods for a break within a planning day  

 

Parameters 

𝑆𝑚𝑖𝑛  Minimum shift length 

𝑆𝑚𝑎𝑥  Maximum shift length 

𝐴𝑠𝑝  1 if shift 𝑠 covers period 𝑝, 0 otherwise 

𝐹𝑠 First working period in shift 𝑠 

𝐿𝑠  Last working period in shift 𝑠 

𝑊𝑠  Number of working periods in shift 𝑠 

𝐵𝑝𝑟𝑒  Minimum amount of working periods before the break is allowed to start 

𝐵𝑝𝑜𝑠𝑡 Minimum amount of working periods after the break has ended 

𝑃𝑟𝑒𝑠𝑡 Minimum number of rest periods between two consecutive shifts 

𝑅  Maximum amount of regular working periods for physician 𝑖 per week 
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𝑅 Minimum amount of regular working periods for physician 𝑖 per week 

𝑁𝑑𝑝   Demand in period 𝑝 of day 𝑑 physician 𝑖 

𝐵𝑓𝑖𝑟𝑠𝑡 Earliest possible period for a break for each shift type per planning day 

𝐵𝑙𝑎𝑠𝑡 Latest possible start for the beginning of a break for each shift per planning   

 day 

 

Integer decision variables 

𝑌 Number of employed physicians 

𝑧𝑠𝑑 Number of physicians assigned to shift 𝑠 on day 𝑑 

𝑜𝑑 Number of off shifts on day 𝑑 

𝑏𝑑𝑝 Number of break assignments in period 𝑝 on day 𝑑 

 

Minimize 𝑌 (1)  

 

subject to 

∑ 𝑧𝑠𝑑

𝑠∈𝑺

+ 𝑜𝑑 = ∑ 𝑧𝑠(𝑑+1)

𝑠∈𝑺

+ 𝑜(𝑑+1) 𝑑 ∈ 𝑫\|𝑫| (2) 

𝑧𝑠𝑑 ≤ ∑ 𝑧𝑘(𝑑+1)

𝑘∈𝑺:|𝑃|−𝐿𝑠+𝐹𝑘−1≥𝑃𝑟𝑒𝑠𝑡

+ 𝑜(𝑑+1) ∀ 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫\{|𝑫|} (3) 

𝑧𝑠𝑑 ≤ ∑ 𝑧𝑘(𝑑−1)

𝑘∈𝑺:|𝑃|−𝐿𝑘+𝐹𝑠−1≥𝑃𝑟𝑒𝑠𝑡

+ 𝑜(𝑑−1) ∀ 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫\{1} (4) 

∑ ∑ 𝑊𝑠𝑧𝑠𝑑

𝑑∈𝑫𝑠∈𝑺

≤ 𝑅 ∙ 𝑌  
(5) 

max
𝑑∈𝑫,𝑝∈𝑷

𝑁𝑑𝑝 ≤ 𝑌  
(6) 

∑ 𝑁𝑑𝑝

𝑑∈𝑫,𝑝∈𝑷

≤ 𝑅 ∙ 𝑌  
(7) 
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∑ 𝐴𝑠𝑝𝑧𝑠𝑑

𝑠∈𝑺

− 𝑏𝑑𝑝 ≥ 𝑁𝑑𝑝  ∀𝑑 ∈ 𝑫, 𝑝 ∈ 𝑷 
(8) 

∑ 𝑧𝑠𝑑

𝑠∈𝑺

= ∑ 𝑏𝑑𝑝

𝑝∈𝑷

 ∀ 𝑑 ∈ 𝑫 (9) 

∑ 𝑏𝑑𝑡

𝑏𝑒𝑛𝑑

𝑡=𝐵𝑓𝑖𝑟𝑠𝑡

≥ ∑ 𝑧𝑠𝑑

𝑠∈𝑺
𝐿𝑠−𝐵𝑝𝑜𝑠𝑡≤𝑏𝑒𝑛𝑑

 ∀ 𝑑 ∈ 𝑫, 𝑏𝑒𝑛𝑑 ∈ 𝑩𝒆𝒏𝒅\{𝐵𝑙𝑎𝑠𝑡} (10) 

∑ 𝑏𝑑𝑡

𝐵𝑙𝑎𝑠𝑡

𝑡=𝑏𝑠𝑡𝑎𝑟𝑡

≥ ∑ 𝑧𝑠𝑑

𝑠∈𝑺
𝑏𝑠𝑡𝑎𝑟𝑡≤𝐹𝑠+𝐵𝑝𝑟𝑒

 ∀ 𝑑 ∈ 𝑫, 𝑏𝑠𝑡𝑎𝑟𝑡 ∈ 𝑩𝒔𝒕𝒂𝒓𝒕\{𝐵𝑓𝑖𝑟𝑠𝑡} (11) 

∑ 𝑏𝑑𝑡

𝜏

𝑡=𝑞

− ∑ 𝑧𝑠𝑑

𝑠∈𝑺
𝐹𝑠+𝐵𝑝𝑟𝑒≥𝑞

𝜏≥𝐿𝑠−𝐵𝑝𝑜𝑠𝑡

≥ 0 ∀ 𝑑 ∈ 𝑫, 𝑞 ∈ {𝐵𝑓𝑖𝑟𝑠𝑡, … , 𝐵𝑙𝑎𝑠𝑡}, 

𝜏 ∈ {𝑞, … , min(𝑞 + (𝑆max − 𝐵pre − 𝐵post) − 1, 𝐵𝑙𝑎𝑠𝑡)} 

(12) 

𝑌, 𝑧𝑠𝑑 , 𝑏𝑝𝑑 ≥ 0 and integer ∀𝑖 ∈ 𝑰, 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫 (13) 

 

The objective function (1) minimizes the total number of (identical) physicians required over the 

planning horizon to cover the forecasted demand in order to determine a good lower bound on 

the workforce size. The first block of constraints (2) to (4) models flexible shift assignments. For 

this, flow balance constraints, i.e. constraints (2), guarantee the assignment of an appropriate 

number of shift types for each day within the planning horizon. Additionally, for each day, an 

appropriate number of off shifts is to be assigned to ensure a feasible combination of shifts over 

the entire workforce. This combination of the number of assigned on and off shifts on any day 𝑑 

has to correspond to the selected number of assignments on the subsequent day. Not any two 

shift assignments on consecutive working days are allowed due to working regulations. Particu-

larly, the minimum rest time 𝑃𝑟𝑒𝑠𝑡 between two shift assignments on consecutive working days 

𝑑 and 𝑑 + 1, as well as on working days 𝑑 and 𝑑 − 1 respectively, has to be enforced. Constraints 

(3) and (4) are in use for this purpose. Therefore, constraints (3) ensure an appropriate assign-

ment of shifts and off days that are allowed to be assigned on consecutive working day and force 

the two consecutive shift assignments to account for enough rest periods 𝑃𝑟𝑒𝑠𝑡. Constraints (4) 

handle the opposite direction by selecting off days and affected shifts for a working day 𝑑 and 
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𝑑 − 1, for which the amount of periods between the first working period for one shift on any day 

𝑑 and the last working period for another shift on the preceding day is more than 𝑃𝑟𝑒𝑠𝑡. As a 

result, a shift on day 𝑑 can only be assigned if there is a minimum amount of off periods between 

the first working period of the shift assigned on day 𝑑 and the last working period of the shift 

assigned on day 𝑑 − 1. It is therefore for example not feasible to assign a shift 𝑠, starting at 7 am, 

on day 𝑑 when the assigned shift of the previous working day 𝑑 − 1 ends later than 7 pm. The 

parameter 𝑃𝑟𝑒𝑠𝑡 must be updated if the total amount of planning periods per day do not span 24 

hours. The second set of constraints (5) handles the working time for the employed workforce 

according to the regulations in their labor contract, i.e. not exceeding 𝑅 ∙ 𝑌. The summation 

counts the weekly working time based on the shift assignments where 𝑊𝑠 determines the number 

of working periods for shift type 𝑠 that counts towards regular working time. Note, the thereby 

selected number of shift assignments can create an infeasible solution when determining individ-

ual schedules for each physician in a subsequent step. The third block of constraints (6) and (7) 

set well-known lower bounds on the workforce size: Constraint (6) defines a lower bound deter-

mined by the peak in demand within the planning horizon, i.e. the required number of personnel 

is larger or equal to the maximum demand in the planning period (𝐿𝐵𝑃𝑒𝑎𝑘). Constraint (7) defines 

a lower bound for the workforce based on the weekly workload of each employed physician 

(𝐿𝐵𝑊𝑜𝑟𝑘) to determine the size of the necessary workforce. Constraints (8) take care about the 

demand being in covered every period 𝑝 on every day 𝑑 even though, some physicians are as-

signed to a break in a specific period. Therefore, the shift matrix 𝐴𝑠𝑝 is predetermined by legally 

adjusted parameter values and serves as an input. Here, the number of personnel available to 

cover demand has to be reduced by the number of physicians having their break in a period. In 

other words, a minimum number of physicians to be on duty is enforced.  

The additional set of constraints (9) to (12) determines the flexible break patterns. We 

fundamentally extend the modeling idea presented by Bechtold and Jacobs (1990) since the ap-

proach does not account for overlapping shifts. In particular, constraints (9) assure that the num-

ber of shift assignments on any day 𝑑 is equal to the number of break assignments on the same 

day. In addition, the appropriate location of the break according to the labor regulations must be 

assured. Constraints (10) are called forward passing constraints (Bechtold and Jacobs 1990): They 
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force the number of flexible breaks assigned from the first possible break period up to each pos-

sible ending period 𝑏𝑒𝑛𝑑 to be bigger than or equal to the minimum number of break assignments 

in 𝑡 ∈ {𝐵𝑓𝑖𝑟𝑠𝑡, … , 𝑏𝑒𝑛𝑑}. The right hand side counts the number of shift assignments with break 

window ending by no later than 𝑏𝑒𝑛𝑑 and hence determines the number of break assignments 

needed. In contrast, constraints (11) are called backward passing constraints and work in the op-

posite direction. They force the number of break assignments after period 𝑏𝑠𝑡𝑎𝑟𝑡  to be bigger 

than or equal to the number of shift assignments with break window after 𝑏𝑠𝑡𝑎𝑟𝑡. Again, the latter 

determines the number of break assignments in periods 𝑡 ∈ {𝑏𝑠𝑡𝑎𝑟𝑡 , … , 𝐵𝑙𝑎𝑠𝑡}. The previously in-

troduced constraints are sufficient to assign the appropriate number of breaks if the break win-

dow of any shift type is not a real subset of another shift type (Bechtold and Jacobs 1990). How-

ever, our modeling of flexible shifts allows several different shift types to overlap each other that 

may subsequently result in a break window of one specific shift becoming a real subset of the 

break window of another. This raises the necessity of an extension of the underlying mathemati-

cal formulation to account for such situations and consequently, some further constraints are 

required: Constraints (12) ensure that every shift 𝑠 gets a break within its break window assigned, 

even though this break window is part of the break window of another shift. In the following, we 

give an intuitive example why the constraints are necessary. Consider two shifts 𝑠1, having its 

break window from period two to period seven, and 𝑠2, having its break window from period 

three to five. A feasible assignment without constraints (12) could assign a break in period two 

and another break in period six. The newly introduced constraints forbid this assignment where 

shift 𝑠1 gets two breaks while shift 𝑠2 gets no break. For this, constraints (12) consider each break 

window explicitly. Finally, variable domain definitions are given in (13). 

 

Model 2 – Individual schedule creation. Since Model 1 determines a superior lower bound on 

the workforce size due to the more realistic estimation of the number of required physicians, no 

individual shift schedules for personnel are created. Model 1 ensures the adherence of the sum 

of legal working hours over the entire workforce, not for each physician individually. To generate 

individual lines of work for each employee, an additional mathematical model is necessary which 

accounts for satisfying legal rest periods and labor working hour regulations (for the mathemati-

cal formulation and description see Appendix I). But, this might lead to infeasibility: Model 1 solely 
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determines how often a shift is to be assigned despite accounting for a certain variety in shift 

types and with this, starting and ending times and lengths. As a result, it might be not possible to 

ensure individual working regulations for each physician. For example, if especially long shifts are 

selected to be assigned, ensuring 𝑅 minimum working hours might not be insurable for each per-

sonnel due to running out of shifts, i.e. not having enough shifts (especially shorter ones) to meet 

staff-specific weekly working hours. 

To counteract infeasibility, another approach might be to integrate Model 2 in Model 1. 

In this case, the minimum number of employed physicians is determined by accounting for labor 

regulations of each employee individually. This might result in an increasing number of required 

personnel due to considering physicians individually. Consequently, a prime lower bound for the 

number of required physicians might result. But, at the cost of computational effort and signifi-

cantly ascending solution times. 

But again, this way of assigning breaks requires an additional post-processing mechanism 

to create final schedules with appropriate break allocations. However, the post-processing has 

almost no computational burden since a greedy procedure is all what is needed. For each day, 

the greedy heuristic considers each period (in ascending order) and assigns the breaks to the phy-

sician first whose break window has the smallest number of periods left (cf. Bechtold and Jacobs 

1990). Remember the tactical focus of our work which is the realistic estimation of the workforce 

size to build a good lower bound and the improvement in planning foreseen absences robustly, 

the individual shift schedules including appropriate break assignments are a downstream aim. 

 

4. Experimental study 

In this section, we examine the performance of our proposed modeling approach by using ran-

domly generated as well as real world demand patterns. For this, we have implemented Model 1 

and Model 2 in IBM ILOG OPL Studio 6.3 and CPLEX 12.0. All computations are performed on a 

3.30GHz PC (Intel(R) Core(TM) i5-4590QM CPU) with 8 GB RAM to analyze the effect of consider-

ing breaks on the approximation of a good lower bound on the optimal staff size.  

In the second part of our experimental study, we consider the demand pattern for anes-

thetists of the year 2010 delivered by the central operating theatre of a large teaching hospital in 

Munich. To clarify the general structure, we build an exemplary standard week. Therefore, we 
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aggregated demand over one entire year to build up the mean demand level. For a five day work-

ing week, the first day of the week is Monday (Mon through Fri). On weekend days, there does 

not occur any regular demand since we focus on treatments for elective patients that are com-

monly known in advance. Demand in off hours, i.e. periods of non-elective demand such as night 

or early morning hours and weekend days, are handled by additional staff being assigned to on-

call service: The appropriate number of physicians just adds to the workforce size. The distribu-

tion of mean demand is shown in Figure 1. 

 
 

 
 

Figure 1: Mean (50% quantile) demand scenario of care for the standard week 

 

Every day consists of 20 periods, each of them having a duration of one hour. This corresponds to 

a time window which lasts from 5 am to 12 am for the occurring demand. We do not take the 

remaining hours into account, as there do not show up any elective patients. Emergency patients 

in off hours (night and weekend) are treated by physicians on duty. In our standard week, the 

maximum demand is eleven patients (around noon), whereas the minimum number of elective 

surgeries supposes to be equal to zero. This is not only for weekend days but also for a few other 

periods the case. Generally, the required level of care is low during morning hours. In period five, 

which corresponds to 9 am, demand surges from one to at most eight patients. Period eleven is 

a reversal point: At this time, demand decreases slowly and reaches its minimum around period 

18. 

