
Self-organized Resource Allocation for
Reconfigurable Robot Ensembles

Julian Hanke, Oliver Kosak, Alexander Schiendorfer, and Wolfgang Reif
Institute for Software & Systems Engineering, Augsburg University, Germany

E-Mail: {hanke, kosak, schiendorfer, reif}@isse.de

Abstract—Mobile robot systems usually are designed, built,
and programmed for dedicated use cases. Consequently, espe-
cially for unmanned aerial vehicles diverse applications result in
very heterogeneously designed robots. To overcome this need for
specialization, we propose to dynamically adapt the robots’ capa-
bilities at run-time. This is done by connecting and disconnecting
hardware modules providing those capabilities, i.e., re-allocating
resources within the robot ensemble. Thereby, no longer individ-
ualized robots have to be designed for different tasks. Instead, the
system is enabled to adapt its hardware configuration to changing
requirements. For calculating necessary adaptations, i.e., solving
the resource allocation problem, we propose a heuristic, market-
based approach that exploits the possibility to decompose the
resource allocation problem and distributively finds a solution.
We show that our approach outperforms a centralized one
especially when increasing the problem size in terms of agents,
tasks, and relevant capabilities while providing the same quality.

Index Terms—multi-agent, multi-robot, resource allocation,
self-awareness, self-configuration

I. INTRODUCTION

Mobile robots and according multi-robot applications have

finally made their way from research to industry and public.

Current developments indicate their usefulness in versatile

forms of applications which offer the potential to improve

human life in a multitude of different areas. From applications

simply dedicated to public amusement during mass events

(e.g., at the Olympic Winter Games 2018 in Pyeongchang,

or CES 2018 in Las Vegas) over intensified use for supporting

different research areas (e.g., environmental research [1]–[4])

up to mission critical tasks like supporting rescue forces in

dangerous environments [5]–[8]. Especially systems including

unmanned aerial vehicles (UAVs) experience an upswing.

While offering a huge set of heterogeneous robot capabil-

ities for this wide range of use cases, each application for

itself relies on specifically constructed robots tailored to their

dedicated tasks. Robots used for meteorologic research, e.g.,

rely on accurate sensing capabilities with specialized sensor

combinations [1], whereas search and rescue robots require

accurate visual imaging [9] and manipulating capabilities of

different kinds [10]. Due to that need for specialization, every

time an existing application is modified or a new use case is

found where mobile robots may help with, new robots offering

the particular capabilities have to be designed, constructed,

programmed, and deployed. The approach proposed in our

previous work [8], [11] aims at overcoming this limitation.

By separating capabilities from robots, we introduce a new

degree of flexibility for adapting to changing task requirements

or even application requirements. We already support this

approach with a modular reference software architecture and

according algorithms that are able to exploit the resulting

freedom in capability re-allocation [8]. Our study in this

paper focuses on enabling the key feature for this approach,

i.e., a mechanism for re-allocating capabilities to robots.

Therefore, we propose a solution to solve the problem of

resource allocation, where resources are hardware modules

that deliver certain capabilities and resource holders are robots

that thereby are equipped with these capabilities, making

the robots applicable in versatile tasks and applications. We

develop a non-specialized approach that can be deployed in

various case studies. To evaluate our work we embed it in

the case study of chemical accidents, where an ensemble of

robots is used to autonomously support fire fighters in handling

such a situation. Unfortunately, such accidents are not rare

as current incidents at Arkema Texas (2017) or at BASF

Germany (2016) show. Such scenarios are characterized by a

high variety in required capabilities needed to execute different

tasks of relevance in a certain order that can be classified as

ScORe missions [12]. Fig. 1 depicts how an ensemble of robots

executes such a ScORe mission after an accident. First, the

robots employ a universal gas sensor (ALL) to Search (S) for

the initially unknown relevant parameter, i.e., the gas with the

highest risk potential. Then, the ensemble has to continuously
Observe (cO) how the identified gas (e.g., gas X in Fig. 1)

disseminates in order to assess its potential harm. To track X

Fig. 1. Simplified example of how an ensemble consisting of reconfigurable
robots can execute a ScORe mission, here, a gas accident. The legend
(top part) shows available components (robots, sensors, and actuators). The
bottom part shows changes in the system’s configuration (i.e., component
compositions) in the course of the mission. R1, R2, R3 indicate situations
where a resource re-allocation may happen within the ensemble.

110

2018 IEEE 12th International Conference on Self-Adaptive and Self-Organizing Systems

a capability for high precision measuring and a capability to

measure weather data (WE) for dissemination predictions is

needed. Besides, the ensemble should still be on the lookout

for other potentially harmful gases which again requires the

universal gas sensor capabilities. Additionally, the robots need

to observe the concentration of X along critical infrastructure

and identify endangered people with cameras (CA). Finally, we

expect appropriate Reactions (Re), e.g., the ensemble supports

the evacuation of threatened inhabited areas. In Re, one task

still needs the capabilities from cO and another task requires

the capability to inform endangered persons with loudspeakers

(SP). For an ensemble of size 10, a possible task assignment is

shown in Fig. 1, where resource re-allocations happen at R1,

R2, and R3. A conventional, non-reconfigurable system (with

fixed hardware configurations) would lead to a much larger

ensemble to achieve the same task coverage (10 · |{ALL}|+3 ·
|{X,WE}|+5 · |{X,CA}|+6 · |{X, SP}| = 24 devices instead

of 10). To identify the hardware needed for providing certain

capabilities, agents are able to query a common knowledge
data base defining the relation between hardware types and

capabilities. Given, e.g., the hardware modules X and WE,

the agent gains the capability of measuring gas X, estimating
wind (from WE), and the combined capability estimate gas
cloud distribution (that uses both X and WE to predict the

future gas dissemination). In this study, we neglect the quality

of hardware modules (e.g., measuring frequency of a sensor)

and only focus on its type. Nevertheless, in all following

definitions and algorithms hardware module quality can be

easily considered. We also assume hardware modules that can

be plugged in each other infinitely (e.g., as daisy chain [13]).

To achieve the ability to actually reconfigure our robots online,

i.e., to enable online adaptivity, modularity, and other neces-

sary self-organization abilities, we designed a single robot of

our ensemble as a Jadex Active Components Platform [14].

By representing capabilities as such active components, we

are able to design them as modular and dynamically loadable

software artifacts, each encapsulating all knowledge necessary

for their execution. At the same time, this design provides the

possibility to dynamically equip robots with new capabilities

at run-time and makes our robots self-aware concerning their

current capabilities. To provide a solution to solve the problem

of resource allocation, this paper is organized as follows: In

Section II, we describe the problem to be solved. Subsequently,

we propose our algorithmic approach to solve the problem

in Section III. We then present our results in Section IV,

investigate related work in Section V and wrap up our work in

Section VI, giving also some suggestions on further research.

II. PROBLEM DEFINITION

Regarding the application environment motivated in Sec-

tion I, the paramount problem that needs to be solved thus

is an instance of the task allocation problem [15]. Usually,

tasks in our multi-robot system setting have to be solved by

multiple agents. In the scope of this paper, we consider ScORe

missions where robots can be assigned to at most one task at

a time. By using appropriate decomposition techniques (e.g.,

hierarchical task networks [16]), complex tasks that require

multiple agents to be solved can be decomposed into multiple

primitive tasks, which can then be handled by a single agent.

