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Our objective here is the study of the noise-assisted generation of mag-
netic flux in a collection of identical mesoscopic cylinders which are coupled
via mutual inductances. With thermal (Johnson–Nyquist)-fluctuations
acting at finite temperature, the system can be modeled in terms of a set
of Langevin equations with a corresponding Fokker–Planck equation. In
the limit of infinitely many constituents, the steady-state of the system is
determined by a mean-field-like, nonlinear Fokker–Planck equation. The
rich complexity of the generated average flux through each cylinder and
its characteristic fluctuations are investigated as a function of various pa-
rameters such as the temperature, the coupling strength and an externally
applied, uniform magnetic field.

PACS numbers: 64.60.Cn, 05.10.Gg, 73.23.–b

1. Introduction

Mesoscopic systems are in-between the micro- and the macro-world and
consequently form a bridge between quantum and classical physics [1]. They
exhibit a variety of novel and unusual phenomena of both quantum and clas-
sical origin. As such, they are of great interest not only from a fundamental
research point of view, but also from the viewpoint of novel technological
applications. An example of such a mesoscopic phenomenon is the persis-
tent current in a metallic ring [2]. The existence of such currents has been
experimentally confirmed by several groups [3].
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With this work we investigate a system of interacting three-dimensional
mesoscopic cylinders which are coupled via mutual inductances. It has been
shown before [4] that for two coplanar mesoscopic rings the self-inductance
can suppress the persistent current; in contrast, the mutual inductances
can cause an enhancement. Here, we consider a set of coaxial cylinders
and analyze the case of the “thermodynamic limit” of an infinite number
of interacting cylinders. The stationary state is then determined by a self-
consistent state equation. Such a model presents an idealized archetype of
e.g. long wires formed by “pieces” made of single-wall carbon nanotubes. In
Sec. 2 we describe in detail the model and derive a set of Langevin equations
for a flux threading each cylinder. A special case, i.e. a one-cylinder system,
is briefly discussed in Sec. 3. A Fokker–Planck equation corresponding to
the set of N Langevin equations is presented in Sec. 4. Addressing the
thermodynamic limit of infinite many constituents we derive a steady-state
equation from a nonlinear mean-field equation. In Sec. 5 we analyze the
average flux and its fluctuations, both in the interacting and non-interacting
mesoscopic cylinder systems, respectively.

2. Model description

In mesoscopic systems composed of a ring with toroidal or cylindrical
geometry persistent currents can occur. They signify the phase coherence
of the electrons, the so-called coherent electrons. In the ground state, at
the temperature T = 0, the only electrons present in the system are the
coherent ones. Their flow is persistent and non-dissipative. At non-zero
temperature, T > 0, a partial set of these electrons become “normal” and
their flow is dissipative. As a result, the amplitude of the persistent current
decreases with temperature [5]. It has been confirmed experimentally [6]
that mesoscopic rings connected to a current source exhibit a nonzero ohmic
resistance. This implies that the flow of “normal” electrons can be modeled
in terms of Ohm’s law. The total current consists thus of a sum of the
coherent current and an Ohmic current.

The mesoscopic cylinder considered herein is formed by the collection
of Nc quasi one-dimensional rings (current channels) stacked along an axis.
The coherent current is then a sum of contributions of single channels which
can produce currents being either paramagnetic for an even number Ne of
coherent electrons, or diamagnetic for an odd number of coherent electrons.
The probability of finding a channel with an odd number of coherent elec-
trons is denoted by P and the probability of finding a channel with an even
number of coherent electrons is equal to 1 − P . Next, consider a system of
N identical mesoscopic cylinders placed concentrically and periodically in
a uniform magnetic field B in the three-dimensional space. Because of the
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mutual inductance, the electric current in one cylinder will induce a mag-
netic flux in another cylinder. Therefore, the fluxes and the currents in the
cylinders are coupled according to the expression [4, 7]

φi =

N
∑

k=1

MikIk + φext , (1)

where φi and Ii denote the flux and the current in the i-th cylinder, respec-
tively. The flux φext is induced by an external uniform magnetic field B.
The coupling coefficients Mik = Mki (which form the matrix M) are the
mutual inductances for i 6= k and self-inductances L = Mii for i = k [7].
The current in the k-th cylinder is a sum

Ik = Inor
k + Icoh

k (2)

of the Ohmic (dissipative) current Inor
k

and the persistent current Icoh
k

. The
Ohmic current Inor

k
= Inor(φk) is determined by the Ohm’s law and Lenz’s

rule, i.e.,

Inor(φk) = − 1
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The characteristic temperature T ∗ is determined from the relation kBT ∗ =
∆F/2π2, where ∆F marks the energy gap and kF is the momentum at the
Fermi surface.

Upon combining (3) and (4) into (1) we obtain the following set of
stochastic equations:

1
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3. The case of no coupling

For the noninteracting system, the flux dynamics threading a cylinder is
described by the Langevin equation

ẋ = −V ′(x, T ) +
√
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pst({xn}) ∝ exp

[−W ({xn})
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with the “order parameter” reading

µ ≡ 〈x〉 =

∞
∫

−∞

x ps(x) dx . (18)

The effective, generalized potential is given by

U(x, T ) = 1
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5. Analysis of the nonlinear state equation

An analysis of the state equation for the case that φext = 0, i.e. when
the external magnetic field B = 0, has been presented in [13]. Therein,
it has been shown that the so-called flux state, characterized by the non-
vanishing mean magnetic flux µ = 〈x〉 6= 0, can occur even if the external
magnetic field B = 0. On the parameters plane (T > 0, λ > 0) there is
a monotonically increasing line, starting from the origin (0, 0) below which
the flux state appears, i.e. a finite, noise-induced flux emerges for sufficiently
low temperatures and sufficiently strong coupling. Here, we focus on the case
B 6= 0 with B being a uniform static magnetic field parallel to the axis of
the coaxially formed cylinders. This means that the parameter σ in the
potentials (13) and (19) becomes ∝ φext ∝ B.