To assure feasibility in our model, each physician has the same set of skills and experience 

level. In general, the total number of physicians employed bases either on the volume of working 

hours for personnel 𝐿𝐵𝑊𝑜𝑟𝑘 =
∑ ∑ 𝑁𝑝𝑑𝑑∈𝑫𝑝∈𝑷

 𝑅
 or the maximum demand 𝐿𝐵𝑃𝑒𝑎𝑘 = max 𝑁𝑝𝑑 in the 
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planning horizon as lower bound (for more detail, we refer to Brunner and Edenharter 2011). In 

particular, the first bound (workload bound) is strongly influenced by the total number of working 

periods for each physician and the sum of demand within the planning days whereas the second 

bound (maximum demand) is determined by peaks in demand. Former results in an increasing 

complexity in the solution process due to various resulting possibilities for the design of the shift 

schedule whereas the latter only occurs in a few periods but might affect the size of the workforce 

over the whole planning horizon since the required level of care is artificially high. As a result, the 

larger the considered planning period, the higher the number of required physicians to cover de-

mand. Since we focus on a tactical problem, we use this information to define a superior approx-

imation for the number of required physicians. To keep the study more simple, we suppose the 

maximum number of regular working hours for each physician to be equal to 40 hours a week, 

i.e. 𝑅 = 40 and permit weekly only 5 undertime hours for each physician, i.e. 𝑅 = 35. The shift 

lengths are between seven and 13 periods (hours) including a flexible break of one period. After 

a shift ends, the corresponding physician is off for at least twelve periods (hours). This value is 

reduced by the implicitly assigned off hours within two consecutive planning days since the total 

amount of the planning periods is less than 24 hours. Considering 20 planning periods results in 

four implicitly assigned off hours. Additionally, we define the break window to start at least after 

three working periods and at most three periods before the end of the appropriate shift. This 

leads to 𝐵𝑝𝑟𝑒 = 𝐵𝑝𝑜𝑠𝑡 = 3. These values are constant over the entire planning horizon and 

throughout the experimental study. A detailed overview of the parameter setting is given in Table 

1. 

 

𝑅 = 35 𝑆𝑚𝑖𝑛 = 7 𝐵𝑝𝑟𝑒 = 3 

𝑅 = 40 𝑆𝑚𝑎𝑥 = 13 𝐵𝑝𝑜𝑠𝑡 = 3 

 𝑃𝑟𝑒𝑠𝑡 = 12  

Table 1: Parameter setting Base Case 

 

This parameter setting is called the Base Case and serves as reference point for the analysis of the 

outcome. To compare for the effect of the consideration of breaks, we additionally solve different 

demand scenarios with a reference model (denoted by Model 0) which neglects the consideration 
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of flexible breaks at all to provide information about the effect of the break assignment itself. 

Since no breaks are considered in Model 0, we use the mathematical formulation of Model 1 

without constraints (9) – (12) and reformulate constraints (8) by neglecting the number of physi-

cians having their break in a specific period when covering demand. Additionally, we set the pa-

rameters 𝑆𝑚𝑖𝑛 = 6 and 𝑆𝑚𝑎𝑥 = 12 and update 𝑊𝑠, which counts the regular working hours of a 

shift 𝑠, accordingly.  

Solving Models 0 and 1 for our mean demand scenario using the fixed parameter setting 

of our Base Case to optimality results in an optimal workforce size of 14 physicians for Model 0 

and 15 physicians for Model 1 respectively. If no breaks are assigned, the minimum number of 

physicians required for this specific demand scenario is equal to the analytical lower bound 

𝐿𝐵𝑊𝑜𝑟𝑘 for the workforce size based on Brunner and Edenharter (2011). Therefore, for this test 

instance, neglecting breaks does influence the total size of the workforce. This might not be the 

case for some specific demand patterns in combination with large scheduling flexibility for con-

structing shifts. First, we evaluate the effect of taking breaks into account on the objective value 

by comparing Model 1 with our reference Model 0 on two different generated demand patterns 

with random realizations. Eventually, we present a case study for the whole year 2010 under two 

different input assumptions, i.e. maximum flexibility in shift types and a more realistic three eight 

hour shift system. The latter analysis shows the serious effect of neglecting breaks in real world 

settings. 

 

1.1. Effects of break assignment from practical point of view 

In this section, we evaluate the performance of our model using two different generated demand 

profiles based on real life experience (for more details, see Brunner et al. (2010)) to gain insight 

into the effect of including breaks in the staffing process. By doing so, we would like to mirror 

current staffing levels and scheduling practice and show the significant impact of break assign-

ments. Based on the following assumptions, we generated 50 different test instances for each 

demand structure. Each test instance is solved to optimality using Model 0 and Model 1. Runtimes 

ranged from ten to 120 seconds and can be neglected for tactical decision making. For the general 

configuration, see Figure 2. 
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Figure 2: Randomly generated demand patterns 

 

First, we generate the requirements for care according to the left hand side of Figure 2 randomly. 

In this case, demand increases stochastically with an increasing 𝜇 up on period one (which corre-

sponds to 5 am) to a maximum of ten patients. This peak in demand is constant in its altitude but 

duration varies: It is constant from period five to period seven. In period three to five, respectively 

seven to twelve, requirement for care can still adopt the maximum value due to the underlying 

uniform distribution in these hours of the (planning) day. This means, the resulting peak in de-

mand ranges at least from period five to seven but at most from period three to twelve. Subse-

quently, the required level of care declines stochastically following the underlying Normal distri-

bution with a decreasing 𝜇 to zero until the end of the day, i.e. in period 20. As a result, the 

optimal size of the workforce ranges from eleven to 13 in case of excluding breaks and from 

twelve to 15 if breaks are considered (for a more detailed overview see Appendix II). The mini-

mum number of physicians required is therefore underestimated when using the reference 

Model 0 in all 50 instances even with high flexibility. This means, the required size of the work-

force is underestimated in each executed test, i.e. the optimal objective value is one or two em-

ployees (at most) less. Not considering breaks therefore leads to an unrealistic and too low esti-

mation of the number of required physicians and with this the inability to cover demand in all test 

instances.  

An underestimation of two physicians seems to be the case especially for instances, where 

the optimal solution provided by Model 0 is disparate from the predetermined analytical working 

hour bound 𝐿𝐵𝑊𝑜𝑟𝑘. A reason for this might be the specific structure of these demand profiles: 

 10 -- 10 -- 
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The underlying patterns are commonly denoted by a heavily fluctuating demand containing a 

wide range for the peaks’ lengths. Due to the emerging instability and inconsistency in the re-

quired level of care over the considered days and hours, matching supply and demand is rather 

complicated and makes the implementation of breaks particularly important. 

Second, we use the structure shown on the right hand side of Figure 2. This profile for 

demand corresponds significantly to operating rooms in real life surroundings which are deter-

mined by the opening hours of the operating theater. In this setting, demand starts occurring in 

period one with its maximum value, i.e. number of parallel open operating rooms where in each 

one an anesthetist has to be available. Again, the length of the peak in demand is stochastic and 

is therefore at least until period eight constant, but at most until period ten. This is determined 

by the underlying uniform distribution for the length of the occurring peak. Subsequently, the 

required level of care decreases slowly to its minimum (equal to 0) in period 20, i.e. at the end of 

the planning day. Results provide similar insight: The optimal number of employed physicians 

ranges from 15 to 20 without the assignment of breaks and from 16 to 23 in case of applying 

Model 1 (see Appendix III for detailed results). Albeit underestimation of personnel does not oc-

cur that often for this structure of demand, it is still the case for 86% of the tests. This means, in 

43 out of 50 instances, hospital would not be able to cover demand if the number of employed 

physicians is determined without considering breaks since the optimal workforce size is one to 

five physicians less. This means, the resulting gap between the workforce size considering breaks 

and neglecting breaks is much larger for demand patterns following this specific, more realistic, 

profile. Note that the optimal size increases compared to the first profile. At a first glance, this 

result is a kind of counterintuitive but can be explained by the wide spread of demand throughout 

the day which results in more physicians needed even for no break assignments (Model 0), i.e. 

𝑧𝐹𝑙𝑒𝑥. This increased availability gives much more flexibility for assigning appropriate breaks. 

Therefore, decreasing the number of possible demand periods within a day (as it is the case for 

many service organizations) will strongly increase the underestimation by neglecting breaks in 

the staffing process. In other words, the underestimation of the workforce size increases when 

the planning day gets shorter, i.e. less than 20 periods, and demand can be covered by single 

shifts, i.e. no two shifts are necessary to cover early and late demand. 
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Concluding, neglecting breaks leads to an inappropriate management decision and in-

creases probability of understaffing which might possibly result in unplanned overtime hours for 

personnel. Depending on the structure of the demand pattern, this effect shows up for some 

profiles more often and in a more aggravating way than for others. 

 

1.2.  Case study 

In further studies, we saw a significant reduction in the workforce size by the implementation of 

flexibility in terms of shift types and the size of the break window in the staffing process. Even 

though the computational effort rises marginally due to the increasing assignment opportunities, 

the generated benefit is valuable for hospitals to reduce their expenses for personnel while en-

suring the requested level and quality of care. In particular, there is a positive effect on the work-

force size by enlarging the break window, i.e. enlarging the options of the placement of a break 

has a positive effect on the workforce size especially in situations of minor flexibility in shift types. 

Furthermore, since we are focusing on approximation mechanisms for staffing level decisions, the 

scope of solution time should be of minor relevance.  

Therefore, this section composes of two parts: First, Model 1 with full flexibility is used to 

solve the real world problem instances for the entire year 2010. We use the parameter values of 

our Base Case and decompose the annual demand into 52 seven day planning horizons. Second, 

assumptions derived from current literature and real life in terms of available shift types are in-

tegrated, i.e. reducing flexibility by using three different eight hour shifts only (see Erhard et al. 

(2018)). For the first share of the study, aggregated statistics such as the maximum demand in 

each week are presented with 15 as the overall maximum requirement for care in a few periods. 

Throughout the year, the required level of care increases in the second and third month and de-

creases afterwards. Over the summer months, demand seems to be almost stable. Around fall, 

demand is growing again for around eight weeks and decreases in December. 

Based on this demand patterns, optimal schedules are generated to determine the mini-

mum size of the workforce. This requires Model 1 with 1’339 constraints and 827 variables. We 

present the minimum workforce size (𝑧𝐹𝑙𝑒𝑥_𝐵𝑟𝑒𝑎𝑘) per week as well as 𝐿𝐵𝑃𝑒𝑎𝑘 and 𝐿𝐵𝑊𝑜𝑟𝑘 in 

Figure 3. Focusing on the computational effort, the required solution time is solely a few seconds 

for all test instances.   
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Figure 3: Annual size of the workforce per week 

 

Due to the variation in demand, the optimal size of the workforce varies over the different weeks 

significantly. In the first week of January 2010, at least 14 physicians are required to cover de-

mand. Since we consider the number of elective patients, this rather small number at the begin-

ning of the year seems to be representative for the occurring demand. There are several national 

holidays at the beginning of a new year where no planned surgeries take place. Moreover, pa-

tients might be on vacation and do not want their surgeries afterwards. Subsequently, the mini-

mum size of the workforce decreases for the following months. Even though, demand is quite 

stable in the summer months, the minimum number of personnel ranges between nine and 17 

physicians during that time. The minimum number of physicians is strictly higher than both com-

mon lower bounds for the workforce size 𝐿𝐵𝑃𝑒𝑎𝑘 and 𝐿𝐵𝑊𝑜𝑟𝑘. This is not surprising since the 

available working hours of the workforce commonly serve as lower bound for the number of per-

sonnel which significantly underestimates the required number of physicians. Our approach 

therefore provides a superior lower bound for the approximation of staff size in short time leading 

to a more realistic estimation of personnel required. Since our Model 1 still underestimates the 

required workforce size (compared to the integration of Model 2 in Model 1), the maximum ob-

jective value of all weeks should be in use to determine the overall size of the workforce. This 

leads to the conclusion that at least 18 physicians are required to cover the annual demand from 

year 2010. Comparing the optimal size of the workforce for each week and the minimum number 

of personnel required with mean demand (where 15 physicians are assigned), need for care could 
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not be covered in 23 weeks of the year. As a result, if mean demand is used to determine the 

optimal number of personnel, around 44% of the year is understaffed. Of course, employing the 

number physicians that is required to cover maximum demand, only overstaffing occurs.  

Based on the thereby determined optimal number of physicians required for each week, hos-

pital’s management can use this valuable information to handle predictable absences throughout 

the year on a more operational level: Vacation, medical conferences, health workshops as well as 

postgraduate training can be scheduled well-conceived. Due to the knowledge of the weekly re-

quired workforce size, weeks of low demand (and with this high idle capacity) can especially be 

considered to schedule vacation of staff and other plannable absences. As a result, demand is still 

covered without the necessity of overtime hours of personnel and physicians can take their holi-

day and attend medical conferences while maintaining an appropriate level of medical staff and 

quality of care at the hospital.  

To evaluate the quality of the provided solution, additional performance indicators such as 

idle time and the average weekly utilization of personnel are determined by the following for-

mula: 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
∑ ∑ 𝑁𝑑𝑝𝑝∈𝑷𝑑∈𝑫

𝑅 ∙ 𝑌
 

 

Since we assume each employee to work 40 hours each week, a total of 720 hours of care is 

available each week for a workforce size of 18 physicians. These are confronted with a weekly 

demand of 494 hours on average. This results in an average of 226 hours idle time weekly which 

is decomposed over the total number of staff. Therefore, assuming the size of the workforce to 

be 18, the average utilization is 68.57% which seems to be appropriate, especially for hospitals.  

In contrast, staffing each planning period with its individual minimum number of personnel 

(see Figure 3) leads to an increase in the utilization of staff as well as a reduction of idle time. As 

an illustrative example, we determine these performance indicators for the second week of the 

year 2010: The minimum number of required physicians is 16 opposed to a demand level of 575. 

The resulting idle time of 65 hours decompose over all physicians. Considering the whole year, 

average weekly utilization is 80.35%. The resulting weekly utilization of staff for varying size (flex-

ible number of physicians) as well as 18 physicians (max. number physicians) over the whole year 
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are shown in Figure 4. Note, not all physicians are available 52 weeks of the year due to absences 

and vacation which are not taken into account by our model.  

 
 

 

 

Figure 4: Utilization of physicians in 2010 

 

Since a maximum level of flexibility in shift types is quite uncommon in practice and hardly viable 

due to potential negative effects for personnel and with this patient care, the number of available 

shift types is reduced in the second part of the case study. We therefore consider solely three 

overlapping eight hour shifts which are uniformly distributed over the planning day, i.e. starting 

in period one, seven and twelve respectively when breaks are considered. Again, the former pre-

sented 52 one-week instances are solved to optimality. The Base Case parameter setting is used 

as input data, except the shift-related ones. Each instance is solved using Model 1 and Model 0 

to test for the effect of break assignments in real life surroundings. 

Solving both models to optimality for each week results in a disparate range for the objective 

function value: Applying Model 0, the minimum workforce size ranges from 17 to 33 (𝑧3𝑠ℎ𝑖𝑓𝑡𝑠). In 

contrast, the range provided by Model 1 has a minimum value of 23 and a maximum of 44 physi-

cians, i.e. 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠_𝐵𝑟𝑒𝑎𝑘 (see Figure 5). 
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Figure 5: Optimal objective value in 2010, breaks in- and excluded 

 

Applying either minimum or maximum objective value provided by Model 0 to determine the 

optimal number of physicians leads to a significant underestimation of the number of required 

personnel. Referring to the maximum objective of Model 0 for the minimum workforce size em-

ployed leads to occupying far too few staff, i.e. six physicians less than for Model 1. The results 

provided by our experimental study lead to the insight that is it important for hospital’s manage-

ment in particular to consider more detailed mathematical models assigning shifts aggregated to 

a number of physicians and accounting for breaks when deciding about the required staff size 

rather than using simple approximation schemes such as 𝐿𝐵𝑃𝑒𝑎𝑘 or 𝐿𝐵𝑊𝑜𝑟𝑘. A precise scheduling 

model leads to a more realistic estimation of the required number of personnel and prevents for 

being significantly understaffed, i.e. not being able to cover annual demand during physicians’ 

regular working hours. A simple approximation leads to a greater probability of a higher under-

estimation of the required number of physicians, as can be seen by the following example using 

demand of the fourth week of the year 2010: 𝐿𝐵𝑃𝑒𝑎𝑘 = 12, 𝐿𝐵𝑊𝑜𝑟𝑘 = 14, 𝑧𝐹𝑙𝑒𝑥 =  15, 

𝑧𝐹𝑙𝑒𝑥_𝐵𝑟𝑒𝑎𝑘 =  16, 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠 = 28, and 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠_𝐵𝑟𝑒𝑎𝑘 = 37. This leads to 𝐿𝐵𝑃𝑒𝑎𝑘 ≤ 𝐿𝐵𝑊𝑜𝑟𝑘 ≤

𝑧𝐹𝑙𝑒𝑥 ≤ 𝑧𝐹𝑙𝑒𝑥_𝐵𝑟𝑒𝑎𝑘 ≤ 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠 ≤ 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠_𝐵𝑟𝑒𝑎𝑘.  