With regard to the taxonomy introduced by [17] for classifying

multi-robot task allocation problems (MRTA), can be mapped

to a multi-robot single-task allocation problem where tasks

are instantly assigned (ST-SR-IA). For being able to solve

the aforementioned complex tasks, each of the decomposed

primitive tasks has to be allocated to an agent capable of

handling it, i.e., an agent providing all capabilities that are

required for solving the primitive task. The group of these

agents forms the coalition that in a coordinated manner is then

able to solve the complex task, as supposed by [15]. Obviously,

this mechanism relies on having enough agents available

providing the required capabilities. As a consequence, the

task allocation fails if such a coalition can not be found

resulting in having the task unsolvable at least for the current

state of the system. Instead of adding more appropriately

configured agents to the system (a typical solution how recent

other approaches try to handle such situations, cf. [18]–

[20]), our approach allows for reconfiguring the agents that

are already participating in the system in terms of their

provided capabilities. Thereby, the task allocation problem

gets augmented by a multi-agent resource allocation problem
(MARA) [21]. As it can be seen in Fig. 2, if no coalition can be

found for a complex task, the system is enabled to reallocate

resources (i.e., hardware modules) to new resource holders

(i.e., the agents). By their very nature, resources in our MARA

are discrete, indivisible, not sharable, static, and multi-unit

(classified according to [21]). By considering the decomposed

tasks’ required capabilities as requirement for the resource

allocation problem, a consistent system configuration has to

be found to successfully finish a re-started task allocation

and subsequently execute the complex task. Separating task

and resource allocation in two problems reduces complexity.

It eases finding task allocations when the system is already

configured appropriately (this is the common case). Further

this approach reduces the problem size in critical situations

where time spend on reconfiguration is needed to be minimal.

With this combined approach, a valid task assignment can

be found in every case where the user defined task for the

ensemble is feasible in any configuration of the system, i.e.,

there is at least any coalition with any agent configuration

that is able to solve the task. If the reconfiguration fails, e.g.,

when hardware modules break down, an error handling can be

initiated (not in the scope of this paper). We previously stated,

that as side effect, this approach further facilitates the act of

Fig. 2. Abstract definition of our process for solving tasks in the multi-
robot ensemble, considering the separation of capabilities from robots. If
decomposed tasks can not be allocated, a new resource allocation is calculated
and the task allocation is restarted.

111

planing for the robot ensemble as planning no longer has to

take into account heterogeneous agents but is able to plan for

homogeneous agents [11]. Additionally, the overall need for

hardware (robots and sensors/actuators) is reduced if actually

implemented in real-world, which we aim to.

A. The Resource Allocation Problem

The resulting resource allocation problem (RAP) is formu-

lated as a constraint satisfaction and optimization problem
(CSOP) [22, Ch. 10] that minimizes the required amount of

reconfigurations ra concerning hardware modules, aggregated

over all participating agents a ∈ A. This minimization problem

is subject to multiple constraints regarding participating agents

as well as relevant tasks t, that define the requirements of

the resource allocation problem. More precisely, these require-

ments are defined by the set of capabilities Ct a task t ∈ T
requires from an agent to make it capable of handling the task.

The solution of the CSOP then shall guarantee that for each

task there is at least one agent that is capable of handling it as

the agent provides all capabilities Ca that are required by the

task (Ct ⊆ Ca). Because this allocation is still subject to the

ST-SR, we define it by an injective function f : T � A
(task-covering-contraint, cf. (3)) that maps a unique agent

a ∈ A to every task t ∈ T , ensuring that Ct ⊆ Cf(t) is

true for at least one agent. While f can also be used by

the task allocation afterward (if enriched with other relevant

constraints, e.g., for allocating tasks to the fastest or the nearest

agent), we want to abstract from defining a concrete function

during the resource allocation for allowing more possible

solutions and thus more flexibility. The set of capabilities Ca

an agent provides results from the set of hardware allocated

to the agent Hpost
a during the resource allocation process.

Hpost
a is the set of hardware allocated to a by the solution of

the resource re-allocation, being the set of decision variables

for the CSOP. The relation between allocated hardware and

provided capabilities is defined by a common knowledge data
base that, queried with a certain set of hardware types, delivers

the resulting capabilities as described in Section I. As every

hardware has a defined weight w(h) and each agent has a

maximum payload p(a), i.e., the maximum aggregated weight

an agent is able to move with (which we claim to be an

inherent capability of each agent), the allocation also has to

take care of not overloading an agent (payload-constraint, cf.

(1)). Of course, each hardware module can only be allocated

to one agent at a time (hardware-constraint, cf. (2)). We define

the CSOP as follows:

min.
∑

a∈A ra

s. t. ∀a ∈ A : p(a) ≥ ∑
ha∈Hpost

a
w(ha), (1)

∀a �= b ∈ A : Hpost
a ∩Hpost

b = ∅, (2)

∃f : T � A, ∀t ∈ T,Ct ⊆ Cf(t) (3)

with ra :=
∣
∣Hpre

a Δ Hpost
a

∣
∣ , (4)

Ca ⊆ C := query database(Hpost
a),

Ct ⊆ C,Hpre
a ,Hpost

a ⊆ H

Fig. 3. Two step decomposition of the RAP. While the centralized problem
definition from Section II-A has to handle all |A| agents and |T | a decomposed
partial problem only has to regard one agent and one task at a time.

where A is the set of all agents, T the set of all relevant

tasks, H the set of all hardware modules, C the set of all

capabilities, Hpre
a is the set of hardware allocated to agent

a ∈ A previous to an resource re-allocation. In (4) we use the

symmetric difference AΔB := (A \B) ∪ (B \A) to identify

this set of changed hardware.

B. Decomposing the Resource Allocation Problem

When analyzing the complexity of the CSOP in Sec-

tion II-A, it is obvious that its computability is only given for

small sizes of H , A, and T . As for every agent there has to

be decided which of the available hardware modules should

be allocated to allow a valid task allocation, the number of

solutions of the RAP is in O(|A||H|·|T ||A|
). In other words, for

every possible resource allocation (|A||H|
combinations [21])

we need to validate that a task allocation is possible (|T ||A|

combinations [17]).1 To come by this complexity, we pro-

pose to decompose the RAP, generate partial solutions, and

aggregate them to achieve a solution approximately similar to

the central solution concerning the optimization criteria, i.e.,

minimizing hardware reconfigurations (this heuristic already

proved to be very efficient for resource allocation in the

domain of virtual power plants we studied earlier [12]). Due

to the global component of the RAP (cf. (2)) we prefer this

contract net inspired solution [23] over specifying our problem

as distributed constraint optimization problem (DCOP) [24].

Thereby we exploit a problem-specific decomposition and

avoid messaging overhead. The decomposition can be achieved

by dividing the calculation of Hpost
a for all a ∈ A into

partial problems concerning only a single agent α ∈ A,

each. The resulting |A| partial problems are individualized for

each agent, thus, instead of regarding all other agents when

minimizing the amount of hardware reconfigurations like it is

done in the centralized CSOP (cf. Section II-A), each agent α
only regards its own configuration, e.g., minimizes rα and not∑

a∈A ra. Consequently, (2) is neglected here but respected in

the following solution aggregation. Resulting from the defini-

tion of the task allocation problem as ST-SR (cf. Section II-A),

the problem size of the RAP is further reduced in terms of the

tasks that are regarded while calculating a partial solution.

More precisely, for solving one partial problem only one task

τ ∈ T has to be regarded at a time. To cover all tasks of

the original problem, the partial problem has to be solved for

1Considering the worst case |T | = |A|, the problem is in O(|A||H|+|A|).

112

every task (i.e., |T | times) by each agent α consequently (cf.

Fig. 3). In the tradition of auction mechanisms, which are

the most common market-based approaches [19], we call a

solution to one partial problem proposal, i.e., the solution for

the partial problem concerning agent α and task τ is named

Hpro
α (τ). This partial RAP again is encapsulated in a CSOP.