We next compare and contrast the properties of the coupled and the
uncoupled system, respectively. Such an analysis can serve as a guideline
for interpreting possible experimental results.

In the absence of mutual coupling the dynamics of the system is char-
acterized by the generalized potential V (x, T ) given by (13). It depends
strongly on both, the temperature T and the external flux σ which is imposed
onto the system, see Fig. 1. Its shape changes from the symmetrical bistable
form for σ = 0 to the asymmetrical, monostable form for σ ∈ (0, 1/4). Next,
for σ = 1/4 it assumes a symmetric monostable shape. For σ ∈ (1/4, 1/2)
it becomes again asymmetric and monostable. Finally, for σ = 1/2 it is
symmetric bistable. This symmetry follows from (13) and can be recast as

Fig. 1. The generalized potential (13) of the uncoupled system is depicted for

several values of the external flux σ. The remaining values of the parameters are:

T/T ∗ = 0.5, D = 0.001T/T ∗, I0 = 1, P = 1/2 in (11) and kFlx = 0.1 in (6).
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the relation V (x, σ + 1/2) = V (x − 1/2, σ) − 1/8. It indicates a kind of
periodicity with a period L = 1/2.

In Fig. 2 we present the temperature dependence of the stationary mean
magnetic flux µ for the case of coupled (λ 6= 0) and the uncoupled (λ = 0)
cylinders. For uncoupled cylinders and in the absence of an external driving
(σ = 0), the magnetic flux is µ = 0, as expected. Switching on the exter-
nal magnetic flux induces a non-zero value of the mean flux threading the
cylinders. At high temperature, there is no coherent current and the system
behaves asymptotically Gaussian. In this high temperature limit we have
µ = σ, both for the case of coupled and the uncoupled cylinders. At low tem-
peratures, a small change of the externally induced magnetic flux σ results
in a relatively large value of µ. This “amplification” of µ with respect to σ
at small temperatures is steep but continuous, see in Fig. 3. This drastic in-
crease is caused by the coherent current flowing in the system because in the
low temperature limit the susceptibility of coherent electrons (represented
by the flux-derivative of the current-flux characteristics) approaches infin-
ity. These effects are present as well for the case of a coupled system (not
depicted). In the whole temperature regime, the non-zero coupling between
cylinders results in the increase of the mean flux µ. At low temperatures,
the mean flux in the system approaches a finite value, indicating the possible
collective behavior in the absence of an external driving, see in Ref. [13].

Fig. 2. The mean flux threading one cylinder for a coupled (set of nonvanishing

coupling constants λ’s) and an uncoupled (λ = 0) system for several values of the

re-scaled externally induced flux σ, for a = 1.02 and γ = a − λ. The values of the

remaining parameters are the same as in Fig. 1.
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Fig. 3. The mean flux µ treading the uncoupled (λ = 0) cylinder at low temper-

atures is shown vs. the external magnetic flux σ. The remaining values of the

parameters are as in Fig. 1.

Due to the intricate temperature dependence of the generalized poten-
tial caused by the coherent part (11), the system can exhibit an unusual
behavior: We note that for σ = 0.25 (one half of the period L = 1/2) the
mean flux µ essentially becomes independent of temperature, i.e. it de-
pends very weakly on T . This value separates two regimes, cf. Fig. 2: for
σ < 0.25 the mean flux is a decreasing function of the temperature while for
σ > 0.25 it becomes an increasing function of temperature. This constitutes
a temperature-induced effect in equilibrium which leads to an increase of the
persistent current in the mesoscopic system. Similar effects are known to oc-
cur in mesoscopic systems, but there are typically caused by non-equilibrium
sources of fluctuations [14]. Notably, this effect is preserved for the case of
coupled cylinders with λ > 0.

Another measurable quantity of foremost interest and which is strongly
affected by both, the external field σ and the non-zero coupling λ is the
variance of the order parameter. This measure of the strength of fluctua-
tions is depicted with Fig. 4. Its behavior at low and high temperature
is generic: as temperature increases, fluctuations increase as well. At suffi-
ciently high temperatures we observe — regardless of the coupling strength
— the expected linear dependence, being typical for a Gaussian behavior.
However, at moderate temperatures and small σ, there is a regime of the
reduction of fluctuations: although temperature increases, fluctuations de-
cline. It is a case when the potential changes its form from the bistable to



Magnetic Flux in Mesoscopic Cylinders 1703

Fig. 4. The fluctuations of the order parameter are depicted for several values of

the externally induced magnetic flux. The values of the remaining parameters have

been chosen as in Fig. 1. In particular, the temperature is chosen to be below the

characteristic temperature, i.e. T/T ∗ = 0.5.

monostable shape. In the presence of finite coupling, it corroborates the
conjecture stated in [13] that the coupled system undergoes a noise-induced
transition into an energetically favorable state, a finite flux state.

6. Conclusions

In conclusion, we have studied the behavior of a linear chain of interact-
ing mesoscopic cylinders in a finite, uniform magnetic filed B. The influence
of this externally applied magnetic field causes a rich and complex thermal
noise assisted flux behavior, both for the case of uncoupled and coupled cylin-
ders. Our study models the common experimental set-up when investigating
persistent currents and flux in mesoscopic systems at low temperatures. The
properties of the total current flowing in an individual cylinder follow readily
from the results of the magnetic flux via the inversion of the relation in (1).
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