 

Since no legal nor workforce constraints are taken into account when approximating the work-

force size by 𝐿𝐵𝑃𝑒𝑎𝑘 and 𝐿𝐵𝑊𝑜𝑟𝑘, the determined staff size provides the smallest values, i.e. lead-

ing to the highest underestimation of personnel. A more realistic estimation is achievable, if a 

more detailed modeling approach considering many additional labor characteristics, i.e. Model 1, 
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is in use. In this case, a maximum level of flexibility results in an objective function value which is 

at least equal to the determined bound. But, the investigation of breaks leads to a further increase 

in the workforce size due to the additionally integrated accuracy. Reducing the solution space by 

decreasing the level of flexibility in terms of shift types, the optimal objective function value of a 

3-shift system is at most as good as the optimal objective function value when including maximum 

flexibility in shift types, i.e. 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠 ≥ 𝑧𝐹𝑙𝑒𝑥. Moreover, including breaks in the scheduling process 

might result in an additional growth in the objective function value, i.e. 𝑧3𝑠ℎ𝑖𝑓𝑡𝑠_𝐵𝑟𝑒𝑎𝑘 = 37. As a 

result, the number of overtime hours for personnel might decrease due to using a precise mod-

eling approach which accounts for breaks when determining the minimum staffing level, e.g. com-

pared to simple approximation approaches. As already mentioned, one method to integrate fur-

ther accuracy in our model is the combination of Model 1 and Model 2 to assign shift schedules 

and breaks individually to each employee. But, this leads to a significant increase in solution time. 

Our model is therefore a middle course between solution quality, precision, and computational 

effort since Model 1 provides a high quality approximation of staff size within short computation 

times. So, additional accuracy is available, e.g. by individual shift and break assignment, but at the 

expense of higher solution times.  

Additionally, employing the appropriate number of physicians leads to a potential reduction 

in staff utilization. The resulting unplanned working hours per day are not specifically scheduled 

and can therefore be used for administrative and organizational tasks as well as to handle sto-

chasticity in demand, e.g. smooth variation in the required level for care and handle unforeseen 

events. 
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2. Summary and conclusion 

In this study, a reduced set covering approach is used to schedule flexible shifts and flexible breaks 

for physicians in hospitals. In particular, we have put a focus on the assignment of breaks because 

these are commonly neglected when approximating a lower bound for the required workforce 

size. Since physicians are often not able to take their break while being on duty even though it is 

mandatory by law, the relevance is conspicuous. We have developed a new MIP formulation to 

model the assignment of breaks. Based on real life experience, two demand patterns with 50 

randomly generated instances each show the importance of implementing breaks in staffing level 

decisions due to the resulting disparate optimal workforce size. Additionally, for the considered 

tactical planning problem, we decompose real life data of 2010 into weekly planning periods in 

the second part of our experimental study. Model 1 which takes breaks into account provides an 

optimal solution for all instances in a computation time which is less than five minutes for all test 

sets. Considering breaks therefore does not harm in terms of computational effort, since solution 

times are in any case rather low. Comparing the minimum number of personnel for one entire 

year when applying simple approximation mechanism, e.g. 𝐿𝐵𝑃𝑒𝑎𝑘 or 𝐿𝐵𝑊𝑜𝑟𝑘, Model 0 (without 

breaks), and Model 1, neglecting breaks and less modeling accuracy leads to a significant under-

estimation in the optimal number of physicians needed. Considering labor regulations, personnel 

needs, and breaks in the physician staffing process therefore results in a more realistic estimation 

of the required workforce size and could result in a potential for reducing overtime hours and 

related costs. Moreover, accounting for trends and seasonality in the number of required staff 

each week leads to a significant improvement when planning predictable absences such as vaca-

tion, medical conferences, and workshops: Since the levels of weekly demand is forecasted, 

weeks of low utilization can be selected for the placement of vacation and occupational trips. This 

leads to a higher utilization during this time of the year and a decrease in the probability of un-

derstaffing for the remaining weeks of the year. Concerning the level of flexibility, the lower the 

degree of flexibility in terms of shift types, the higher the number of required physicians to cover 

demand and with this the upcoming labor costs. Especially under such kind of circumstances, ad-

ditional flexibility in break assignment is rather important. By enlarging the size of the break win-

dow, the number of options for the placement of the break increases which leads to a reduction 

in the number of required physicians. 
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For future research, the employment of part time physicians in addition to full timers can gener-

ate further flexibility and improvement in the staffing process. Daily working hours for part time 

physicians can be reduced to a greater extent compared to full time employees. Assigning part 

timers can improve matching supply and demand during times of peaks within the day. Another 

approach to implement supplementary flexibility is a flexible sequence of working days instead 

of standard working days from Monday to Friday. Even though solution times might increase par-

tially with the degree of flexibility, hospital’s management should seek to approve this additional 

effort in order to achieve a solution of higher quality. Albeit a high level of flexibility in shift and 

break assignment leads to decreasing personnel costs, it is also necessary to take the wellbeing 

of personnel into account. Inserting too much flexibility in staff’s schedule might have negative 

consequences on the job motivation as well as absenteeism and can cause a high probability for 

turnovers. For current practice, hospitals have to find a middle course to match hospitals and 

personnel’s interest. By determining an optimal size of the workforce, regular demand can be 

covered while ensuring an appropriate amount of planned slack time to care for emergency pa-

tients and unforeseen peaks in demand. Moreover, taking care of social and psychological aspects 

of flexible schedules as well as the implementation of ergonomic rules into the roster generation 

process is important to ensure personnel’s wellbeing. On an operational level, further research 

can contain aspects such as to consider individual preferences for the placement of the break. 

Additionally, assigning multiple breaks efficiently for long shifts is still an open issue. 
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Appendix I 

To build a shift schedule for each physician, additional notation and a second mathematical 

model, i.e. a feasibility model which does not have an objective function, is presented: 

 

Sets with indices 

𝑖 ∈ 𝑰 Set of physicians with index 𝑖 

 

Parameters 

𝑍𝑠𝑑
 Number of physicians assigned to shift 𝑠 on day 𝑑 (determined by Model 1) 

 

Binary decision variables 
𝑥𝑖𝑠𝑑 1 if physician 𝑖 is assigned to shift 𝑠 on day 𝑑, 0 otherwise 

 

∑ 𝑥𝑖𝑠𝑑 ≤ 1

𝑠∈𝑺 

 ∀ 𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (14) 

𝑥𝑖𝑠1𝑑 + 𝑥𝑖𝑠2(𝑑+1) ≤ 1 ∀ 𝑖 ∈ 𝑰,  𝑠1, 𝑠2 ∈ 𝑺: |𝑃| − 𝐿𝑠1
+ 𝐹𝑠2

− 1 < 𝑃𝑟𝑒𝑠𝑡, 𝑑 ∈ 𝑫\{|𝑫|} (15) 

𝑅 ≤ ∑ ∑ 𝑊𝑠𝑥𝑖𝑠𝑑

𝑑∈𝑫𝑠∈𝑺

≤ 𝑅 ∀ 𝑖 ∈ 𝑰 (16) 

∑ 𝑥𝑖𝑠𝑑

𝑖∈𝑰

= 𝑍𝑠𝑑 ∀ 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫 (17) 

𝑥𝑖𝑠𝑑 ∈ {0,1} ∀𝑖 ∈ 𝑰, 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫 (18) 

 

Constraints (14) and (15) handle the individual assignment of flexible shifts. For this, constraints 

(14) guarantee that every physician 𝑖 is assigned to at most one shift out of many flexible types 

per day. A minimum number of rest periods between two consecutive shift assignments for each 

physician is ensured by constraints (15). The next set of constraints enforces the adherence of the 

minimum and maximum weekly working hours for each physician 𝑖 according to the regulations 

in his labor contract to be within the allowed range from 𝑅 to 𝑅. Especially maintaining the mini-

mum number of weekly working hours might result in an infeasible solution if there are not 
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enough appropriate shifts selected by Model 1 that can be assigned to the workforce. Constraints 

(17) render the optimal decision variable values determined by Model 1 for the number of physi-

cians assigned to shift 𝑠 on day 𝑑 as input parameter to Model 2 by converting 𝑍𝑠𝑑 to  𝑥𝑖𝑠𝑑. Even-

tually, variables are defined in constraints (18).  

When solving Model 2, possibly no feasible solution can be found since Model 1 solely 

approximates the size of the workforce due to the aggregated formulation which does not gen-

erate individual schedules and does not account for legal working hour and rest period regula-

tions individually. As a result, using 𝑍𝑠𝑑, determined by Model 1, as input for Model 2 might pro-

vide no feasible solution.  
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Appendix II  

 

Table 2: Detailed results Figure 2, first analysis (right hand side of Figure 2)    

Underestimation

Test set  Model 0 Model 1 Model 0 vs. Model 1

1 10 13 13 15 -2

2 10 11 12 13 -1

3 10 12 12 14 -2

4 10 11 11 13 -2

5 10 11 12 13 -1

6 10 12 12 14 -2

7 10 11 12 13 -1

8 10 11 12 13 -1

9 10 12 12 14 -2

10 10 12 13 14 -1

11 10 13 13 15 -2

12 10 12 12 14 -2

13 10 11 12 13 -1

14 10 11 12 14 -2

15 10 12 12 13 -1

16 10 11 12 13 -1

17 10 13 13 14 -1

18 10 12 12 14 -2

19 10 10 11 13 -2

20 10 13 13 14 -1

21 10 11 12 13 -1

22 10 13 13 15 -2

23 10 12 12 13 -1

24 10 12 12 14 -2

25 10 11 11 13 -2

26 10 11 12 13 -1

27 10 11 12 13 -1

28 10 12 12 14 -2

29 10 10 11 12 -1

30 10 11 12 14 -2

31 10 11 12 13 -1

32 10 12 12 14 -2

33 10 12 13 14 -1

34 10 11 12 13 -1

35 10 11 12 14 -2

36 10 11 12 13 -1

37 10 12 12 13 -1

38 10 11 12 13 -1

39 10 11 12 13 -1

40 10 11 12 13 -1

41 10 12 13 14 -1

42 10 10 11 13 -2

43 10 11 12 13 -1

44 10 11 11 13 -2

45 10 12 12 14 -2

46 10 11 11 13 -2

47 10 12 12 14 -2

48 10 12 12 14 -2

49 10 11 11 13 -2

50 10 10 11 13 -2

Objective functionBound
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Appendix III 

 

Table 3: Detailed results Figure 2, second analysis (left hand side of Figure 2)  

Underestimation

Test set  Model 0 Model 1 Model 0 vs. Model 1

1 10 15 15 20 -5

2 10 16 16 18 -2

3 10 16 17 18 -1

4 10 17 17 19 -2

5 10 16 17 18 -1

6 10 15 15 17 -2

7 10 16 17 18 -1

8 10 15 15 17 -2

9 10 16 16 17 -1

10 10 16 16 17 -1

11 10 16 17 18 -1

12 10 15 15 17 -2

13 10 16 16 18 -2

14 10 16 16 17 -1

15 10 17 17 18 -1

16 10 15 15 17 -2

17 10 16 17 18 -1

18 10 16 16 17 -1

19 10 16 16 18 -2

20 10 16 17 18 -1

21 10 15 15 17 -2

22 10 16 17 18 -1

23 10 16 16 17 -1

24 10 16 17 18 -1

25 10 16 17 17 0

26 10 16 16 17 -1

27 10 16 16 17 -1

28 10 16 16 17 -1

29 10 16 16 18 -2

30 10 16 16 18 -2

31 10 15 15 16 -1

32 10 17 17 19 -2

33 10 16 16 17 -1

34 10 15 15 16 -1

35 10 16 16 17 -1

36 10 15 16 16 0

37 10 16 17 18 -1

38 10 14 15 16 -1

39 10 16 17 18 -1

40 10 17 17 18 -1

41 10 20 20 23 -3

42 10 18 20 21 -1

43 10 18 20 20 0

44 10 18 20 20 0

45 10 16 17 19 -2

46 10 18 20 21 -1

47 10 17 20 20 0

48 10 18 19 20 -1

49 10 16 18 18 0

50 10 18 20 20 0

Bound Objective function
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Flexible staffing of physicians with column generation 

 

 

 

 

Abstract 

In Germany, around 40% of the hospitals do not generate an annual surplus. This leads to an increasing 

pressure on hospital’s management to reorganize and restructure their processes and resources to de-

crease the upcoming costs and become profitable. Since personnel, especially physicians, generates a ma-

jor part of the arising costs, assigning staff efficiently provides an opportunity to decrease associated ex-

penses. Up to now, experienced physicians create rosters manually which is cost and time intense due to 

the problem’s complexity and especially the fluctuation in demand. To circumvent this difficulty, it is our 

main aim to create a new mathematical modeling approach to implement additional flexibility in the ros-

tering process to better match supply and demand.  

Therefore, we formulate the problem as mixed-integer programming model with the objective to 

minimize occurring labor costs of physicians over the considered planning horizon subject to coverage of 

demand to make flexibility monetarily evaluable. In our approach, full flexibility in terms of patterns of 

working days, shift types, and the placement of the break is provided. To solve the problem under consid-

eration, a column generation heuristic is presented. In our experimental study, the performance of the 

provided solution approach as well as the effect of additional flexibility in the rostering process are evalu-

ated using real life data. Results indicate the significant impact of implementing flexibility in the scheduling 

process on the salary costs of the number of required physicians and evidence the superior quality of our 

solution approach. 

 

Keywords: Physicians, Column Generation, flexibility, hospital, mixed-integer programming 
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1. Introduction 

Within the last decades, hospitals face an increasing pressure to become profitable. Almost one 

third of Germany’s hospitals generated a significant loss in 2016. Solely 61% of the hospitals ne-

gotiated the year with a surplus. The remaining 10% account a more or less balanced budget 

(Blum et al. 2017). Since this proportion did only change marginally over the last ten years and 

this ongoing negative trend will not stop in near future, the situation is severe (Blum et al. 2007). 

As a result, hospital’s management is forced to counteract the cost pressure it is confronted with, 

e.g. by reducing upcoming costs. Since more than half of the operating costs are generated by the 

workforce (especially physicians), this seems to be a leverage point (Statistisches Bundesamt 

2016). But, as the number of patients for hospitals is increasing at the same time (Bölt 2014), it is 

not sufficient to just reduce the number of personnel to save money since this might raise nega-

tive consequences for patient care and the quality of the provided service.  