For generating a valid proposal, the calculated partial solution

Hpro
α (τ) has to assert that the proposed resource allocation

results in all relevant capabilities needed for the defined task

τ (capability-constraint, cf. (5)), when queried within the data

base while respecting α’s payload-constraint (6). With that,

the complexity of solving a decomposed partial problem is in

O(2|H|), respectively O(|T | ·2|H|) for all tasks. The definition

of this partial CSOP is as follows (bottom of Fig. 3):

min. rα

s. t. Cτ ⊆ Cα, (5)

p(α) ≥ ∑
ha∈Hpro

α (τ) w(hα) (6)

with rα = |Hpre
α Δ Hpro

α (τ)| ,
Cα ⊆ C := query database(Hpro

α (τ)),

Cτ ⊆ C,Hpre
α ,Hpro

α (τ) ⊆ H

To aggregate all partial solutions back to a solution for

the original CSOP, another optimization problem has to be

solved for finding the best combination of all partial solutions.

Thereby, similar to the centralized solution defined in Sec-

tion II-A, the amount of changed hardware modules shall be

minimized while allocating resources to agents. The allocation

itself again is subject to a set of constraints. Similar to the

centralized CSOP, the hardware-constraint (8) as well as the

task-covering-constraint (9) has to hold for a valid solution. In

comparison to the centralized RAP, the complexity of the ag-

gregation problem is heavily reduced. The payload-constraints
of individual agents no longer have to be reviewed, as they

are already taken into account in the proposal generation,

c.f., (6). Moreover, the possible resource allocations for every

agent are restricted to those covered by a proposal (proposal-
constraint, cf. (7)). This reduces the amount of combinations

from |A||H| · |T ||A|
to |T ||A|

for the aggregation problem. This

problem can be defined as follows:

min.
∑

a∈A ra

s. t. ∀t ∈ T, ∃a ∈ A : Hpro
a (t) = Hpost

a , (7)

∀a �= b ∈ A : Hpost
a ∩Hpost

b = ∅, (8)

∃f : T � A, ∀t ∈ T,Ct ⊆ Cf(t) (9)

with ra =
∣
∣Hpre

a Δ Hpost
a

∣
∣

The complexity of the decomposed approach for solving the

RAP consequently is in O(|T | · 2|H| + |T ||A|
), adding up the

complexity for generating proposals (done in parallel for all

agents) with complexity of aggregating the proposals. Due

to the decomposition and distributed calculation of partial

problems it is not guaranteed that there is an optimal or even

any solution for the aggregation problem. Some dependencies

of the centralized CSOP are hidden for individual agents and

considered the first time when aggregating the proposals, e.g.,

the hardware-constraint (resources might be allocated more

often than once in different proposals). In Section III we

propose an appropriate heuristic to reduce the occurrence of

this dead-lock situations, among others.

III. SOLVING THE RAP WITH TRANSFORMRS

In order to solve the RAP, we introduce two different

algorithmic approaches. The first approach implements the me-

thodical procedure to solve the RAP centrally while the second

does so distributively. Since distributed approaches can lead to

dead-lock situations, we further present an integrated solution

combining the aforementioned two approaches in order to

mitigate this, which we call TRANSFORMRS (Task and

Resource Allocation Strategy for Multi-Robot Systems). We

assume that there are no communication issues, e.g., ensured

by a reliable communication infrastructure and therefore each

robot can always reach all other robots.

A. Solving the RAP centrally

The central algorithm for solving the RAP reconfiguration

sequence for an ensemble with the size of n robots (i.e.,

|A| agents) is illustrated by the activity in Fig. 4. The left

side of the illustration shows the role distribution of the

entire ensemble within the resource allocation process. Here,

any robot can adopt the role of the coordinator (upper part)

while all other robots are participants (lower part). The right

side points out the different activities for the coordinator

and the participants in two separated, but interacting activity

diagrams. When the need arises to re-allocate resources in the

ensemble as a task allocation failed in advance (cf. Fig. 2),

the ensemble autonomously initiates the adaption process. At

first, the two roles must be determined. Since all robots are

equal from a software perspective, every robot is able to

adopt the role of the coordinator. The actual assignment is

decided by an appropriate leader election algorithm [25] we

do not focus on in this paper. After the coordinator has been

elected, it collects the necessary data for solving the RAP.

Since it is a centralized approach, we made the assumption

that the current system configuration is known globally by

every robot. The first component of this data collection is

the information pertaining to individual robots, such as their

current configuration and maximum load capacity, whereas the

second component consists of the task requirements in terms

of their required capabilities. After the required data collection

Fig. 4. Activity for solving the resource allocation problem centrally. One
robot adopts the role of the coordinator, calculates a new resource allocation
for all n participating robots, and informs them about the new system
configuration. All other robots adopt the role of participants that realize the
new system configuration. Task allocation and execution are not represented.

113

Fig. 5. Activity for solving the resource allocation problem distributively. One robot adopts the role of the auctioneer initiating a market-based resource
allocation with a call for proposals (CfP). When receiving proposals from participating robots (bidders) it aggregates them to a new system configuration
solving the RAP, if possible. Each bidder calculates only partial solutions to the RAP (cf. Fig. 3). Similar to the centralized solution, bidders realize new
system configurations when they get informed by the auctioneer. Again, nether task allocation nor execution are represented.

is completed the coordinator centrally solves the Resource

Allocation Problem (RAP) as defined in Section II-A. The

overall solution contains the new configurations comprised

of hardware modules, which the coordinator distributes to all

available participants. As soon as the participant receives the

message containing the new resource allocation, it analyzes

it by comparing its current hardware configuration with the

new configuration. Additionally, it saves the new (current)

configuration of all other robots to keep the global knowledge

consistent. Then it decides if a reconfiguration is necessary

or not. If so, an actual reconfiguration is executed leading

to change of hardware modules. Each robot is now equipped

with new capabilities. If a robot already possesses the required

hardware modules the reconfiguration is complete without any

hardware modifications for this participant. The same process

is performed on all participants involved in parallel. In a final

step, all participants notify the coordinator that they have

finished their own reconfiguration and the overall ensemble

reconfiguration sequence is finished by the coordinator (not

included in Fig. 4).

B. Solving the RAP Distributively

Depending on the application scenario, the number of

hardware modules, tasks, and agents can each be very large. To

counteract this complexity, we propose to decompose the RAP,

by calculating partial solutions and aggregating them in order

to find the solution that most closely resembles the central

solution as formalized in Section II-B. Analogously to Fig. 4

for the central approach, Fig. 5 is separated into the same two

parts for the distributed approach. As the problem is solved

using a market-based approach, we introduce additional roles

for the auction. In addition to its usual role, the coordinator

adopts the role of the auctioneer while the participants addi-

tionally become bidders. Just like in the central case, every

robot can take on any role in principle, so first of all a leader

election is performed to determine the roles. As mentioned

in Section II-B, the objects up for auction are the tasks for

which proposals containing the hardware modules that the

bidder would like to allocate for each task are generated. To

start the auction, the auctioneer sends a call for proposals

which consists of the required tasks including their required

capabilities. After receiving the call for proposals the bidder

analyzes it and collects the pertinent information. This entails

information on all existing available hardware in the system

(but not its current allocation), the individual robot’s maximum

payload as well as other local dependencies, e.g., between

hardware types and capabilities. As soon as all required infor-

mation has been collected, the bidder calculates a bid based

on its local knowledge by solving the CSOP for proposals

in Section II-B for every task of the RAP and sums up as a

single proposal that is sent to the auctioneer. Each bid contains

the hardware modules that the bidder would like to employ

for the associated task i.e., a partial resource allocation as a

partial solution of the RAP. These steps are carried similarly

out by all other bidders. Once the auctioneer has received

all proposals it aggregates all these partial solutions of the

RAP back to a complete solution by solving the aggregating

CSOP of Section II-B. All bidders are notified by sending a

message with the new configuration, this time only containing

the accepted bid including the participants’ new hardware

configuration instead of the whole new system configuration as

needed in the central approach. From this step on, the activity

follows the same procedure as in the centralized approach.

C. Integrated Solution: TRANSFORMRS

As described in Section II-B, each robot only considers

its own configuration and available hardware modules when

solving the partial RAP distributively, instead of considering

all changes by other robots when minimizing the amount of

hardware reconfigurations. Due to this decomposition, some

dependencies of the centralized CSOP are not apparent to the

individual robot, e.g., specific hardware modules might be allo-

cated more often than once in different proposals (hardware-
constraint). As soon as the partial solutions are aggregated,

it is possible that no solution can be found and a dead-lock

situation occurs. We circumvent this problem by requesting

more than one proposal from every bidder, each of them

unique concerning the requested hardware for a specific task to

increase the number of possible allocations. In order to enable

submission of multiple bids for the same task, bids of declining

cost-effectiveness concerning rα (k-best) must be calculated.

The first proposal thus contains the best local solution, in

which as little as possible plugging and unplugging processes

take place. The second proposal represents the second best,

locally calculated solution and so on. To allow all bidders to

submit more than one proposal, the auctioneer additionally

sends the desired number of proposals (k). Depending on k,

the bidder calculates up to k proposals which are then sent

to the auctioneer in the next step. The sequence follows the

same procedure as described in the distributed approach. As

114

Fig. 6. Activity for our TRANSFORMRS approach. If no solution for the
RAP can be determined distributively, a solution is calculated centrally.

this is still a heuristic approach, which does not guarantee

a solution even if one exists, we overcome this dead-lock

situation by integrating the distributed with the centralized

approach (shown in Fig. 6), we call TRANSFORMRS. After

the distributed approach fails to solve the RAP, additional

communication takes place to provide the auctioneer with

local information about all bidders in order to solve the RAP

centrally. After the communication is completed the RAP is

solved with the central approach analogously to Section III-A.

IV. EVALUATION

In our evaluation we want to examine our approaches from

Section III and compare them under different conditions.

Therefore, we are interested in analyzing relevant properties of

the central approach (CA, cf. Section III-A) and the distributed

approach (DA, cf. Section III-B) concerning 1) the total time
consumed for computing a new resource allocation, 2) the
quality of a solution concerning needed hardware changes (cf.∑

a∈A ra in Section II-A), and 3) the success rate, i.e., how

often is a solution to the RAP found. TRANSFORMRS intro-

duced in Section III-C is not subject to the comparison as it

combines the aforementioned CA and DA in a promising way.

Instead, we investigate on our k-best heuristic for improving

success rate and quality. We state the following hypotheses we

want to verify in the following:

H1) DA outperforms CA in terms of computation time

needed, especially with increasing problem size.

H2) The quality of solutions calculated by DA is equal

to that calculated by CA.

H3) The success rate of DA is higher than that of the CA

within a defined time limit.

H4) Increasing k in our k-best heuristic increases success

rate and solution quality of TRANSFORMRS.

A. Testbed

For both CA and DA we define a maximum timeout for

calculating valid solutions of 300 seconds, justified by the fact

that we are deploying our implementation to real robots where

immense timeouts are undesirable. This timeout is of high

relevance for measuring the success rate as we only accept

those solutions as valid ones that where calculated before it.

The success rate also is influenced by the way we create our

evaluation scenarios. As we do not evaluate our algorithms

integrated with the rest of our system but as a modularized

component we decided to determine initial conditions (i.e.,

agent and hardware properties as well as task requirements)

randomly but equal for comparative evaluations. This of course

does not guarantee that in general there is a valid solution for

every initial configuration (cf. Section III) which is undesirable

for our comparative evaluations. Therefore, we are not able

to evaluate the results from our approaches to a “ground-

truth” but only against each other. That means that for a

given initial condition we say a RAP is solvable if and only

if one of our approaches (including all heuristics) is able

to find a solution within the allowed time frame.2 While

according to this, the number of total runs performed per

configuration differs (cf. Table I), we ensured to have at

least 100 valid runs per problem size (except for one) to

achieve significant results. The problem size is determined

by the number of participating agents |A|, the number of

tasks |T | defining the resource requirements, the number of

capabilities |C| a task can require, and the number of hardware

modules |H|, randomly instantiated of different types (i.e.,

providing different capabilities). For identifying the individual

effect on the properties we investigate in hypothesis H1

– H4, we systematically increase each of these parameters

and create an evaluation run for every reasonable parameter

combination. To reduce complexity in our evaluations, we

restrict our MRTA to SR-ST. Consequently, e.g., combinations

containing |T | > |A| or |T | > |H| are excluded. We iteratively

increase the problem size in terms of |A|, |T |, and |C| in

steps of 2 in [2, 10] (the limit of 10 assures feasibility also for

mobile hardware while still being adequate for our problem

domain) while keeping |H| = 10 (to assure there are enough

modules for the requirements). To support our hypothesis, we

perform paired t-tests (one- or two-sided, where indicated) for

normally distributed populations, respectively Mann-Whitney-

U tests for non-normal distributed ones. To verify the (non-)

normal-distribution we perform Kolmogorov-Smirnov tests.

The evaluations for Section IV-B were executed on high-

performance server hardware (16 core @3GHz CPU, 32

GB RAM), evaluations for Section IV-C were executed on

the same hardware as well as on single-board computers

(ODROID-XU4) we usually use to control our mobile robots.

To find solutions for the RAP (cf. Section II), we use Gecode

as a solver for the CSOPs which we modeled with MiniZinc.3

We do not take into account messaging overhead in our run

time measurements (CA needs |A| messages, DA 3 · |A|).

B. Results

To support our hypotheses H1 – H3 we compare results

achieved from CA with that of the DA with k = 1 (cf. Table I,

columns labeled with k = 1), while for supporting H4 we

investigate in columns with k = 2 and k = 3 also. In Table I,

problem sizes are encoded as, e.g., 10:8:6:4 for |A| = 10,

|H| = 8, |T | = 6, |C| = 4. We further classify the problem

sizes by selecting one of these parameters (A,H,T,C) to be

either set to a great or low number and whether the problem

size defined by the other parameters is small or big4, e.g.,

analyzing the parameter agents (A) set to a low (L = 4) size

2The ground-truth can not be determined otherwise as this would need the
central solver to either prove a CSOP to be solvable or insolvable which often
can not be computed in adequate time as the problem itself is NP-hard [21].

3ODROID on http://www.hardkernel.com/, MiniZinc on http://www.
minizinc.org/, and Gecode on http://www.gecode.org/

4Small / big: We set other parameters to the lowest / highest possible values.