Therefore, it is necessary to reduce personnel costs by planning and scheduling staff effi-

ciently to potentially decrease unplanned overtime hours and corresponding expenses (Thungja-

roenkul et al. 2007). Up to now, an experienced physician creates schedules commonly manually 

which is a quite complex task: There are various rules that have to be taken into account, e.g. 

governmental workforce regulations (Ernst et al. 2004), individual agreements between physi-

cians and hospitals (Brunner et al. 2011), and the length of the schedule as well as personnel 

requests (Damci-Kurt et al. 2017). Apart from this, it is the main aim to ensure an appropriate 

number of physicians scheduled to cover demand in each period of every day. In hospitals, de-

mand is liable to heavy fluctuations occurring every day and every hour of the year, which makes 

it hard to predict in advance. Especially due to peaks in the required level of care, a large number 

of physicians has to be on duty to handle those (Aggarwal 1982). Since such peaks commonly 

have a duration of only a few hours, hospitals are overstaffed after its declination. This leads to a 

lot of idle time during the remaining hours of the day and raises the necessity to construct lines 

of work for employees which better match supply and demand (Brunner and Edenharter 2011). 

A possible approach to implement more flexibility in the scheduling process is to apply a greater 

number of shift types having different starting periods and variable lengths instead of solely using 

predefined eight hour shifts having fixed starting times (Isken 2004). Moreover, additional flexi-

bility can be investigated by employing part time physicians having a reduced number of weekly 
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working hours and can specifically be assigned to cover (expected) peaks in demand (Van den 

Bergh 2013). 

The purpose of this paper is to evaluate flexibility in the physician scheduling process. Our 

contribution is manifold: We develop a mathematical model that provides full flexibility when 

scheduling physicians with respect to the patterns of sequences of working days, starting and 

ending times of shifts, and the placement of the break for each physician. Our main objective is 

to create a (near) optimal schedule that minimizes the weekly labor costs of physicians assigned 

to different lines of work within the planning horizon. At the same time, the forecasted demand 

is to be covered and breaks are to be assigned. The problem is formulated as mixed-integer pro-

gramming model (MIP) with the objective to minimize weekly salary costs for personnel and 

solved applying a column generation (CG) heuristic approach to generate specific lines of work 

for each individual physician. The resulting solution provides a cost minimum staffing policy 

(when being solved to optimality), or at least a lower bound for estimating the resulting total 

labor costs. Furthermore, we examine the effect of additional flexibility in the scheduling process 

on the overall salary expenses. 

The paper is structured as follows: In the subsequent section, current literature and re-

search in the field of physician scheduling is reviewed. In section 3, the underlying problem struc-

ture is discussed briefly and the stated mathematical model is presented. Afterwards, we present 

a CG heuristic as appropriate solution approach due to the problem size and complexity (see sec-

tion 4). Our experimental study is presented in section 5, where the effect of implementing a high 

degree of flexibility and the assignment of breaks is analyzed. Moreover, we evaluate the perfor-

mance of our solution approach. We show the positive effect of flexibility in the scheduling pro-

cess as well as the high quality of the resulting planning decisions. Eventually, the main findings 

and insights are summarized as the paper concludes by identifying some ideas for further re-

search.   
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2. Overview on current literature 

In contrast to the nurse scheduling problem, physician scheduling is still backward in research due 

to the complexity of the problem reasoned by the multitude of regulations and individual agree-

ments that have to be taken into account. This makes the physician scheduling problem less gen-

eralizable and highly constraint. Even though, research has amplified significantly from 1985 up 

to now, i.e. from one publication in 1985 to nine papers in 2016. In the following, the relevant 

literature and developments in this field of research are reviewed. For a more detailed bibliog-

raphy, see Erhard et al. (2018). 

In current literature, flexibility in terms of days on and days off duty are mostly considered 

when scheduling residents, night and weekend shifts, and on-call shifts for residents and/or phy-

sicians. Beliën and Demeulemeester (2006) focus on scheduling trainees in a university hospital 

in Belgium. In their approach, hard constraints, such as labor rules, and soft constraints, e.g. duty 

preferences in terms of working days, are taken into account. Solving the problem using a Branch 

and Price (B&P) approach results in an optimal schedule of high quality with respect to fulfilled 

preferences, computational effort, and the length of the planning horizon. A one-year on-call 

schedule for residents using five different types of shifts is created in Cohn et al. (2009). Combin-

ing professional’s expertise with a heuristic solution algorithm leads to an improved schedule 

which is generated in significantly reduced amount of computation time. A long term planning 

horizon is also considered in Brunner and Edenharter (2011): To determine the optimal number 

of personnel required over one entire year, a mixed-integer programming model is stated and 

solved applying a column generation heuristic. Since the number of available shifts is generated 

implicitly by the mathematical formulation, almost a maximum level of flexibility in shift types is 

provided.  

Implicitly generated flexible shifts are defined by their starting and ending period having 

various different allowed shift lengths. These are also in use in Brunner et al. (2009): To minimize 

labor costs, a mixed-integer program is formulated and solved using a decomposition heuristic 

dividing the planning horizon in weekly subproblems. As a result, schedules of high quality reduc-

ing staffing costs are created in short amount of time. This research is developed further by Brun-

ner et al. (2010) to analyze the effect of applying different branching strategies within the pro-

posed B&P approach. Focusing on a similar objective function, it is the aim of Stolletz and Brunner 
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(2012) to minimize paid out costs and maximize fairness for physicians. In their approach, flexible 

shifts are also in use. In contrast to Brunner et al. (2009), shift types were generated by a shift 

matrix in a preprocessing step and serve as input for the stated reduced set covering formulation. 

Applying a heuristic which decomposes the considered problem by week leads to a high quality 

schedule violating significantly less soft restrictions in an appropriate solution time. Investigating 

uncertainty in terms of patient arrivals in their problem formulation, Ganguly et al. (2014) con-

sider three different emergency departments. Scheduling physicians with different skill levels, 

exact results of their MIP formulation indicate potential for balanced staffing costs and levels of 

patients to improve staffing policies. Also considering an emergency department, it is the major 

aim of El-Rifai et al. (2014) to minimize the waiting time of patients while providing a fair distri-

bution of shifts for physicians at the same time. Their stochastic mixed-integer programming for-

mulation is solved exact and the results are subsequently evaluated using a simulation software. 

Results indicate potential improvement and differences for the considered staffing strategies.  

In contrast, the assignment of breaks is almost neglected in current literature. Even though 

the positive effect of an appropriate number of break periods within a working day on the per-

formance of personnel is well-known (Janaro and Bechtold 1985), recent research hardly deals 

with it. In general staff scheduling literature, Bechtold and Jacobs (1990) were one of the first to 

investigate the assignment of breaks to increase utilization of personnel. Therefore, a linear pro-

gram (LP) is formulated to implicitly assign rest periods flexibly. Comparing their approach to an 

explicit set covering formulation results in improved performance with respect to solution time 

and the number of generated integer solutions, even for large test instances. Thompson (1995) 

also assigns shifts and breaks implicitly. Extending the formulation of Bechtold and Jacobs (1990) 

by a larger number of available shift types and the consideration of overtime hours, optimal so-

lutions are created in a shorter amount of time without violating operational constraints on the 

placement of the break. Adopting the set covering formulation developed by Dantzig (1954), 

Aykin (1996) stated an integer programming (IP) model to assign multiple rest and lunch breaks 

to break windows. Considering a predetermined small number of shifts, every feasible combina-

tion for a break to shift assignment is defined. Evaluating their modeling approach for five differ-

ent demand scenarios leads to the insight that this is a suitable approach to solve larger instances 

to optimality. Further extension is conducted in Rekik et al. (2010) by considering fractional 
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breaks. When focusing on physician scheduling literature, the situation is even severe: Up to now, 

solely four papers take breaks into account. Brunner et al. (2009, 2010) propose an implicit ap-

proach for the assignment of breaks to physicians whereas Stolletz and Brunner (2012) assign 

breaks explicitly by a predetermined shift matrix. Comparing implicit and explicit modeling for-

mulation leads to the insight, that an explicit reduced set covering formulation outperforms the 

implicit modeling approach with respect to solution times and the number of required constraints 

and variables. A combined approach is in use in Erhard and Brunner (2018): Considering prede-

fined flexible overlapping shifts in a reduced set covering problem formulation, breaks are as-

signed implicitly by an extended formulation of Bechtold and Jacobs (1990). Evaluating the effect 

of taking breaks in the scheduling process into account leads to the insight, that those are espe-

cially important even on a high hierarchical level. Not considering an appropriate number of 

breaks in staffing level decisions therefore leads to a significant underestimation of the size of the 

workforce which is required to cover demand. This may lead to a lot of overtime hours and dis-

satisfaction of physicians, especially under real world circumstances where rather low flexibility 

in shift types is provided. This effect decreases the more flexibility is implemented in the sched-

uling process.  

To the best of our knowledge, there exists no approach in literature that considers all fea-

tures of flexibility with respect to the patterns of sequences of working days, starting and ending 

times of shifts, and the placement of flexible breaks. With our research we close the gap. 

 

3. Problem description and statement of the mathematical model 

The problem under consideration is to minimize weekly salary costs of the required workforce to 

cover demand for a given planning horizon consisting of |𝑾| weeks, each of them comprising of 

a set of 𝑫 days. Each of these days 𝑑 spans |𝑷| periods, e.g. stated in 1-hour increments. To create 

individual lines of work, a set of physicians 𝑰 is available to be assigned to various shift types 𝑠 ∈

𝑺. Each physician 𝑖 can be modeled with his specific characteristics and individual restrictions that 

are either stated in the labor contract or base on special agreements between the physicians and 

the hospital they work for. In the following, we consider a homogeneous group of physicians, i.e. 

all parameters are introduced without index 𝑖. However, we could also model each physician by 

individual characteristics, e.g. part and full time physicians. 
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Flexibility in terms of working patterns is implemented by the minimum number of con-

secutive days on duty 𝐷𝑜𝑛 as well as the maximum number of consecutive days on duty 𝐷
𝑜𝑛

. 

Between each consecutive sequence of days on duty for each physician 𝑖, a minimum number of 

days off duty 𝐷𝑜𝑓𝑓has to be ensured.  

Flexibility in shifts is provided by the various available shift types 𝑠 ∈  𝑺. These are deter-

mined by specific characteristics, such as the minimum and maximum allowed shift length, i.e. 

𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥. In our case, this results in a shift stretch of seven to twelve hours as a maximum 

value since we define the length of a period to correspond to one hour. The available set of shifts 

𝑺 is predetermined by a shift matrix which serves as input for the mathematical model by the 

binary parameter 𝐴𝑠𝑝. This parameter indicates if a period 𝑝 is a working period for a specific shift 

type 𝑠 by being equal to 1. Otherwise, the parameter takes 0 as its value for the remaining peri-

ods. The binary decision variable 𝑥𝑖𝑠𝑑 ensures the assignment of a specific shift to an individual 

physician for each day on duty. The resulting shift schedule for each physician 𝑖 is created in a 

way that does not exceed a maximum number of weekly working hours 𝑅 which is determined 

by labor regulations. Moreover, not any two shifts are allowed to be assigned consecutively for 

each physician 𝑖 since a minimum number of rest periods 𝑃𝑟𝑒𝑠𝑡 between two shift assignments 

has to be ensured. Note, we are considering a discontinuous planning problem since shifts are 

not allowed to spill over from one to the subsequent planning day. 

Flexibility in the placement of breaks within shifts is provided by the integrated break win-

dow for the individual assignment of a break in a period 𝑝 for each physician 𝑖 working shift 𝑠 on 

day 𝑑. The size of the break window is determined by the length of the assigned shift and the 

minimum number of working periods after a shift has started and before the shift ends, i.e. 𝐵𝑝𝑟𝑒 

and 𝐵𝑝𝑜𝑠𝑡. The resulting lines of work are assigned in a way that ensures demand 𝑁𝑑𝑝 to be cov-

ered in every period 𝑝 of every day 𝑑 in the planning horizon.  

An example of a line of work for one single physician is provided in Figure 1. We consider 

a planning horizon of five working weeks Monday to Sunday. Each row denotes a planning period 

within a (planning) day, i.e. we consider 20 planning periods 𝑝. Columns represent the flexible 

shift assignments for the physician on any day. A 1 denotes a working period. A 0 within a se-

quence of 1s indicates a break assignment. For instance, the physician working this line of work 
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has a break in period 4 on Monday in the first week. The schedule shows that sequences of work-

ing days vary in the first day on duty and the number of consecutive working days, i.e. ranging 

from four to seven consecutive days on duty. Moreover, shifts start at various planning periods 

and have different lengths. Each shift has an appropriate break which is flexibly assigned, e.g. in 

period four on Monday in the first week and in period fourteen on Thursday in the subsequent 

week. The first positive demand is normalized to period 1. 

 
 

 
 

Figure 1: Example for possible line of work 

 

In the following, we formulate the problem as mixed-integer programming model. In our formu-

lation, we provide a maximum level of flexibility in terms of working days, shift types, and the 

assignment of breaks. Since we focus on the evaluation and comparison of our mathematical 

modeling and solution approach, our objective is the minimization of the total weekly salary costs 

subject to coverage of demand. Appraising the required size of the workforce by occurring labor 

costs within the planning horizon assigns a monetary value to scheduling flexibility. This makes 

our results more comparable. 

Therefore, the following binary decision variable is defined, i.e.:  

𝑌𝑖 = {
1, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 𝑖𝑠 𝑜𝑛 𝑑𝑢𝑡𝑦 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

  

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7

1 1 1 1 1

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1

4 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1

5 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

6 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1

8 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 0 1 1 1 1 1 1 0 1 1 0 1 0 1 1

15 1 1 0 0 1 0 1 1 1 1 1 1 0

16 1 1 1 0 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 0 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1

20 1 1 1 1 1

WEEK 5

DAY d
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OD
 p

WEEK 1 WEEK 2 WEEK 3 WEEK 4
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On a daily basis, we have to decide if a physician works or is off duty. We use a binary variable 𝑦𝑖𝑑 

defined as: 

𝑦𝑖𝑑 = {
1, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 𝑤𝑜𝑟𝑘𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

To assure feasible schedules, we define another binary decision variable 𝑧𝑖𝑑 that determines the 

start of a sequence of working days, i.e. 

𝑧𝑖𝑑 = {
1, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 𝑠𝑡𝑎𝑟𝑡𝑠 𝑎 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

On each working day, the physician is assigned to a shift. We model this by the following binary 

variables: 

𝑥𝑖𝑠𝑑 = {
1, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠ℎ𝑖𝑓𝑡 𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Moreover, each physician being assigned to a shift also gets a break assigned which is modeled 

by: 

𝑏𝑖𝑠𝑝𝑑 = {
1, 𝑖𝑓 𝑝ℎ𝑦𝑠𝑖𝑐𝑖𝑎𝑛 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑎 𝑏𝑟𝑒𝑎𝑘 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑝 𝑤ℎ𝑒𝑛 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑠ℎ𝑖𝑓𝑡 𝑠 𝑜𝑛 𝑑𝑎𝑦 𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Now we introduce the essential notation and present the basic model. 