115

TABLE I
COMPARATIVE EVALUATION OF THE CENTRAL APPROACH (CA) AND DISTRIBUTED APPROACH (DA) AND EVALUATION OF THE K-BEST-ALGORITHM

OF TRANSFORMRS. RUN TIME COMPARES NEEDED TIME FOR CA AND DA (FOR EACH k ∈ {1, 2, 3}), QUALITY THE AMOUNT OF NEEDED PLUG-IN /
PLUG-OFF PROCESSES, AND SUCCESS THE AMOUNT OF VALID SOLUTIONS FOUND WITHIN OUR TIME LIMIT. FOR EACH COMPARISON. CA AND DA

WORK ON EQUAL PROBLEMS. THIS IS ALSO ENSURED FOR THE K-BEST EVALUATION (EQUAL PROBLEMS FOR EACH K COMPARED).

problem # runtime in milliseconds: mean (std) quality in needed reconfigurations: mean (std) success: absolute (rate) and improvement absolute (relative)
size total k=1 k=2 k=3 k=1 k=2 k=3 CA k=1 k=2 k=3

A:H:T:C runs CA DA CA DA CA DA CA k=1 delta k=1 k=2 delta k=2 k=3 delta # (rate) # (rate) +/- (rel) # (rate) +/- (rel) # (rate) +/- (rel)

ASL
183

172 426 173 952 173 1272 0.77 0.77 0.00 0.77 0.77 0.00 0.77 0.77 0.00 183 129 0/54 158 29/0 158 0/0

2:10:2:2 (8) (26) (8) (58) (8) (246) (0.71) (0.71) (0.0) (0.71) (0.71) (0.0) (0.71) (0.71) (0.0) (1.0) (0.7) (0.7) (0.86) (1.22) (0.86) (1.0)

ASG
199

1419 612 1710 2873 1751 3952 0.68 0.68 0.00 0.64 0.64 0.00 0.65 0.65 -0.04 199 187 0/12 183 11/15 186 3/0

10:10:2:2 (2958) (114) (3573) (4544) (3620) (5136) (0.65) (0.65) (0.0) (0.64) (0.64) (0.0) (0.64) (0.64) (0.31) (1.0) (0.94) (0.94) (0.92) (0.98) (0.93) (1.02)

ABL
1138

2202 893 2219 2143 2219 3247 2.73 2.80 -0.07 2.73 2.75 0.04 2.73 2.75 0.00 1138 391 0/747 733 342/0 733 0/0

4:10:4:4 (8707) (140) (6727) (240) (6727) (532) (0.99) (1.07) (0.35) (0.99) (1.03) (0.3) (0.99) (1.03) (0.0) (1.0) (0.34) (0.34) (0.64) (1.87) (0.64) (1.0)

ABG
274

258744 1136 248413 70768 240998 70065 1.32 1.32 0.00 0.28 2.24 0.12 0.31 2.21 -0.12 57 199 168/26 159 57/97 115 4/48

10:10:4:4 (99323) (200) (107739) (92141) (114806) (80131) (0.69) (0.69) (0.0) (0.62) (0.85) (0.53) (0.65) (0.86) (0.62) (0.21) (0.73) (3.49) (0.58) (0.8) (0.42) (0.72)

2:10:2:2 cf. ASL
TSG

618
123731 1167 141809 20962 141809 44227 3.94 3.94 0.00 3.19 3.86 0.00 3.19 3.86 0.00 563 21 4/546 181 160/0 181 0/0

6:10:6:2 (109208) (165) (120748) (10279) (120748) (16080) (0.8) (0.8) (0.0) (1.71) (0.89) (0.0) (1.71) (0.89) (0.0) (0.91) (0.03) (0.04) (0.29) (8.62) (0.29) (1.0)

TBL
196

12939 699 17199 5710 18812 6206 1.03 1.03 0.00 1.01 1.02 0.00 1.01 1.02 -0.03 190 180 3/13 174 13/19 175 4/3

10:10:2:4 (41173) (118) (51855) (10388) (55935) (13932) (0.73) (0.73) (0.0) (0.74) (0.73) (0.0) (0.73) (0.73) (0.23) (0.97) (0.92) (0.95) (0.89) (0.97) (0.89) (1.01)

TBG
71

300375 1715 300375 75024 300381 118401 - - - 0.00 7.00 0.00 - - 0.00 4 42 42/4 26 25/41 6 0/20

10:10:6:4 (43) (291) (29) (88875) (28) (100551) - - - (0.0) (0.0) (0.0) - - (0.0) (0.06) (0.59) (10.5) (0.37) (0.62) (0.08) (0.23)

HSL
15465

125 384 125 809 125 1015 1.26 1.26 0.00 1.26 1.26 0.00 1.26 1.26 0.00 15465 9617 0/5848 12648 3031/0 12648 0/0

2:2:2:2 (7) (52) (6) (15) (6) (197) (0.67) (0.67) (0.0) (0.67) (0.67) (0.0) (0.67) (0.67) (0.0) (1.0) (0.62) (0.62) (0.82) (1.32) (0.82) (1.0)

2:10:2:2 cf. ASL
HBL

378
45130 976 45245 13233 45245 20657 2.79 2.81 -0.02 2.64 2.82 0.00 2.64 2.82 0.00 361 128 7/240 294 166/0 294 0/0

10:4:4:4 (67567) (167) (70612) (18664) (70612) (27895) (0.59) (0.65) (0.18) (0.85) (0.64) (0.0) (0.85) (0.64) (0.0) (0.96) (0.34) (0.35) (0.78) (2.3) (0.78) (1.0)

10:10:4:4 cf. ABH

2:10:2:2 cf. ASL
CSG

1124
18478 590 18381 1284 18381 1512 1.99 1.99 0.00 1.92 2.00 0.00 1.92 2.00 0.00 1089 909 33/213 976 67/0 976 0/0

2:10:2:10 (64623) (165) (64527) (328) (64527) (555) (1.26) (1.27) (0.08) (1.3) (1.26) (0.0) (1.3) (1.26) (0.0) (0.97) (0.81) (0.83) (0.87) (1.07) (0.87) (1.0)

CBL
316

210576 967 158513 110510 87800 71972 1.40 1.40 0.00 0.66 1.48 0.06 0.82 1.24 0.00 125 230 153/48 123 56/163 57 0/66

10:10:4:2 (130356) (185) (145970) (108538) (133046) (77058) (0.81) (0.81) (0.0) (0.56) (0.68) (0.38) (0.45) (0.63) (0.0) (0.4) (0.73) (1.84) (0.39) (0.53) (0.18) (0.46)

CBG
281

291803 1613 290400 38199 291129 42791 1.80 1.80 0.00 0.08 3.00 0.04 0.07 3.02 -0.09 15 234 224/5 229 46/51 213 4/20

10:10:4:10 (44311) (408) (46168) (63476) (45389) (69047) (0.98) (0.98) (0.0) (0.42) (0.92) (0.37) (0.4) (0.93) (0.57) (0.05) (0.83) (15.6) (0.81) (0.98) (0.76) (0.93)

while other parameters define a big (B = |A|:10:4:4) problem

is abbreviated as ABL.

Investigating H1: To support our hypothesis we compare

run times for different problem sizes picked from Table I

where we increase the parameter under observation from low
to great and the problem size from small to big respectively.

For achieving a fair comparison, we neglect results originating

from initial conditions where DA determines that there is no

valid solution.5 In small configurations CA outperforms DA

in every configuration significantly when the parameter of

relevance is set to low (e.g., ASL: CA needs 172ms, DA needs

426ms, p = 7.1 · 10−215, or HSL: c = 125ms, d = 384ms,

p = 0.0). This is due to the natural overhead (proposal

generation and aggregation) DA suffers from and CA does not.

When increasing to the respective great problem, this relation

is reversed completely. While run time for CA increases

from ASL to ASG with factor 8.25 DA increases only with

factor 1.47. The same relation holds for CSL to CSG (for

CA with factor 107.43, for DA with factor 1.38) and also

for TSL to TSG (CA with factor 720.34, DA with factor

2.74). Thus, in these great configurations DA outperforms CA

significantly. Only when increasing |H| from HSL to HSG has

less influence on CA’s runtime (factor 1.38, factor for DA is

1.11, cf. ASL). In big problems CA’s performance is even

worse and already close to the calculation limit within our

time out (we consider timed out runs with 300s in the average

calculation which is an underestimation). While low numbers

for |A| (ABL needs 2, 20s), |T | (TBL needs 12, 94s) and

|H| (HBL needs 45, 13s) are still feasible within our time

5As those situations are uncovered very quickly, results would be falsified
in terms of reducing the mean run time of DA while increasing that of the CA.
This also explains varying average run times for CA in Table I for k = 1, 2, 3

limit (cf. CA in Fig. 7 left), increasing the parameter of

interest to great (cf. CA in Fig. 7 right) leads to impracti-

cal run times of 258, 74s in ABG (factor 117.5), 300, 385s

in TBG (factor 23.2), and 258, 74s in HBG (factor 5.73).

For |C| increasing from CBL to CBG seems to not have

that huge influence on run time (factor 1.38) but this is only

due to the time out restriction and the already high run time

for CBL (212, 58s) and thus run times for CBL and CBG are

impractical (cf. Fig. 7). Like in small problems DA again

is very robust against increasing from low to great in big
problems for almost all parameters. The biggest increase in

run time is caused by |T | (from TBL with 699ms to TBG with

1715ms, factor 2.45), but for all problem sizes the distributed

approach’s run time is below 2000ms thus significantly lower

than CA for all big problems in Table I. We see that especially

with increasing the problem size, the DA outperforms CA by

orders of magnitude significantly (Cohens’s d test results in

values from 258k − 300k in big problems in Table I) and

thus H1 holds. This is also true for all problems bigger than

|A| ≥ 6, |H| ≥ 6, |T | ≥ 4, |C| ≥ 4 where we see a mean run

time for CA vs. DA of 1016s (3192s) to 575s (166s) which

is significant (p = 2.30 · 10−5).

Investigating H2: To support H2, we compare the results

from different problem sizes. Again, we want to perform fair

comparisons and thus only consider results originating from

initial conditions where both approaches achieved a valid so-

lution. By analyzing our results in Table I, we can not find any

significant difference between CA and DA (all data sets are

normally distributed, so we use t-tests). Differences occurring

in ABL (p = 0.35), HBL (p = 0.84), and CSG (p = 0.94) are

only by chance. Thus, we find that if DA achieves a solution

its quality is equal to that CA would have found and H2 holds.

116

CA

DA(k=1)

DA(k=2)

DA(k=3)

0s 1s 2s 3s 4s 5s

A

0s 50s 100s 150s 200s 250s 300s

CA

DA(k=1)

DA(k=2)

DA(k=3)

0s 2s 4s 6s 8s 10s 12s 14s

T

0s 50s 100s 150s 200s 250s 300s

CA

DA(k=1)

DA(k=2)

DA(k=3)

0s 20s 40s 60s 80s 100s 120s

H

0s 50s 100s 150s 200s 250s 300s

CA

DA(k=1)

DA(k=2)

DA(k=3)

0s 50s 100s 150s 200s 250s 300s

C

Low

0s 50s 100s 150s 200s 250s 300s

Great

Fig. 7. Run time comparison of CA and DA (k=1,2,3) in big problems (box
plots for time in seconds). We scale x-axis dynamically for each problem size.

For generalizing this statement, we also evaluated further

problem sizes but never identified a significant difference

(lowest confidence but not rejected for 4:8:2:2 with c = 0.73,

d = 0.86, p = 0.11, as we test for equality here).

Investigating H3: To measure the success rate we only

consider those runs performed on initial conditions where we

definitely know a valid solution exists (cf. Section IV-A). In

Table I within columns success the rate is given as ratio cal-

culated by the total amount of solutions found by an approach

divided by the number of total runs in the first column. In the

second column, the improvement to the approach to the left is

given in absolute numbers (+ indicates that, e.g., DA found

solutions where CA did not and − vice verca) and in relative

numbers. For small problem sizes, we see that CA is capable

of finding valid solutions in almost every run, indicated by

a success rate of 1 (we only see minor drop outs with 0.91
in TSG and 0.97 in CSG and CBL). Compared to this, DA

achieves a much more diverse spread success rate, ranging

from 0.03 in TSG (where the central approach achieves 0.91)

to 0.92 in TBL (central achieves 0.97 here). With a look on

improvement from CA to DA in small problems, on the one

hand the biggest improvement can be seen in CSG, where

DA solves 33 problems CA could not, while there are 213
problems that on the other hand can not be solved. For all

small problems the improvement concerning DA over CA is

below 1.0. This indicates, that for small problem sizes H3 must

be rejected. In big problem sizes this is not longer the case,

as the CA can not hold its success rate. It especially suffers

from increasing |A|, respectively |H|. While the success rate

is still 1.0 for ABL and 0.96 in HBL, it drops to 0.21
in ABG / HBG). The same effect can be seen concerning |C|.
From 0.4 for CBL the success rate drops to 0.05 in CBG.

In contrast, DA is not influenced that hard by switching from

low to great in big problems. The biggest drop can be seen

from TBL with 0.92 to TBG with 0.59, which obviously is

a very hard problem when taking into account that CA only

successes with a rate of 0.06. For ABL the success rate of 0.34
(and for HBL 0.34 respectively) does not drop but increases

instead in ABG / HBG to 0.73 which compared to the CA is an

improvement of +168/−26 in absolute numbers (i.e., 349%).

The same can be seen for CBL with an improvement from 0.73
to CBG with 0.83 where especially the improvement from

CA to DA of +224/ − 5 (i.e., 1560%) is remarkable. This

effect can be lead back to the increased flexibility through

an increased amount of proposals in ABL / ABG and to

the reduced chance for resource conflicts in HBL / HBG.

To support our hypothesis we made some further evaluations

including all other combinations in big problems to get a

general statement where we compare the success rate of the

CA to DA. The results is that the overall average success

rate for CA is 0.04, for DA 0.6, which is a significant

difference (p = 2.5 · 10−6) and thus H3 holds for big
problems in general (like in Table I we define big problems

as |A| = 10, |H| = 10, |T | ≥ 4, |C| ≥ 4).6

Investigating H4: We see, that the success rate is very

diversely influenced from increasing k in our k-best algorithm.

On the one hand, Table I shows that increasing k from 1 to 2
has a positive effect especially in small problems. For ASL,

e.g., we see an improvement from 0.7 to 0.86 with 29
additional (0 less) problems solved or even more in TSG (from

0.03 to 0.29) or HSL (0.62 to 0.82). But also in big problems

k = 2 improves success rate in certain configurations, e.g.,

in ABL from 0.34 to 0.64 and in HBL from 0.34 to 0.78.

On the other hand, we also see heavily decreasing success

rates, e.g., in ABG (from 0.73 to 0.58) or CBL (from 0.73 to

0.39). This drop effect is due to the increased combinatorial

problem of aggregating partial problems which often is not

possible within the time-out (we see, e.g., in CBL the mean

run time of k = 2 compared to k = 1 increases from less

than 1s to 110s and a standard deviation of 108s). Increasing

k = 2 to k = 3 does not seem to bring any benefit, again

due to heavily increased run times preventing a solution to

be determined before the time out. Some problems are even

worse handled by k = 3 compared to k = 2, e.g., for CBL we

see a drop in success rate from 0.39 to 0.18 with a total of

66 less solved problems. For all problem sizes included in

Table I we can not find any significant improvement from

k = 1 to k = 2 nor from k = 2 to k = 3 concerning solution

quality, but in contrast see an increased amount of needed

reconfigurations (this still holds for all other evaluated problem

sizes). Thus H4 only partially holds concerning success rate

and has to be rejected for quality improvements. Consequently,

for TRANSFORMRS a portfolio approach for selecting the

appropriate size of k for specific problem sizes.