 

Sets with indices 

𝑖 ∈ 𝑰 Set of physicians with index 𝑖 

𝑤 ∈ 𝑾 Set of weeks with index 𝑤 

𝑑 ∈ 𝑫 Set of days with index 𝑑 

𝑑 ∈ 𝑫𝑤 Subset of days, i.e. Monday to Sunday, within week 𝑤 with 𝐷𝑤𝑒𝑒𝑘 as the 

number of days per week, i.e. 7 days, and 𝑫𝑤 = {(𝑤 − 1) ∙ 𝐷week +

1, … , 𝑤 ∙ 𝐷week} 

𝑝 ∈ 𝑷 Set of day-periods with index 𝑝 

𝑠 ∈ 𝑺 Set of shifts with index 𝑠 
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Parameters 

𝑐𝑝𝑙𝑎𝑛  Salary costs of a physician (depending on the length of the planning hori-

zon) 

𝑆𝑚𝑖𝑛  Minimum shift length 

𝑆𝑚𝑎𝑥  Maximum shift length 

𝐴𝑠𝑝  1 if shift 𝑠 covers period 𝑝, 0 otherwise 

𝐹𝑠 First working period in shift 𝑠 

𝐿𝑠  Last working period in shift 𝑠 

𝑊𝑠  Number of working periods in shift 𝑠 

𝐵𝑝𝑟𝑒  Amount of working periods before the break is allowed to start 

𝐵𝑝𝑜𝑠𝑡 Amount of working periods after the break has ended 

𝐷𝑜𝑛 Minimum number of consecutive days on 

𝐷
𝑜𝑛

 Maximum number of consecutive days on duty 

𝐷𝑜𝑓𝑓    Minimum number of days off between consecutive sequences of working 

days on duty 

𝑃𝑟𝑒𝑠𝑡 Minimum number of rest periods between two consecutive shifts 

𝑅 Maximum amount of regular working periods for physician 𝑖 per week 

𝑁𝑑𝑝   Demand in period 𝑝 of day 𝑑 physician 𝑖 

 

Binary decision variables 

𝑌𝑖  1 if physician 𝑖 works in the planning horizon, 0 otherwise 

𝑦𝑖𝑑  1 if physician 𝑖 is on duty on day 𝑑, 0 otherwise 

𝑧𝑖𝑑  1 if the sequence of working days of physician 𝑖 begins on day 𝑑, 0 other-

wise 

𝑥𝑖𝑠𝑑 1 if physician 𝑖 is assigned to shift 𝑠 on day 𝑑, 0 otherwise 

𝑏𝑖𝑠𝑑𝑝 1 if physician 𝑖 working shift 𝑠 in period 𝑝 of day 𝑑 is assigned a break, 0  

 otherwise 
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Minimize ∑ 𝑐𝑝𝑙𝑎𝑛 ∙ 𝑌𝑖

𝑖∈𝐼

 (1.1) 

 

subject to 

∑ ∑(𝐴𝑠𝑝𝑥𝑖𝑠𝑑

𝑖∈𝐼𝑠∈𝑆

− 𝑏𝑖𝑠𝑑𝑝) ≥ 𝑁𝑑𝑝  ∀𝑑 ∈ 𝑫, 𝑝 ∈ 𝑷 (1.2) 

𝑦𝑖𝑑 ≤ 𝑌𝑖 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.3) 

𝑧𝑖𝑑 = 𝑦𝑖𝑑(1 − 𝑦𝑖(𝑑−1)) ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.4) 

∑ 𝑦𝑖𝑡

𝑑+𝐷
𝑜𝑛

𝑡=𝑑

≤ 𝐷
𝑜𝑛

 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.5) 

𝑧𝑖𝑑 ≤ 𝑦𝑖𝑡 ∀𝑖 ∈ 𝑰, 𝑑 ∈ {1, … , |𝑫| − 𝐷𝑜𝑛}, 𝑡 ∈ {𝑑, … , 𝑑 + 𝐷𝑜𝑛 − 1} (1.6) 

𝑧𝑖𝑑 ≤ 1 − 𝑦𝑖𝑡 ∀𝑖 ∈ 𝑰, 𝑑 ∈ {1 + 𝐷𝑜𝑓𝑓, … , |𝑫| − 𝐷𝑜𝑛 + 1}, 𝑡 ∈ {𝑑 − 𝐷𝑜𝑓𝑓, … , 𝑑 − 1} (1.7) 

∑ 𝑥𝑖𝑠𝑑

𝑠∈𝑺 

= 𝑦𝑖𝑑 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.8) 

𝑥𝑖𝑠1𝑑 + 𝑥𝑖𝑠2(𝑑+1) ≤ 1 ∀𝑖 ∈ 𝑰,  𝑠1, 𝑠2 ∈ 𝑺: |𝑃| − 𝐿𝑠1
+ 𝐹𝑠2

− 1 < 𝑃𝑟𝑒𝑠𝑡, 𝑑 ∈ 𝑫\|𝑫| (1.9) 

∑ ∑ 𝑊𝑠𝑥𝑖𝑠𝑑

𝑑∈𝐷w𝑠∈𝑆

≤ 𝑅 ∀𝑖 ∈ 𝑰, 𝑤 ∈ 𝑾 (1.10) 

∑ 𝑏𝑖𝑠𝑑𝑝

𝐿𝑠−𝐵𝑝𝑜𝑠𝑡

𝑝=𝐹𝑠+𝐵𝑝𝑟𝑒

= 𝑥𝑖𝑠𝑑 ∀𝑖 ∈ 𝑰, 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫 (1.11) 

𝑌𝑖, 𝑦𝑖𝑑 , 𝑧𝑖𝑑, 𝑥𝑖𝑠𝑑 , 𝑏𝑖𝑠𝑑𝑝 ∈ {0,1} ∀𝑖 ∈ 𝑰, 𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫, 𝑝 ∈ 𝑷 (1.12) 
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The objective function (1.1) minimizes the total weekly salary costs of the number of employed 

physicians.   

 

Flexible days. The first block of constraints (1.2) – (1.7) models flexible working days. Constraints 

(1.2) take care about demand being covered in every period 𝑝 of every day 𝑑 within the planning 

horizon. It is therefore necessary to reduce the number of assigned physicians in each period 𝑝 

by the number of employees having their break in this specific period of the day. As a result, the 

number of assigned physicians is forced to be greater than or equal to the level of demand in each 

period of every day, even though some physicians are assigned to a break in this period. Moreo-

ver, constraints (1.3) indicate if physician 𝑖 has at least one day on duty during the whole planning 

horizon, i.e. ∀𝑑 ∈ 𝑫, 𝑦𝑖𝑑 = 1 → 𝑌𝑖 = 1. Constraints (1.4) determine the start of a sequence of 

consecutive working days (i.e. 𝑧𝑖𝑑 = 1) by linking variables 𝑦𝑖𝑑 with 𝑧𝑖𝑑. In other words, if there is 

a switch from 0 to 1 in the 𝑦-variables then the corresponding 𝑧-variable is set to 1. Those con-

straints can be easily linearized (see Appendix I). The next constraints (1.5) force a maximum 

number of consecutive working days 𝐷
𝑜𝑛

. In other words, in any sequence of (𝐷
𝑜𝑛

+ 1) consec-

utive 𝑦-variables at least one of those must be 0; otherwise the constraints are not fulfilled. Next, 

we enforce a minimum number of 𝐷𝑜𝑛 consecutive working days for each valid schedule. If a 

sequence of working days starts on day 𝑑, i.e. 𝑧𝑖𝑑 = 1, then constraints (1.6) assure that the 𝑦-

variables for the days from 𝑑 to 𝑑 + 𝐷𝑜𝑛 are bound from below by 1. Mathematically speaking, 

the constraints ensure the following: ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫, 𝑧𝑖𝑑 = 1 → 𝑦𝑖𝑡 = 1 for 𝑡 ∈ {𝑑, … , 𝑑 + 𝐷𝑜𝑛 −

1}. Ensuring a minimum number of days off after each sequence of days on, we use a similar 

modeling idea (see constraints 1.6). To be able to utilize the 𝑧-variables, we enforce the appro-

priate number of off days before a sequence of days on starts; otherwise we would need addi-

tional variables indicating the end of a working sequence. In particular, constraints (1.7) assure a 

minimum number of 𝐷𝑜𝑓𝑓 days off between two consecutive sequences of working days. As be-

fore, if a sequence of working days starts on day 𝑑, i.e. 𝑧𝑖𝑑 = 1, then constraints (1.7) model that 

the 𝑦-variables for the days from 𝑑 − 𝐷𝑜𝑓𝑓 to 𝑑 − 1 are forced to 0, otherwise the constraints 

would not be valid, i.e. ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫, 𝑧𝑖𝑑 = 1 → 𝑦𝑖𝑡 = 0 for 𝑡 ∈ {𝑑 − 𝐷𝑜𝑓𝑓, … , 𝑑 − 1}. If one of 
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the 𝑦𝑖𝑡 variables before a working sequence starts is equal to 1, the constraints (1.7) are not ful-

filled since the right hand side would be 0 as well but the left hand side would be 1 due to 𝑧𝑖𝑑 =

1. This is a contradiction. 

 

Flexible shifts. After the conditions of the various sequences of working days have been regulated, 

the allowed distribution of shift types to each individual physician 𝑖 is to be considered. The sec-

ond set of constraints (1.8) – (1.9) handles the flexible assignment of shifts: Constraints (1.8) en-

sure that each physician being on duty on a specific day 𝑑 gets exactly one shift 𝑠 assigned. If a 

day is not a working day for a physician, i.e. 𝑦𝑖𝑑 = 0 → 𝑥𝑖𝑑𝑠 = 0, ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫, 𝑠 ∈ 𝑺. To ensure 

a minimum number of rest periods 𝑃𝑟𝑒𝑠𝑡 between two consecutive shift assignments, constraints 

(1.9) do not allow some specific combinations of shift assignments on day 𝑑 and 𝑑 + 1 where off 

periods are less than 𝑃𝑟𝑒𝑠𝑡. Not any number of working hours are permitted within a week for 

each physician due to labor regulations and individual agreements of hospitals and physicians. 

Therefore, constraints (1.10) ensure a maximum number of working hours within a week for each 

physician. Depending on the number of assigned shifts and corresponding working hours for each 

shift 𝑊𝑠, constraints (1.10) sum up all duties within one week 𝑤 for each physician 𝑖 and force 

those not to exceed a maximum value 𝑅.  

 

Flexible breaks. Constraints (1.11) ensure exactly one break assignment for each physician on 

duty. In particular, the break is to be placed within a predetermined break window defined by the 

minimum number of working hours before a break is allowed to be placed 𝐵𝑝𝑟𝑒 and the minimum 

number of working periods after a break 𝐵𝑝𝑜𝑠𝑡 individually for each assigned shift type 𝑠. Even-

tually, variable definitions are given in (1.12). 
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4. Solution approach 

Since standard software is not able to find a feasible solution for the majority of parameter set-

tings, planning horizons of more than one week, and demand scenarios except for the mean de-

mand level, a CG heuristic is applied to find good integer solutions in reasonable runtime (De-

saulniers et al. 2005). As can be seen easily, our model decomposes by physician. Hence, an indi-

vidual line of work covering the entire planning horizon is constructed, i.e. specifying sequences 

of working days, days off, the assigned shift type for each day on duty, and the period of the break 

within the assigned shift.  

Due to the specific block structure of our problem, Dantzig-Wolfe decomposition is applied 

(Dantzig and Wolfe 1960; Desrosiers and Lübbecke 2005). The general procedure of the solution 

algorithm is shown in Figure 2. 

 
 

 
 

Figure 2: Flowchart column generation heuristic 

 

Therefore, we decompose our initial model and formulate a Master Problem (MP) and a Subprob-

lem (SP) for each physician (Dantzig and Wolfe 1960). Since we solve the extended version using 
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CG, we have to relax the integrality constraints for our linear MP (MP-LP). Considering only a 

subset of feasible columns, the resulting restricted MP (RMP) does not contain the integrity of all 

feasible solutions, solely the specific ones which are generated by solving the SP. This leads to a 

significant reduction in solution times (Lübbecke and Desrosiers 2005). Consequently, two sepa-

rate optimization problems are formulated and solved iteratively during the process of CG.  

The SP in this coherence serves as a generator of new columns (variables) to enter the basis 

(Barnhart et al. 1998). Here, the physicians are aggregated as the SP creates feasible lines of work 

that are to be assigned to a number of physicians which results in an additional reduction in sym-

metry. After solving the linear relaxation of the RMP, the resulting dual variable values (𝜋𝑑𝑝) of 

the demand constraints (2.2) are consigned to the SP which is subsequently solved to optimality 

as integer program (IP) to determine a new promising column (Desrosiers and Lübbecke 2005). 

Generated columns in this context are evaluated according to their reduced cost which are to be 

negative in our minimization problem to generate a positive effect on the objective function value 

of the RMP. Since our SP is solved to optimality as well, we are able to identify the one column 

that generated the largest improving (in our case: minimizing) effect on the objective function 

(Brunner and Edenharter 2011). Afterwards, the new detected column is added the RMP which is 

solved again. The algorithm terminates if no column that prices out can be found.  

As a result, the optimal solution for the linear RMP is simultaneously the optimal solution to 

the linear MP. But, up to now, the provided optimal solution might be continuous and provides 

therefore a lower bound. Hence, as last step of our CG heuristic, we solve the RMP as IP to provide 

a feasible integer solution, i.e. an upper bound. The thereby provided solution must not be opti-

mal any longer. The resulting gap between the solution provided by CG which serves as lower 

bound (LB) and the objective function value provided by solving the RMP as IP (serving as upper 

bound (UB)) is small as will be shown soon.  
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Additional notation for MP and SP:  

Sets with indices 

𝑟 ∈ 𝑹 Set of working rosters with index 𝑟 

 

Parameters 

𝑋𝑑𝑝
𝑟

 1 if roster 𝑟 covers period 𝑝 on day 𝑑, 0 otherwise 

 

Integer decision variables 

𝜆𝑟  Number of physicians working roster 𝑟 in the planning horizon 

 

Binary decision variables 

𝑦𝑑  1 if day 𝑑 is a day on duty (working day), 0 otherwise 

𝑧𝑑  1 if the sequence of working days begins on day 𝑑, 0 otherwise 

𝑥𝑠𝑑 1 if shift 𝑠 is assigned on day 𝑑, 0 otherwise 

𝑏𝑠𝑑𝑝 1 if shift 𝑠 gets a break assigned in period 𝑝 on day 𝑑, 0 otherwise 

 

Mathematical Modell – Master Problem  

Minimize ∑ 𝑐𝑝𝑙𝑎𝑛𝜆𝑟

𝑟∈𝑅

 (2.1) 

 

subject to 

∑ 𝑋𝑑𝑝
𝑟 𝜆𝑟

𝑟∈𝑅

≥ 𝑁𝑑𝑝  ∀𝑑 ∈ 𝑫, 𝑝 ∈ 𝑷                       (𝜋𝑑𝑝) (2.2) 

𝜆𝑟 ≥ 0 and integer ∀𝑟 ∈ 𝑹 (2.3) 
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The objective function (2.1) minimizes the total weekly labor costs of personnel being assigned 

to a roster over the planning horizon. 

Constraints (2.2) ensure that the number of assigned physicians in every period 𝑝 is as least 

as high as the required level of care (or higher) such that the arising demand is covered through-

out the entire planning horizon. The last constraints (2.3) define the newly introduced decision 

variable 𝜆𝑟 which determines the number of physicians working a specific roster 𝑟 ∈ 𝑹. The dual 

variables 𝜋𝑑𝑝 ≥ 0 derived from contraints (2.2) determine the generic reduced cost of a MP col-

umn as given in (3).  

1 − ∑ ∑ 𝜋𝑑𝑝

𝑝∈𝑷

 𝑋𝑑𝑝
𝑟

𝑑∈𝑫

 (3) 

 

In SP notation, the reduced costs are stated in (4).  

1 − ∑ ∑ ∑ 𝜋𝑑𝑝 ∙ (𝐴𝑠𝑝𝑥𝑠𝑑 − 𝑏𝑠𝑑𝑝)

𝑝∈𝑷𝑑∈𝑫𝑠∈𝑺

 (4) 

 

In the following, we state our generic SP. 