C. Further Results

To validate real world applicability, we further evaluate 1)
the scalability of DA in problem sizes similar to that described

in Section I and 2) the deployment on robot hardware.

6There is still a significant difference for |A| ≥ 8, |H| ≥ 6, |T | ≥ 4, |C| ≥
4 with CA (0.24) vs. DA (0.48) with (p = 5.2 · 10−6). Reducing |A| to 6
seems to be the cutting point (CA 0.43 vs. DA 0.42) with (p = 0.84).

117

For 1) we investigate in problems of size 10:h:10:6 with

h ∈ {48, 96, 192}. The run time of DA in such problems

still stays in a tolerable frame of 12.16s (9.72s) for h = 48,

34.37s (27.41s) for h = 96, and 87.89s (64.26s) for h = 192.

Remarkable is that the success rate of DA in those problems

is always 1.0. This can be explained by the correlation of

the increased amount of available hardware with the variance

in allocated hardware within proposals. This induces that for

great scale problems (concerning |H|) DA is very well suited.

Evaluation of other problems increasing |A| show that this

is not longer true for |A| > 10. Those sizes need further

decomposition strategies we want to investigate in our future

research. For 2) we deploy TRANSFORMRS on our robot

hardware and evaluate ABG, TBG, HBG, and CBG from Sec-

tion IV-B. We find that those problems are also feasible within

appropriate time (ABG / HBG: 3.47s (0.60s), TBG: 4.88s
(0.93s), CBG: 4.93s (0.70s)) with success rates between 0.83
and 0.92. Compared to the results in Section IV-B we see a

hardware related increase ranging from 285% to 306%. Thus,

our approach also passes the reality check.

V. RELATED WORK

Several approaches already deal with the commonly known

problem of resource allocation. Also the idea of a distributed,

i.e., market-based problem solving is widely known, however

it is rather more common for solving the task allocation

problem [17], [26] than the resource allocation problem [21],

especially in multi-robot systems. To the best of our knowl-

edge, we are the first to solve the resource allocation problem

in a multi-robot scenario for re-allocating robot capabilities,

i.e., solving the RAP with limited, indivisible, not sharable,

static, and multi-unit resources and actually execute the re-

allocation online in a distributed, market-based fashion. The

resource allocation problem first of all is classified by the

type and characteristics of resources that are subject to the

allocation. Following the classification of [21], resources can

be continuous or discrete, divisible or indivisible, sharable

or not sharable, static or dynamic, and single-unit or multi-

unit. Approaches for distributed resource allocation in multi-

agent systems typically deal with divisible and not sharable

resources like energy [12], [27]. In that domain, the demanded

amount of energy is the resource that shall be allocated

to energy producers with the goal to optimally allocate the

whole resource available. While this is a completely different

optimization goal like the one we examine in this paper, [12]

and [27] also use market-based, distributed mechanisms to

allocate resources, which is possible in general when dealing

with divisible resources [28]. Other approaches define the

allocation of computational load needed to handle a computing

task as resource allocation problem [29]. The goal of these

approaches is to solve the resource allocation problem by

minimizing the time needed to calculate a task and thereby is

an instance of the resource scheduling problem [30], differenti-

ating it from our resource allocation problem. Another research

field that tackles the problem of resource allocation is the one

of cloud networked robotics [31]. The resource to be allocated

is either the bandwidth, i.e., the network the robots work

in [32] or the robots themselves that can be allocated by other

agents or humans [33]. When resource allocation and multi

robot systems come up together in literature, often a task allo-

cation problem is expressed as an resource allocation problem.

In [34], e.g., a routing problem is defined as resource allocation

problem on goal destinations that should only be visited once

(tasks) while keeping the needed resources minimal. The term

of self-reconfiguring robots up to now basically was used for

a field of research investigating in algorithms for optimal, effi-

cient re-shaping (e.g., snake-bot [35]), and self-assembly [36],

most often focusing on mechanical connections of the robot

modules [37]. In comparison to the robots empowered with

self-reconfiguration abilities of our understanding, the robots

in these approaches are limited in their actual usage in real

world applications. The way we think of self-reconfiguration

in terms of hardware exchanges for robots to achieve new

capabilities was investigated very sparse up to now. In Preece

et al. [38] robots can be equipped with different hardware

for different tasks. In contrast to our approach, the allocation

of resources is done centrally and offline by querying a

static ontology that defines which capabilities are needed for

certain tasks. Our system in comparison is designed to react

to changed task requirements at run-time. Moreover, Preece

et al. [38] only use unary relationships between hardware

modules and capabilities, while our approach can exploit any

relationship between these two.

VI. CONCLUSION

We model the problem of resource allocation in multi-agent

systems as a constraint optimization problem to cope with

typical issues that come up with robot ensembles. Resources

we consider are hardware modules that can be easily connected

and disconnected to each robot and that deliver certain capabil-

ities for the corresponding robot. A new allocation of resources

is needed when the robot ensemble is not able to fulfill tasks

committed to it, i.e., the capabilities needed to handle those

tasks are not provided by the robots. Within our model, we

can easily respect the internal properties of the robots involved

which are relevant for re-allocating resources, e.g., a robot’s

maximum payload or individual geometric designs.

For solving the resource allocation problem, we pro-

pose TRANSFORMRS an algorithmic approach that exploits

the possibility of decomposing and solving the problem in a

distributed fashion. Our evaluation shows that this approach

significantly reduces the time used for calculating new re-

source allocations compared to a centralized one, especially

with increased problems size in terms of agents, tasks, avail-

able hardware, or capabilities needed by tasks. Furthermore

and to the best of our knowledge, we provide the first approach

to adapt the capabilities provided by robots at run-time which

overcomes the need of specialization typically restricting the

applicability of robot systems in other current approaches.

In future experiments we plan to extend the models used

for individual robots to respect increased robot heterogene-

ity, e.g., individual hardware-capability relationships resulting

118

from heterogeneous geometric designs, that can easily be

integrated in our current model. We expect that these will even

emphasize more the advantages of our distributed approach

which we detected in Section IV when increasing the problem

size. Further, we already achieved some first results concerning

the real world implementation of our robots equipped with the

ability to autonomously reconfigure their capabilities that we

plan to investigate in more in the near future. Also, we are

already developing algorithms for robust execution of tasks.

REFERENCES

[1] B. Wolf, C. Chwala, B. Fersch, J. Garvelmann, W. Junkermann, M. J.
Zeeman et al., “The scalex campaign: Scale-crossing land surface and
boundary layer processes in the tereno-prealpine observatory,” Bulletin
of the American Meteorological Society, vol. 98, no. 6, pp. 1217–1234,
2017. [Online]. Available: https://doi.org/10.1175/BAMS-D-15-00277.1

[2] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira
et al., “Evolution of collective behaviors for a real swarm of aquatic
surface robots,” PLoS ONE, vol. 11, no. 3, pp. 1–25, 03 2016. [Online].
Available: http://dx.doi.org/10.1371%2Fjournal.pone.0151834

[3] R. Thenius, D. Moser, S. Kernbach, I. Kuksin, O. Kernbach,
E. Elena Kuksina et al., “subclutron: a learning, self-regulating, self-
sustaining underwater society/culture of robots,” Art. Life and Intell.
Agents Symposium, 2016, 2016.

[4] O. Kosak, C. Wanninger, A. Angerer, A. Hoffmann, A. Schierl, and
H. Seebach, “Decentralized coordination of heterogeneous ensembles
using jadex,” in 2016 IEEE 1st Int. Workshops on Found. and Applica-
tions of Self* Systems (FAS*W), 2016, pp. 271–272.