 

Mathematical Model – Subproblem  

Minimize 𝑐𝑝𝑙𝑎𝑛 − ∑ ∑ ∑ 𝜋𝑑𝑝 ∙ (𝐴𝑠𝑝𝑥𝑠𝑑 − 𝑏𝑠𝑑𝑝)

𝑝∈𝑷𝑑∈𝑫𝑠∈𝑺

 (3.1) 

 

subject to 

𝑧𝑑 = 𝑦𝑑(1 − 𝑦(𝑑−1)) ∀𝑑 ∈ 𝑫 (3.2) 

∑ 𝑦𝑡

𝑑+𝐷
𝑜𝑛

𝑡=𝑑

≤ 𝐷
𝑜𝑛

 ∀𝑑 ∈ 𝑫 (3.3) 

𝑧𝑑 ≤ 𝑦𝑡 ∀𝑑 ∈ {1, … , |𝑫| − 𝐷𝑜𝑛}, 𝑡 ∈ {𝑑, … , 𝑑 + 𝐷𝑜𝑛 − 1} (3.4) 

𝑧𝑑 ≤ 1 − 𝑦𝑡 ∀ 𝑑 ∈ {1 + 𝐷𝑜𝑓𝑓 , … , |𝑫| − 𝐷𝑜𝑛 + 1}, 𝑡 ∈ {𝑑 − 𝐷𝑜𝑓𝑓 , … , 𝑑 − 1} (3.5) 
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∑ 𝑥𝑠𝑑

𝑠∈𝑺 

= 𝑦𝑑 ∀𝑑 ∈ 𝑫 (3.6) 

𝑥𝑠1𝑑 + 𝑥𝑠2(𝑑+1) ≤ 1 ∀ 𝑠1, 𝑠2 ∈ 𝑺: |𝑃| − 𝐿𝑠1
+ 𝐹𝑠2

− 1 < 𝑃𝑟𝑒𝑠𝑡, 𝑑 ∈ 𝑫\|𝑫| (3.7) 

∑ ∑ 𝑊𝑠𝑥𝑠𝑑

𝑑∈𝐷w𝑠∈𝑆

≤ 𝑅 ∀𝑤 ∈ 𝑾 (3.8) 

∑ 𝑏𝑠𝑑𝑝

𝐿𝑠−𝐵𝑝𝑜𝑠𝑡

𝑝=𝐹𝑠+𝐵𝑝𝑟𝑒

= 𝑥𝑠𝑑 ∀𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫 (3.9) 

𝑧𝑑 , 𝑦𝑑, 𝑥𝑠𝑑 , 𝑏𝑠𝑑𝑝   ∈ {0,1} ∀𝑠 ∈ 𝑺, 𝑑 ∈ 𝑫, 𝑝 ∈ 𝑷 (3.10) 

 

Searching for a new promising column in each iteration, dual values 𝜋𝑑𝑝 derived from the demand 

constraints (2.2) are required. Therefore, the objective function of the corresponding SP (3.1) is 

to minimize the reduced cost of a new column.  

As a result, the subproblem generates specific lines of work for generic physicians, including 

an individual sequence of working days, the assignment of a shift for each day on duty, and the 

flexible assignment of a break during this shift. Based on the concept of column generation, only 

columns having negative reduced costs are added to RMP to improve the objective function value, 

i.e. revealing an objective function value of the SP smaller than 0. The remaining constraints cor-

respond to constraints (1.4) to (1.11) which are already discussed in detail in former sections. 

Therefore, these are not explained any further. Note, we have dropped index 𝑖. Constraints (3.10) 

define the decision variables. 

 

5. Experimental study 

In this section, the performance of our heuristic solution approach in comparison to an exact 

solution (where disposable) is evaluated by using real life data, i.e. aggregated demand patterns. 

Therefore, the compact formulation of our model as well as the solution approach are imple-

mented in IBM ILOG OPL Studio 7.0 and CPLEX 12.0. All computations were executed on a 2.60GHz 

Intel(R) Xeon(R) CPU E5-2650 v2 Machine with 8 GB RAM running under the Windows 10 Enter-

prise operating system. The SP is solved to optimality for each test instance while at the end of 

the algorithm a time limit is set to 600 seconds when solving the RMP as IP.   
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2.1. Underlying demand pattern 

In our experimental study, we use data derived from a large teaching hospital in Germany. In 

more detail, the occurring demand of an operating theater over one entire year is analyzed. We 

aggregate the demand (from Monday to Sunday) over one year and build three different demand 

scenarios, i.e. mean demand pattern (50% quantile), 75% quantile, and maximum demand (100% 

quantile). Figure 3, 4, and 5 exhibit two different bounds for approximating the required work-

force size in addition to the structure of the considered demand scenarios. The workload bound 

(𝐿𝐵𝑤𝑜𝑟𝑘) is determined by the maximum amount of allowed working periods per physician per 

week and the maximum demand bound (𝐿𝐵𝑚𝑎𝑥) which is defined by the overall peak in demand 

within the planning horizon (for more detail we refer to Brunner and Edenharter 2011). Note, for 

each test instance, the required workforce size provided by the workload bound is larger than 

provided by the maximum demand bound which might lead to a significant increase in solution 

times. According to Brunner and Edenharter (2011), a personnel scheduling problem becomes 

NP-hard, if 𝐿𝐵𝑤𝑜𝑟𝑘 ≥  𝐿𝐵𝑝𝑒𝑎𝑘. This means, 𝐿𝐵𝑤𝑜𝑟𝑘 is the binding bound for the overall workforce 

size due to the rather low level of the peak in demand (for a detailed proof see Brunner and 

Edenharter 2011). We include requirements for care on weekend days in our data to be able to 

evaluate our theoretical approach especially with respect to flexibility in sequences of working 

days, even though, this specific demand is covered by on-call shifts in practice.  

 
 

 
 

Figure 3: Real life demand – Mean (50% quantile) demand scenario 
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Decomposing annual demand in one week planning periods (Monday to Sunday), demand of each 

hour of every day is aggregated. As can be seen easily, each day consists of 24 1-hour periods. In 

general, demand starts occurring at 5 am and lasts until 12 am, as we consider a stretch of 20 

periods for the upcoming demand. At the beginning of the day, the requirement for care is rather 

low, but increases significantly at 9 am to its maximum value around noon. During this time of 

the day, demand is fairly constant, at least for four hours. Subsequently, the required level of care 

decreases slowly to its minimum value at 12 am. For the specific case of our mean demand sce-

nario, there is barely no requirement for care in the first two hours, i.e. 5 am and 6 am. This is not 

the case for the 75% (quantile) and the maximum demand level (100% quantile). Additionally, the 

maximum demand varies between the considered scenarios, i.e. eleven for the mean demand 

scenario, twelve for 75% quantile demand scenario, and 15 for the maximum demand scenario 

(100% quantile) respectively.  

 
 

 
 

 
 

 

Figure 4: Real life demand –75% (quantile) demand scenario 
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Figure 5: Real life demand – Maximum (100% quantile) demand scenario 

 

Remaining hours were not taken into account when creating our mean demand level since de-

mand during these hours is commonly handled by the assigned on-call physicians. As we are fo-

cusing on a discontinuous planning problem, shifts do not spill over to the next planning day. Our 

planning day is defined from 5 am to midnight.  

To make our results comparable, we additionally define a standard parameter setting which 

is in use throughout the entire experimental study, except in subsection 5.3. where we conduct a 

factorial analysis to determine the effect of an increasing respectively decreasing level of flexibil-

ity in the scheduling process. For more detail, see Table 1. 

 

Day parameter 𝐷𝑜𝑛 = 3 𝐷
𝑜𝑛

= 6 𝐷𝑜𝑓𝑓 = 2 

Shift parameter 𝑆𝑚𝑖𝑛 = 7 𝑆𝑚𝑎𝑥 = 12 

Break parameter 𝐵𝑝𝑟𝑒 = 3 𝐵𝑝𝑜𝑠𝑡 = 3 

Ergonomic/Legal regulated parameter 𝑅 = 45 𝑃𝑟𝑒𝑠𝑡 = 11 𝑐𝑝𝑙𝑎𝑛 = |𝑾| ∙ 1′625 

Table 1: Standard parameter setting 
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As a result, created lines of work have to assign at least three but at most six consecutive working 

days to a physician. Moreover, between two subsequent sequences of working days, a minimum 

of two days has to be off. Since the assignment of a break is not mandatory until a shift length of 

six hours, we define the minimum length for our shifts to be seven periods, i.e. seven hours. The 

maximum allowed shift length is twelve hours. The remaining shift dependent parameter values 

are determined implicitly by the defined values for 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥, such as the binary values for 

the shift matrix 𝐴𝑠𝑝, the first and last working period for each shift (𝐹𝑠 and 𝐿𝑠 respectively), and 

the number of on duty periods for each shift type 𝑊𝑠.  

In our approach, only one type of break with a length of one hour is considered. But, this 

formulation can easily be modified and extended, e.g. by varying the length of the assigned break. 

The placement is determined according to the break parameters. In our standard parameter set-

ting, a physician being assigned to a shift has to work at least three periods (𝐵𝑝𝑟𝑒 = 3) until a 

break is assigned but no later than three hours before the shift ends (𝐵𝑝𝑜𝑠𝑡 = 3).  

The subsequent set of parameters ensures a minimum number of rest periods between two 

consecutive shifts by defining 𝑃𝑟𝑒𝑠𝑡 = 11, as regulated by law as well as a maximum amount of 

weekly working hours for each physician, i.e. 𝑅 = 45. Moreover, the weekly average salary is 

assumed to be 1’625€ (Marburger Bund 2016) which are to be multiplied by the number of weeks 

in the planning horizon to determine the labor cost of one entire roster. Note, in our experimental 

study, we suppose a homogeneous group of physicians. 

In general, when running the CG heuristic, a large computational effort is investigated to 

prove for optimality when solving MP-LP. As the so-called tailing-off effect leads to a significant 

growth in solution times (Gilmore and Gomory, 1963), a feasible lower bound for the MP-LP (LB-

MP) is implemented to improve the algorithm’s performance (Volland et al. 2017). To state LB-

MP, we use information derived in each iteration of the solution process, i.e. the current objective 

function values of the MP-LP (𝑧𝑖
𝑀𝑃−𝐿𝑃) and the SP (𝑧𝑖

𝑆𝑃). Based on Lübbecke and Desrosiers (2005), 

the bound is stated in (5).  
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𝑧𝑖
𝐿𝐵−𝑀𝑃 = 𝑚𝑎𝑥{𝑧𝑖−1

𝐿𝐵−𝑀𝑃;  𝑧𝑖
𝐿𝐵−𝑀𝑃} (5) 

 

Calculating the lower bound in each iteration of the solution process, we initialize 

𝑧0
𝐿𝐵−𝑀𝑃 =  −∞ and define 𝑧𝑖

𝐿𝐵−𝑀𝑃 = ⌈
𝑧𝑖

𝑀𝑃−𝐿𝑃

1−𝑧𝑖
𝑆𝑃 ⌉. The algorithm terminates due to LB-MP if 

𝑧𝑖
𝐿𝐵−𝑀𝑃 ≥ 𝑧𝑖

𝑀𝑃−𝐿𝑃, i.e. once the calculated bound is larger than or equal to the current MP objec-

tive function value, before finding the optimal MP-LP solution. This is in around one third of our 

test instances the case.  

 

2.2. Evaluation of solution approach 

In this subsection, the performance of our solution approach in comparison to the exact solution 

of our compact formulation is evaluated. To do so, the standard parameter setting as well as the 

three predefined demand scenarios are in use. First, various lengths for the planning horizon are 

analyzed with respect to solvability, solution times, and the quality of the provided solution. Sec-

ond, a labor cost minimal schedule is determined for the different demand patterns by solving 

the compact formulation to optimality (if possible) and by applying the suggested CG heuristic. 

The performance of the proposed solution approach is tested by implementing various 

lengths for the planning horizon, i.e. one, two, four, and six weeks. Here, the standard parameter 

setting as well as the mean demand pattern serve as input. For more detail, see Table 2. 

 
 

 

 

Table 2: Objective value three demand scenarios  

  

1 week roster 22'750 26'000 3'250 548 4.68 min. 600

2 week roster 45'500 55'250 9'750 1'730 49.76 min. 600

4 week roster 97'500 110'500 13'000 6'060 6.02 h 600

6 week roster 146'250 165'750 19'500 7'109 10.82 h 600

Objektive 

MP-LP 

Objective

MP-IP

Optimality 

gap 
# columns

Solution time: 

MP-LP

Solution time: 

MP-IP [sec.]

CG
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Table 2 presents the solution values and algorithm performance measures for the considered CG 

approach. The first column represents the length of the planning period of the underlying demand 

pattern. Column two displays the optimal solution value for MP-LP whereas column three con-

tains the integer solution for the CG heuristic (MP-IP). Column four evaluates the quality of the 

provided solution by calculating the absolute optimality gap, i.e. 𝑜𝑝𝑡. 𝑔𝑎𝑝 (𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) = (𝑀𝑃 −

𝐼𝑃)  − (𝑀𝑃 − 𝐿𝑃). The last three columns provide information about the number of required 

columns for the CG heuristic and solution times for MP-LP and MP-IP.  

An exact solution derived by the compact formulation is only provided for an one week ros-

ter. The optimal solution of 24’375€ is provided in 2 hours and 15 minutes solution time. Planning 

periods of more than one week cannot be solved to optimality, i.e. even a feasible solution cannot 

be found within a time limit of three hours. Moreover, an optimal solution for the LP relaxation 

requires more than three hours for some test instances. With respect to solution times, run times 

providing an exact solution are more than ten times higher for the MIP compared to our CG heu-

ristic (for the one week roster).  

In contrast, the CG heuristic is able to find a good solution in acceptable amount of time, i.e. 

13 minutes, 1 hour, 6 hours, and 10 hours for a six week planning period respectively. Note, solu-

tion times might be significantly lower for test instances with a high peak due to the dominance 

of 𝐿𝐵𝑝𝑒𝑎𝑘  over 𝐿𝐵𝑤𝑜𝑟𝑘  for these specific test instances. Considering the objective function val-

ues, a salary cost minimal roster provided by the CG heuristic ranges from 26’000€ to 165’750€, 

i.e. corresponding to two respectively three additionally required physicians. But, the smaller 

value of 26’000€ is only appropriate when focusing on a planning horizon of one week which is 

rather short. Since the resulting minimum salary costs depend on the length of the planning pe-

riod, the resulting objective value increases the longer the length of the roster.  

Figure 6 displays the development of the implemented LB (stated in (5)) exemplary for the 

CG heuristic when generating a two-week roster:  
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Figure 6: Real life demand – Maximum (100% quantile) demand scenario 

 

The figure shows the lower bound 𝑧𝑖
𝐿𝐵−𝑀𝑃 for each iteration when running the CG heuristic as 

well as the maximum value which is in use as early termination criterion during processing the 

algorithm. The value of the LB is rather small in the first iteration but increases significantly when 

generating the next column. Afterwards, the LB increases successively.  

When solving the different demand scenarios (i.e. 50%, 75%, and 100% quantile) in the sec-

ond step of the algorithmic evaluation, a planning horizon of two weeks is considered for each 

instance (see Table 3). Table 3 gives the solution and computational values for the CG heuristic. 

The first column represents the underlying scenario for the demand pattern. Again, column two 

to seven provide the objective function values, absolute optimality gap, number of iterations and 

solution times. 

 
 

 

 

Table 3: Objective value three demand scenarios for two weeks 

  

50 % quantile 45'500 55'250 9'750 1'730 49.76 min. 600

75 % quantile 52'000 58'500 6'500 1'012 22.45 min. 600

100 % quantile 74'750 84'500 9'750 1'633 50.03 min. 600

CG

Objektive 

MP-LP

Objective

MP-IP

Optimality 

gap 
# columns

Solution time: 

MP-LP

Solution time: 

MP-IP [sec.]
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Solving the formulated problem using our CG heuristic for mean demand, an objective function 

value of 45’500€ is proposed as MP-LP solution, whereas total labor costs of 55’250€ is proposed 

when forcing integer values (MP-IP).  

Also for the remaining two demand patterns (75% and 100% quantile), a total salary for phy-

sicians of 58’500€ respectively 84’500€ are required. Both values are provided in quite an ac-

ceptable amount of time, even though computation time is much higher for the maximum de-

mand level, i.e. 22.45 minutes compared to 50.03 minutes respectively.  

Due to the complexity derived by the three different types of implemented flexibility, the 

compact formulation of our mathematical program is not solvable for the majority of parameter 

settings, a planning horizon of more than one week, and other demand pattern than mean level. 

Since our column generation approach performs quite satisfying with respect to solution quality 

and computational effort, it is further in use for the following steps of our experimental study.  

 

2.3. Factorial analysis of flexibility parameters 

In this subsection, we conduct a factorial analysis to test for the effect of the different types and 

degrees of flexibility in the staffing process on the total salary costs of the workforce. In our anal-

ysis, we subdivide our flexibility parameters into two discrete subsets according to the effect we 

focus on: day parameters and shift parameters.  

In the following, each of these values is varied successively while keeping the remaining pa-

rameters constant. For the minimum number of consecutive working days, the minimum number 

of consecutive days off as well as the minimum shift length, the value of the specific parameter is 

increased iteratively. For the maximum number of consecutive days on duty and the maximum 

shift length, we vary the appropriate value in the opposite direction. This results in a total of 168 

test instances whose coherence is stated in Table 4. Note, some of the tested parameter-combi-

nations might not be applicable in real life to build a working roster, but for completeness of our 

factorial design, these are also conducted.  
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Parameter 𝐷𝑜𝑛 𝐷
𝑜𝑛

 𝐷𝑜𝑓𝑓  𝑆𝑚𝑖𝑛 𝑆𝑚𝑎𝑥  𝐵𝑝𝑟𝑒  𝐵𝑝𝑜𝑠𝑡  

Standard parameter setting 3 6 2 7 12 3 3 

Variation in day parameters 1 to 6 6 to 1 1 to 5 7 12 3 3 

Variation in shift parameters 3 6 2 7 to 12 12 to 7 3 to 1 3 to 1 

Table 4: Factorial Design 

 

We solve each variation of the stated parameters applying our CG heuristic whereas the former 

stated mean demand scenario serves as input for the underlying requirement for care having a 

two-week planning horizon.  

 

2.3.1. Variation of day parameters 

For each parameter setting of 𝐷𝑜𝑛 and 𝐷
𝑜𝑛

, the minimum number of days off is additionally in-

creased iteratively from one to five to investigate the effect additional flexibility in terms of daily 

working patterns on total workforce size. In each step, the maximum number of consecutive days 

on duty is decreased from the initial value of six to the current value of 𝐷𝑜𝑛, until 𝐷
𝑜𝑛

= 𝐷𝑜𝑛. 

This results in a total of 105 different settings. A detailed overview on the objective function val-

ues, absolute optimality gap, number of columns, and computational effort is provided in Table 5 

in Appendix II. Again, 𝐷𝑜𝑛 is increased iteratively whereas the parameter value of 𝐷
𝑜𝑛

 is de-

creased.  

In general, solution times are rather low for each parameter setting, i.e. ranging from 37 

seconds to 59.17 minutes. Solely around 30% of the considered test sets cannot be solved within 

the defined time limit when solving MP-IP. In these cases, the solution process is aborted after a 

computation time of 600 seconds. The remaining 72 instances are solvable in less than ten 

minutes. It is therefore possible, to find a good feasible solution with low computational effort, 

at least when solving a two-week problem, independent of the input data. This again serves as 

evidence for the satisfying performance of our provided solution approach in contrast to the com-

pact MIP formulation.  

Concerning the objective function value, the minimum labor costs for physicians range from 

55’250€ to 198’250€ at its maximum. The resulting salary costs vary depending on the provided 

level of flexibility in patterns of working days: Full flexibility results in an objective value of 55’250€ 

168 test in-

stances 
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whereas a parameter setting with a lower level of flexibility provides 198’250€ as solution, i.e. for 

𝐷
𝑜𝑛

= 𝐷𝑜𝑛 = 1 and 𝐷𝑜𝑓𝑓 = 5. A more realistic parameter setting, defining 𝐷𝑜𝑓𝑓 = 2, results in 

personnel costs ranging from 55’250€ to 110’500€ when varying the remaining day parameter 

𝐷
𝑜𝑛

 and 𝐷𝑜𝑛, i.e. three additional physicians are required in less flexible scheduling settings. Due 

to the reduction in flexibility as the minimum and the maximum number of allowed consecutive 

working days converge, the available combination of assignable days on and off duty decrease. 

As a result, labor costs increase significantly. Even though, the spread of the minimum and the 

maximum total wage costs is not that significant for each set of test instances, similar results can 

be ascertained for the remaining parameter combinations, e.g. 𝐷
𝑜𝑛

= 6, 𝐷𝑜𝑛 = 2 and 𝐷𝑜𝑓𝑓 = 1 

in comparison to 𝐷
𝑜𝑛

= 2, 𝐷𝑜𝑛 = 2 and 𝐷𝑜𝑓𝑓 = 1. As a result, if the appropriate workforce size 

derived by the personnel costs provided by the CG heuristic for a specific parameter setting is 

employed, the average weekly utilization of personnel ranges from 50.85% to 72.03% at its max-

imum (see column ten in Table 5 in Appendix II). Utilization levels are derived by the ratio of avail-

able hours of supply and hours of occurring demand (in each week), given in (6): 

 

𝑊𝑒𝑒𝑘𝑙𝑦 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  
∑ ∑ 𝑁𝑑𝑝𝑝∈𝑃𝑑∈𝐷

𝑅 ∙ ∑ 𝜆𝑟𝑟∈𝑅

 (6) 

 

Since we use our 50% quantile demand scenario as input data, the requirement for care is 

551 hours each week. These are confronted with the working hours of the employed personnel. 

As an example, weekly utilization for 𝐷
𝑜𝑛

= 6, 𝐷𝑜𝑛 = 1 and 𝐷𝑜𝑓𝑓 = 1 is calculated: The bi-weekly 

labor costs provided by our CG heuristic is 55’250€ which leads to a required number of 17 phy-

sicians. This results in a total of 765 hours of available working hours each week. Proportioning 

these two measures devotes an average utilization of staff each week of 
551

765
= 0.7203, i.e. 

72.03%.  

Contrary to the increasing labor costs when decreasing the level of flexibility, the average 

utilization of staff each week drops the lower the degree of flexibility. This is reasoned by the 

growing number of required personnel and with this, an increasing number of available working 

hours weekly (in case of less flexibility) to cover demand. But, opposed to the increasing available 
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working hours, demand for care is constant in each test instance. Therefore, average utilization 

decreases. Although utilization fluctuates, the achieved levels seem to be quite reasonable espe-

cially for hospitals, i.e. in a health care providing context. Since surgeries commonly have a dura-

tion of several hours and require a great amount of concentration, utilization should not be too 

high to create hours of idle time (around the scheduling of surgeries) which can be used to handle 

administrative tasks as well as emergency patients. Note, weekly utilization of staff is strongly 

influenced by the predefined underlying scheduling rules: The higher the degree of flexibility, the 

higher the utilization of physicians due to the increasing capability to better match supply and 

demand. The more rigid the rostering regulation, the less options for the assignment of days on 

duty and different shifts occur. 

With respect to the quality of the provided solutions, our column generation approach 

seems to work quite well: Optimality gap is 3’750€ on average, i.e. approximately one physician. 

The absolute optimality gap is at most 9’750€ for all 105 test instances. Moreover, almost half of 

the considered test instances provide an absolute optimality gap of 1’625€, around one fourth of 

our test sets have an absolute optimality gap of 3’750€, additional 4’875€ labor expenses are 

solely required in around 2% of the cases, and even 26.7% are solved to optimality by the CG 

heuristic, i.e. optimality gap equals 0€.  

An exemplary depiction of the development of the resulting objective function values for 

MP-LP as well as the solution of MP-IP for a minimum number of one day on duty, i.e. 𝐷𝑜𝑛 = 1, is 

shown in Figure 7.   
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Figure 7: Trend in in day parameter flexibility (for 𝑫𝒐𝒏 = 𝟏) 

 

The vertical axis shows the minimum number of days off (duty) ranging from one to 5 for each 

value of 𝐷
𝑜𝑛

= 1, … , 6. As the figure displays, the objective function value for MP-LP as well as 

for MP-IP increases for each value of 𝐷
𝑜𝑛

 when reducing flexibility by increasing 𝐷𝑜𝑓𝑓 from one 

to five. Moreover, there is a trend discernible: Despite the increasing objective function value for 

each manifestation of 𝐷
𝑜𝑛

 itself, the total weekly labor costs of physicians grow linearly in the 

reduction of flexibility in the maximum number of days on duty. As a result, the lower the degree 

in flexibility in 𝐷
𝑜𝑛

 , the higher the total salary expenses. 

Once employees have to have at least some consecutive days off after being on duty, the 

size of the workforce and with this the total salary costs increase dramatically. Generally speaking, 

the higher the convergence between the minimum and the maximum number of allowed consec-

utive working days, the lower the computational effort due to the decreasing number of feasible 

assignments. Additionally, the total number of required physicians and salary costs increase. Less 

flexibility in patterns of working days results in a significant increase in the value of the objective. 

But, even though a higher number of physicians is needed to cover demand for less flexible work-

ing patterns, especially the number of consecutive days off might be of major importance for the 

satisfaction of the workforce. Having only one single day off between two consecutive sequences 

of working days leads to discontent and a higher probability for employee’s turnover. Therefore, 

it is sufficient to find the balance between the desired level of flexibility and an acceptable burden 
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for staff to ensure their wellbeing.  

 

2.3.2. Variation of shift parameters 

In this section, the effect of flexibility in the allowed length of shifts is decreased and analyzed 

while the flexibility in starting times of shifts remains. Similar to the former subsection, the values 

of the different shift parameters (concerning its length) are varied iteratively. In the first step, 

𝑆𝑚𝑖𝑛 is increased from seven to twelve hours whereas the value of 𝑆𝑚𝑎𝑥 is decreased from an 

initial maximum length of twelve to the current value of 𝑆𝑚𝑖𝑛. Due to the effect of the shift length 

on the placement of the break and with this, coverage of demand, the size of the break window 

is additionally considered. Therefore, 𝐵𝑝𝑟𝑒 and 𝐵𝑝𝑜𝑠𝑡 are varied simultaneously, i.e. 𝐵𝑝𝑟𝑒 =

𝐵𝑝𝑜𝑠𝑡 = 3 in the initial step. Subsequently, the values are decreased iteratively to enlarge the size 

of the break window. Increasing the number of possibilities for the placement of the break pro-

vides additional flexibility in the scheduling process. This results in a total of 63 different combi-

nations for the setting of the shift parameters (see Table 6 in the Appendix III for a detailed over-

view on the solution and evaluation values, computational effort, and the average weekly utiliza-

tion as performance indicator). 

Similar to the variation in day parameters, the computational effort to solve the different 

shift parameter settings is rather low, respectively even lower, i.e. ranging from nine seconds to 

56.03 minutes. Solving MP-IP in less than ten minutes is only achievable for less than one third of 

the test instances. For the remaining ones, the predetermined time limit of 600 seconds is effec-

tive. Generally, the higher the convergence between minimum and maximum allowed shift 

length, the smaller the solution time due to the reduced number of available shift types. For a 

maximum level of flexibility, the computational effort is still rather low which is reasonable. In-

creasing the flexibility for the assignment of the break by enlarging the size of the break window 

does not lead to a growth in solution times. 

Moreover, there is a significant effect of the degree of shift flexibility on workforce costs. A 

larger number of shift types results in lower expenses for physicians. For the maximum level of 

flexibility with 𝑆𝑚𝑖𝑛 = 7 and 𝑆𝑚𝑎𝑥 = 12, solely 55’250€ labor costs are required to employ 

enough personnel to cover demand. Since the number of allowed shift types is reduced due to 

the convergence of 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥, total salary costs increase to a maximum of 81’250€. In this 
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extreme, the fluctuation in demand can only be encountered by assigning one single type of shift 

having various starting periods, e.g. with a duration of twelve periods. Considering the case that 

a hospital does solely consider flexible starting periods for shifts rather than flexible shift lengths 

to schedule their personnel for whatever reason, the results provided by the table indicate that 

shorter shifts might be more suitable to cover standard demand compared to shifts with a long 

duration. In general, implementing a higher amount of flexibility in the length of available shifts 

results in a smaller objective function value and with this a decreasing number of physicians re-

quired. Concerning the average weekly utilization of staff, a minimum value of 66.43% and a max-

imum of 72.03% is provided which in turn seems to be quite appropriate for hospital settings.  

Inserting additional flexibility in the scheduling process by enlarging the size of the break win-

dow does either have a positive or no effect on the objective function value. For almost 50% of 

the different parameter settings, the maximum size of the break window decreases the total labor 

costs. Especially for long shift durations providing a minimum amount of flexibility, e.g. 𝑆𝑚𝑖𝑛 =

11 and 𝑆𝑚𝑎𝑥 = 12, enlarging the feasible combinations for the placement of the break does not 

affect the resulting objective. As a result, flexibility in break assignment particularly affects set-

tings that do solely provide short shifts (less than ten hours) with a low level of flexibility, i.e. 

especially for real life assumptions. For instances, allowing a high degree of flexibility in the num-

ber of available shift types, additional flexibility by enlarging the size of the break window does 

not have a significant effect. In contrast to the factorial analysis of day parameters, the solution 

quality of the shift parameter analysis is not of similar performance, but still appropriate. On av-

erage, optimality gap is 5’829€, i.e. corresponding to an additional employment of at most two 

physicians. This disparity is rather small and serves additionally as proof for the high performance 

of our solution approach. Around 17% of the considered test sets provide a total optimality gap 

of 9’750€, 6’500€ additional salary costs are required in more than 50% and 3’250€ higher wage 

costs are required in 20% of the test instances. Actually, five parameter settings are solved to 

optimality, i.e. with a MP-LP solution equal to the MP-IP solution. An example for the develop-

ment of the objective function values of the CG heuristic and the MP-LP in case of 𝑆𝑚𝑖𝑛 = 7 is 

provided in Figure 9. 
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Figure 9: Trend in in shift parameter flexibility (for 𝑺𝒎𝒊𝒏 = 𝟕) 

 

Again, the total weekly labor costs and with this, the number of required personnel either stays 

constant or decreases due to the implementation of additional flexibility by enlarging the break 

window. But this effect is rather small. But, similar to the variation in day parameters, the higher 

the convergence between 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥, the higher the required number of physicians to cover 

demand.  

Generally, in the scheduling process, the considered amount of flexibility in terms of shift 

types and the size of the break window provide a significant improvement concerning the total 

labor costs and therefore the overall number of physicians that is required to cover mean de-

mand. Even though the computational effort rises due to the increasing level of assignment op-

portunities, the generated benefit is valuable for hospitals to reduce their expenses for personnel 

while ensuring the requested level of service.  

 

3. Summary and Conclusion 

In this research, we formulated a MIP based on a reduced set covering approach to consider the 

implementation of flexible sequences of working days, flexible shifts, and flexible break assign-

ments when scheduling physicians in hospitals. Due to the complexity of the stated model, a col-

umn generation heuristic is proposed to provide solutions of high quality in reasonable amount 

of solution time. To evaluate the performance of the solution approach as well as the effect of 
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implementing a high degree of flexibility in the scheduling process (i.e. in terms of total salary 

costs as monetary value for the required workforce size), real life data from a large teaching hos-

pital in Germany of the year 2010 is used. In our experimental study, demand of each period of 

every day over one entire year is aggregated and three different demand scenarios are defined: 

50% quantile, 75% quantile, and maximum (100% quantile) demand. Moreover, the performance 

of the proposed CG heuristic is evaluated by varying the length of the planning horizon from one 

to six weeks. Finally, to test for the effect of additional flexibility in the scheduling process, a fac-

torial analysis varying day, shift, and break parameters is conducted.  