[5] R. R. Murphy, S. Tadokoro, D. Nardi, A. Jacoff, P. Fiorini, H. Choset
et al., “Search and rescue robotics,” in Handbook of Robotics, B. Sicil-
iano and O. Khatib, Eds. Springer, 2008.

[6] K. Daniel, B. Dusza, A. Lewandowski, and C. Wietfelds, “Airshield:
A system-of-systems muav remote sensing architecture for disaster
response,” in Proc. 3rd Annual IEEE Systems Conf. (SysCon), 2009.

[7] O. Kosak, “A decentralised swarm approach for mobile robot-systems,”
in Organic Computing: Doctoral Dissertation Colloquium 2015, vol. 7.
kassel university press GmbH, 2015, p. 53.

[8] O. Kosak, C. Wanninger, A. Angerer, A. Hoffmann, A. Schiendorfer,
and H. Seebach, “Towards self-organizing swarms of reconfigurable self-
aware robots,” in Found. and Applications of Self* Systems, IEEE Int.
Workshops on. IEEE, 2016, pp. 204–209.

[9] J. Scherer, S. Yahyanejad, S. Hayat, E. Yanmaz, T. Andre,
A. Khan et al., “An autonomous multi-uav system for search and
rescue,” in Proc. of the First Workshop on Micro Aerial Vehicle
Networks, Systems, and Applications for Civilian Use, ser. DroNet
’15. Florence, Italy: ACM, 2015, pp. 33–38. [Online]. Available:
http://doi.acm.org/10.1145/2750675.2750683

[10] G. De Cubber, D. Serrano, K. Berns, K. Chintamani, R. Sabino,
S. Ourevitch et al., “Search and rescue robots developed by the european
icarus project,” in 7th Int. Workshop on Robotics for Risky Environments.
Citeseer, 2013.

[11] O. Kosak, “Facilitating planning by using self-organization,” in 2017
IEEE 2nd International Workshops on Foundations and Applications of
Self* Systems (FAS*W), Sept 2017, pp. 371–374.

[12] O. Kosak, G. Anders, F. Siefert, and W. Reif, “An Approach to Robust
Resource Allocation in Large-Scale Systems of Systems,” in Self-
Adaptive and Self-Organizing Systems (SASO), 2015 IEEE 9th Int. Conf.
on, 2015, pp. 1–10.

[13] D. C. Andreas, C. D. Eckhoff, and R. D. Loveman, “Serial device daisy
chaining method and apparatus,” Aug. 9 2005, US Patent 6,928,501.

[14] L. Braubach and A. Pokahr, “Developing distributed systems with active
components and jadex,” Scalable Computing: Practice and Experience,
vol. 13, no. 2, pp. 100–120, 2012.

[15] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,” Art. Intelligence, vol. 101, no. 1, pp. 165 – 200,
1998. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0004370298000459

[16] I. Georgievski and M. Aiello, “An overview of hierarchical task
network planning,” CoRR, vol. abs/1403.7426, 2014. [Online].
Available: http://arxiv.org/abs/1403.7426

[17] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The Int. Journ. of Robotics Res.,
vol. 23, no. 9, pp. 939–954, 2004.

[18] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger et al., “The sherpa project: Smart collaboration between
humans and ground-aerial robots for improving rescuing activities in
alpine environments,” in 2012 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Nov 2012, pp. 1–4.

[19] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proc. of the IEEE, vol. 94, no. 7,
pp. 1257–1270, July 2006.

[20] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive
taxonomy for multi-robot task allocation,” The Int. Journ. of Robotics
Res., vol. 32, no. 12, pp. 1495–1512, 2013. [Online]. Available:
http://ijr.sagepub.com/content/32/12/1495.abstract

[21] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet
et al., “Issues in multiagent resource allocation,” Informatica, vol. 30,
no. 1, 2006.

[22] E. Tsang, “Foundations of constraint satisfaction,” 1995.
[23] R. G. Smith, “The contract net protocol: High-level communication and

control in a distributed problem solver,” IEEE Trans. on Computers, vol.
C-29, no. 12, pp. 1104–1113, 1980.

[24] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint optimiza-
tion problems and applications: A survey,” CoRR, 2016.

[25] F. S. Gharehchopogh and H. Arjang, “A survey and taxonomy of leader
election algorithms in distributed systems,” Indian Journ. of Science and
Technology, vol. 7, no. 6, p. 815, 2014.

[26] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:
A review of the state-of-the-art,” in Cooperative Robots and Sensor
Networks 2015. Springer, 2015, pp. 31–51.

[27] H. F. Wedde, “Dezent – a cyber-physical approach for providing
affordable regenerative electric energy in the near future,” in 2012
38th Euromicro Conference on Software Engineering and Advanced
Applications, Sept 2012, pp. 241–249.

[28] K. Lai, B. A. Huberman, and L. R. Fine, “Tycoon: A distributed
market-based resource allocation system,” CoRR, vol. cs.DC/0404013,
2004. [Online]. Available: http://arxiv.org/abs/cs.DC/0404013

[29] S. Banerjee and J. P. Hecker, “A multi-agent system approach to
load-balancing and resource allocation for distributed computing,” in
First Complex Systems Digital Campus World E-Conference 2015,
P. Bourgine, P. Collet, and P. Parrend, Eds. Cham: Springer International
Publishing, 2017, pp. 41–54.

[30] R. Kolisch and S. Hartmann, Heuristic Algorithms for the
Resource-Constrained Project Scheduling Problem: Classification and
Computational Analysis. Boston, MA: Springer US, 1999, pp. 147–178.
[Online]. Available: https://doi.org/10.1007/978-1-4615-5533-9 7

[31] K. Kamei, S. Nishio, N. Hagita, and M. Sato, “Cloud networked
robotics,” IEEE Network, vol. 26, no. 3, pp. 28–34, May 2012.

[32] L. Wang, M. Liu, and M. Q. H. Meng, “A hierarchical auction-based
mechanism for real-time resource allocation in cloud robotic systems,”
IEEE Trans. on Cybernetics, vol. 47, no. 2, pp. 473–484, Feb 2017.

[33] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos, “Cloud
robotics: Current status and open issues,” IEEE Access, vol. 4, pp. 2797–
2807, 2016.

[34] S. Rathinam, R. Sengupta, and S. Darbha, “A resource allocation
algorithm for multivehicle systems with nonholonomic constraints,”
IEEE Transactions on Automation Science and Engineering, vol. 4,
no. 1, pp. 98–104, Jan 2007.

[35] R. Thakker, A. Kamat, S. Bharambe, S. Chiddarwar, and K. M. Bhur-
chandi, “Rebis - reconfigurable bipedal snake robot,” in 2014 IEEE/RSJ
Intern. Conf. on Intel. Robots and Systems, Sept 2014, pp. 309–314.

[36] M. Yim, W. m. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson et al.,
“Modular self-reconfigurable robot systems,” IEEE RAM, vol. 14, no. 1,
pp. 43–52, 2007.

[37] E. H. Østergaard, K. Kassow, R. Beck, and H. H. Lund, “Design
of the atron lattice-based self-reconfigurable robot,” Autonomous
Robots, vol. 21, no. 2, pp. 165–183, Sep 2006. [Online]. Available:
https://doi.org/10.1007/s10514-006-8546-1

[38] A. Preece, M. Gomez, G. de Mel, W. Vasconcelos, D. Sleeman,
S. Colley et al., “Matching sensors to missions using a knowledge-based
approach,” Proc. of SPIE: Defense Transformation and Net-Centric
Systems, vol. 6981, pp. 698 109–1, 2008.

119