In general, our CG approach performs quite well: Due to the complexity of our mathematical 

model, it is not possible to solve the MIP to optimality for at almost all test instances. Albeit only 

a heuristic solution is provided by the CG approach, each of our test sets is solved in an appropri-

ate amount of time. Additionally, heuristic solutions of high quality are provided which is proven 

by the optimality gap between MP-LP and MP-IP solution. Furthermore, as an outcome of our 

sensitivity analysis, the lower the degree of flexibility in terms of sequences of working days and 

shift types, the higher the upcoming labor costs due to the increasing number of required physi-

cians to cover demand. Focusing on the variation of shift parameters, an increasing level of flexi-

bility leads to a reduction in salary costs. Besides, additional reduction is achievable by enlarging 

the size of the break window. But, this effect is only of reduced significance compared to the level 

of flexibility in day and shift parameters. As a result, the optimal scheduling strategy depends on 

the policy of hospital’s management and the hospital’s ambition in terms of quality of care, de-

sired service level, and employee satisfaction. Especially in case of employing a workforce size 

below the maximum level, it is barely impossible to stick to a predefined inflexible eight hour shift 

system to prevent for huge wage expenses. Due to the reduced number of physicians, flexible 

shifts have to be implemented to create an appropriate flexible shift system adopting the fluctu-

ation in demand. 

For future research, a B&P approach can be implemented to generate optimal integer solu-

tions for the considered problem. Moreover, concerning the underlying demand pattern, further 

research might be investigated to build a more realistic estimation of demand profiles. Up to now, 

research commonly uses randomly generated demand patterns based on predefined assump-

tions or real life data derived from a hospital. But, even if real life demand patterns are in use, 
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these may be biased due to specific regulations and other schedules in hospital: In general, espe-

cially when scheduling elective patients, available operating room allocations based on specialty 

defined by the Master Surgery Schedule (MSS) and the number of assignable available shift types 

determine the schedule of surgeries, i.e. demand. Therefore, demand is partially driven by the 

shift design of a hospital and might change, if number and type of available shifts change. 

Despite the large potential to decrease hospital’s operating and labor costs, on an operational 

level, additional aspects concerning the wellbeing of employees should be taken into account to 

prevent from turnover of physicians. Moreover, a time window constraint regulating the starting 

times of consecutive shifts can be implemented to ensure more balanced starting periods for each 

physician within one sequence of working days. It is also important to integrate the patients’ well-

being and therefore the quality of the provided service. Implementing a lot of flexibility especially 

in terms of sequences of working days might result in its extreme to a roster where physicians are 

one or two days on duty and are off for the subsequent day(s). Therefore, an appropriate level of 

flexibility is to be determined for the trade-off between monetary value of flexibility and quality 

of care. As a result, it might make sense to provide a behavioral template/scheme for hospital’s 

management how to operate depending on the institution’s goal.   
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Appendix I 

Linearization of constraint 1.3 

𝑧𝑖𝑑 = 𝑦𝑖𝑑(1 − 𝑦𝑖(𝑑−1)) ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.3) 

𝑧𝑖𝑑 − 𝑦𝑖𝑑 ≤ 0 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.3.1) 

𝑧𝑖𝑑 + 𝑦𝑖(𝑑−1) ≤ 1 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.3.2) 

𝑦𝑖𝑑 − 𝑦𝑖(𝑑−1) − 𝑧𝑖𝑑 ≤ 0 ∀𝑖 ∈ 𝑰, 𝑑 ∈ 𝑫 (1.3.3) 
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Appendix II 

 

Table 5: Factorial analysis – Flexibility in day parameter  

1 48'750 55'250 6'500 1'608 49.07 600 72.03%
2 48'750 55'250 6'500 1'640 51.09 600 72.03%
3 58'500 61'750 3'250 163 2.20 1 64.44%
4 61'750 65'000 3'250 291 4.48 600 61.22%
5 81'250 81'250 0 98 1.27 0 48.98%
1 48'750 55'250 6'500 1'535 44.57 600 72.03%
2 48'750 55'250 6'500 1'752 57.66 600 72.03%
3 58'500 61'750 3'250 275 3.97 4 64.44%
4 65'000 68'250 3'250 283 4.21 2 58.31%
5 78'000 81'250 3'250 117 1.40 0 48.98%
1 48'750 55'250 6'500 552 9.94 600 72.03%
2 58'500 61'750 3'250 232 3.25 1 64.44%
3 58'500 61'750 3'250 383 5.97 24 64.44%
4 78'000 81'250 3'250 85 1.07 0 48.98%
5 81'250 81'250 0 225 2.96 4 48.98%
1 55'250 58'500 3'250 291 3.99 600 68.02%
2 65'000 68'250 3'250 276 4.08 35 58.31%
3 81'250 81'250 0 108 1.40 1 48.98%
4 81'250 81'250 0 127 1.72 0 48.98%
5 81'250 84'500 3'250 508 8.01 1 47.09%
1 61'750 65'000 3'250 240 3.18 600 61.22%
2 81'250 81'250 0 172 2.35 33 48.98%
3 97'500 100'750 3'250 196 2.50 3 39.50%
4 113'750 117'000 3'250 106 1.24 0 34.01%
5 113'750 120'250 6'500 168 2.10 3 33.09%
1 81'250 81'250 0 178 2.24 55 48.98%
2 110'500 110'500 0 150 2.62 38 36.01%
3 156'000 159'250 3'250 162 1.74 0 24.99%
4 191'750 191'750 0 114 1.18 0 20.75%
5 198'250 198'250 0 176 1.88 0 20.07%
1 48'750 55'250 6'500 1'520 44.29 600 72.03%
2 48'750 55'250 6'500 1'720 55.63 600 72.03%
3 58'500 61'750 3'250 175 2.41 17 64.44%
4 61'750 65'000 3'250 301 4.67 600 61.22%
5 81'250 81'250 0 73 0.93 0 48.98%
1 48'750 55'250 6'500 1'696 53.28 600 72.03%
2 48'750 55'250 6'500 1'670 54.76 600 72.03%
3 58'500 61'750 3'250 246 3.64 26 64.44%
4 65'000 68'250 3'250 290 4.41 3 58.31%
5 81'250 81'250 0 144 1.97 1 48.98%
1 48'750 55'250 6'500 567 9.86 600 72.03%
2 58'500 61'750 3'250 223 3.15 1 64.44%
3 58'500 61'750 3'250 401 6.51 173 64.44%
4 81'250 81'250 0 98 1.31 0 48.98%
5 78'000 81'250 3'250 212 2.69 15 48.98%
1 55'250 58'500 3'250 338 5.08 600 68.02%
2 65'000 68'250 3'250 295 4.49 31 58.31%
3 81'250 81'250 0 109 1.49 2 48.98%
4 81'250 81'250 0 123 1.66 1 48.98%
5 81'250 84'500 3'250 401 5.83 1 47.09%
1 61'750 65'000 3'250 250 3.43 554 61.22%
2 81'250 81'250 0 181 2.52 1 48.98%
3 113'750 113'750 0 75 0.99 0 34.98%
4 113'750 113'750 0 99 1.17 0 34.98%
5 113'750 117'000 3'250 155 1.87 0 34.01%
1 48'750 55'250 6'500 1'714 53.73 600 72.03%
2 48'750 55'250 6'500 1'798 59.16 600 72.03%
3 58'500 61'750 3'250 161 2.30 1 64.44%
4 61'750 65'000 3'250 284 4.45 600 61.22%
5 81'250 81'250 0 71 0.94 0 48.98%
1 48'750 55'250 6'500 1'600 49.16 600 72.03%
2 45'500 55'250 9'750 1'646 46.74 600 72.03%
3 58'500 61'750 3'250 279 4.32 24 64.44%
4 65'000 68'250 3'250 309 4.90 13 58.31%
5 81'250 81'250 0 143 2.05 2 48.98%
1 48'750 55'250 6'500 617 10.17 600 72.03%
2 58'500 61'750 3'250 254 3.35 33 64.44%
3 58'500 61'750 3'250 355 5.70 64 64.44%
4 81'250 81'250 0 82 1.13 0 48.98%
5 120'250 120'250 0 52 0.67 0 33.09%
1 55'250 58'500 3'250 404 5.87 44 68.02%
2 65'000 68'250 3'250 339 4.69 28 58.31%
3 81'250 81'250 0 89 1.22 1 48.98%
4 81'250 81'250 0 122 1.71 0 48.98%
5 81'250 84'500 3'250 418 6.13 1 47.09%
1 48'750 55'250 6'500 1'735 56.94 600 72.03%
2 48'750 55'250 6'500 1'628 51.65 600 72.03%
3 58'500 61'750 3'250 161 2.39 58 64.44%
4 61'750 65'000 3'250 213 3.25 225 61.22%
5 81'250 81'250 0 57 0.77 0 48.98%
1 48'750 55'250 6'500 1'725 57.37 600 72.03%
2 48'750 55'250 6'500 1'631 54.67 600 72.03%
3 58'500 61'750 3'250 259 4.22 4 64.44%
4 65'000 68'250 3'250 224 3.64 1 58.31%
5 81'250 81'250 0 121 1.86 1 48.98%
1 52'000 58'500 6'500 452 6.74 600 68.02%
2 58'500 61'750 3'250 193 2.67 21 64.44%
3 58'500 61'750 3'250 415 6.58 527 64.44%
4 81'250 81'250 0 79 0.99 0 48.98%
5 120'250 120'250 0 50 0.61 0 33.09%
1 48'750 55'250 6'500 1'771 57.41 600 72.03%
2 48'750 55'250 6'500 1'715 55.46 600 72.03%
3 58'500 61'750 3'250 141 1.97 14 64.44%
4 61'750 65'000 3'250 197 2.97 66 61.22%
5 61'750 65'000 3'250 303 4.86 600 61.22%
1 45'500 55'250 9'750 1'867 59.17 600 72.03%
2 48'750 55'250 6'500 1'768 57.93 600 72.03%
3 58'500 61'750 3'250 216 3.04 22 64.44%
4 65'000 68'250 3'250 198 2.77 19 58.31%
5 81'250 81'250 0 98 1.27 0 48.98%
1 48'750 55'250 6'500 845 18.17 600 72.03%
2 48'750 55'250 6'500 780 16.04 600 72.03%
3 58'500 61'750 3'250 154 2.11 14 64.44%
4 58'500 61'750 3'250 321 5.09 174 64.44%
5 61'750 65'000 3'250 183 2.63 68 61.22%

Weekly utilization 

(average)

Solution time: 

MP-LP [min.]

Solution time: 

MP-IP [sec.]

1

6

5

4

3

2

1

Objektive 

MP-LP 

Objective

MP-IP

Opt. gap 

(alsolut)
# columns

4

6

5

4

2

6

5

4

3

2

3

6

5

4

3

5

6

5

6 6
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Appendix III 

 

Table 6: Factorial analysis – Flexibility in shift parameter  

 
3 48'750 55'250 6'500 1'608 49.07 600 72.03%
2 48'750 55'250 6'500 770 16.96 600 72.03%
1 45'500 55'250 9'750 664 11.97 600 72.03%
3 48'750 58'500 9'750 1'805 56.03 600 68.02%
2 48'750 58'500 9'750 1'113 26.02 600 68.02%
1 48'750 55'250 6'500 831 17.02 600 72.03%
3 48'750 55'250 6'500 1'280 27.49 600 72.03%
2 48'750 55'250 6'500 1'518 38.05 600 72.03%
1 48'750 55'250 6'500 1'068 22.30 600 72.03%
3 52'000 58'500 6'500 422 4.27 600 68.02%
2 48'750 58'500 9'750 739 8.83 600 68.02%
1 48'750 58'500 9'750 1'089 17.27 600 68.02%
3 58'500 65'000 6'500 330 2.36 600 61.22%
2 55'250 65'000 9'750 556 4.81 600 61.22%
1 55'250 61'750 6'500 683 6.91 600 64.44%
3 68'250 74'750 6'500 135 0.43 215 53.24%
2 65'000 71'500 6'500 295 1.55 600 55.66%
1 55'250 61'750 6'500 683 6.91 600 64.44%
3 48'750 55'250 6'500 1'804 53.53 600 72.03%
2 48'750 55'250 6'500 662 11.53 600 72.03%
1 45'500 55'250 9'750 484 6.32 600 72.03%
3 48'750 55'250 6'500 1'410 33.67 600 72.03%
2 48'750 55'250 6'500 1'056 20.93 600 72.03%
1 48'750 55'250 6'500 589 8.68 600 72.03%
3 48'750 55'250 6'500 1'028 16.57 600 72.03%
2 48'750 55'250 6'500 1'610 37.63 600 72.03%
1 48'750 55'250 6'500 774 11.24 600 72.03%
3 52'000 58'500 6'500 521 4.63 600 68.02%
2 48'750 58'500 9'750 666 6.69 600 68.02%
1 48'750 55'250 6'500 849 10.57 600 72.03%
3 58'500 65'000 6'500 497 3.63 600 61.22%
2 55'250 61'750 6'500 884 17.78 600 64.44%
1 55'250 61'750 6'500 576 4.56 600 64.44%
3 48'750 55'250 6'500 884 17.78 600 72.03%
2 48'750 55'250 6'500 1'526 43.69 600 72.03%
1 45'500 55'250 9'750 665 9.12 600 72.03%
3 48'750 58'500 9'750 542 7.32 600 68.02%
2 48'750 55'250 6'500 1'095 21.67 600 72.03%
1 48'750 55'250 6'500 1'430 30.45 600 72.03%
3 52'000 58'500 6'500 565 6.24 600 68.02%
2 48'750 55'250 6'500 683 7.62 600 72.03%
1 48'750 55'250 6'500 881 12.08 600 72.03%
3 52'000 58'500 6'500 362 2.11 600 68.02%
2 48'750 55'250 6'500 448 3.03 600 72.03%
1 48'750 55'250 6'500 611 4.92 600 72.03%
3 58'500 61'750 3'250 220 1.60 19 64.44%
2 58'500 61'750 3'250 192 1.39 2 64.44%
1 58'500 61'750 3'250 175 1.24 1 64.44%
3 61'750 65'000 3'250 170 0.87 1 61.22%
2 61'750 65'000 3'250 142 0.66 3 61.22%
1 61'750 65'000 3'250 132 0.62 1 61.22%
3 65'000 68'250 3'250 175 0.66 4 58.31%
2 65'000 65'000 0 194 0.82 8 61.22%
1 65'000 65'000 0 184 0.73 91 61.22%
3 58'500 61'750 3'250 196 1.10 21 64.44%
2 58'500 61'750 3'250 160 0.80 2 64.44%
1 58'500 61'750 3'250 146 0.72 1 64.44%
3 61'750 65'000 3'250 132 0.45 1 61.22%
2 61'750 65'000 3'250 123 0.41 1 61.22%
1 61'750 65'000 3'250 89 0.26 1 61.22%
3 81'250 81'250 0 97 0.31 0 48.98%
2 81'250 81'250 0 80 0.23 0 48.98%
1 81'250 81'250 0 59 0.14 0 48.98%

Weekly utilization 

(average)

Opt. gap 

(alsolut)
# columns

Solution time: 

MP-LP [min.]

Solution time: 

MP-IP [sec.]

8

Objektive 

MP-LP 

Objective

MP-IP

7

9

7

12

11

10

9

8

12

11

10

12 12

11

12

11

10

8

9

10

9

10

12

11

12

11
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