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We present a comprehensive study for the statistical properties of random variables that describe the domain
structure of a finite Ising chain with nearest-neighbor exchange interactions and free boundary conditions. By
use of extensive combinatorics we succeed in obtaining the one-variable probability functions for sid the
number of domain walls, siid the number of up domains, and siiid the number of spins in an up domain. The
corresponding averages and variances of these probability distributions are calculated and the limiting case of
an infinite chain is considered. Analyzing the averages and the transition time between differing chain states at
low temperatures, we also introduce a criterion of the ferromagnetic-like behavior of a finite Ising chain. The
results can be used to characterize magnetism in monatomic metal wires and atomic-scale memory devices.
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I. INTRODUCTION

The Ising model, pioneered just 80 years ago f1g, has be-
come one of the most popular and useful models of statistical
physics. This model system itself and its numerous generali-
zations found wide application for the investigation of not
only physical but also for biological, economical, and social
systems, to name only a few. The model has also been
widely used to characterize the cooperative behaviors in
these and other systems. The salient advantages of the Ising
model are that it is generic for systems with phase transi-
tions, it is very convenient to use, and, moreover, for particu-
lar cases it can be solved exactly, i.e., its partition function
can be calculated, at least in the thermodynamic limit, with-
out approximations. Because exact solutions were found
only for a certain one- and two-dimensional versions of the
Ising model f2,3g, their role for statistical physics is most
important.

The ordinary one-dimensional Ising model, which is rep-
resented by an infinite chain of Ising spins, i.e., spins that can
either be up or down, and which do interact with each other
via the nearest-neighbor exchange interaction, does not ex-
hibit the ferromagnetic phase transition at nonzero tempera-
tures f1g. This well-known result corroborates the known ar-
gument of Landau and Lifshitz f4g, according to which a
long-range order in infinite one-dimensional systems with
short-range interactions is absent. The problem of long-
range ordering, which can emerge in such systems when
these conditions are violated, is of prominent theoretical im-
portance. Its solution for infinite Ising chains with long-
range interactions between spins has been the subject of a
number of remarkable studies ssee, e.g., Refs. f5–11gd.

A priori, the statistical mechanics of a finite Ising chain
with only exchange si.e., short-ranged interaction seems not

to present an interesting topic. This is so, because it does not
exhibit macroscopic ferromagnetic order. A detailed investi-
gation of this model is important, however, by the following
motivating reasons. First, the domain statistics in such finite
chains, i.e., a probability description of forming domains,
domain lengths, and domain walls contains most valuable
information on the thermal equilibrium state. To the best of
our knowledge, these statistics have not been studied before.
The main problem is that the domain characteristics are not
ordinary thermodynamic quantities, i.e., they are not readily
expressed through the partition function. In short, there are
no conventional methods to extract them. Second, a finite
Ising chain represents an appropriate phenomenological
model for describing magnetism in monatomic metal wires
deposited on substrates. Indeed, as it has been discovered
experimentally f12g, a Co chain on Pt substrate is character-
ized by the exchange coupling sthis justifies the nearest-
neighbor approximationd, very large magnetic anisotropy
sthis justifies the approximation of atomic magnetic moments
by Ising spinsd, and long-range ferromagnetic order sthis jus-
tifies the use of finite Ising chainsd. We do emphasize that in
contrast to the case with infinite Ising chains for which fer-
romagnetic order is forbidden at all nonzero temperatures
f13g, finite chains can exhibit the ferromagneticlike behavior
ssee also Sec. IVd. Finally, it is very likely that the one-
dimensional magnets, which are modeled by finite Ising
chains, will have an important implication for magnetic data-
storage technology f14g.

In this paper, using a variety of combinatorial approaches,
we investigate thoroughly the domain statistics in a finite
Ising chain. In Sec. II, we describe the model and introduce
the main definitions. The joint probability functions that de-
scribe the domain structure of a chain are calculated in Sec.
III by the combinatorial method. In Sec. IV, we demonstrate
that the number of domain walls in a finite Ising chain is
binomially distributed. We then introduce a criterion of its
ferromagneticlike behavior and consider the limiting case of
an infinite chain. In Sec. V, we derive the probability func-
tion for the number of up domains and calculate its average
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and its variance. The probability function for the number of
spins in an up domain si.e., domain lengthd and its numerical
characteristics are determined in Sec. VI. We summarize our
novel findings in Sec. VII. Some of our technical details and
manipulations are deferred to the Appendices.

II. MODEL AND NOTATIONS

We consider a finite Ising chain with free boundary con-
ditions that contains an even number N of Ising spins. We
assume that the spins interact through the nearest-neighbor
ferromagnetic coupling Js.0d and the spin variables si si
=1, . . . ,Nd assume only two values +1 and −1, respectively,
corresponding to the up and down spin orientations. For a
given spin configuration hsij, the chain energy is written in
the form

EN„hsij… = − Jo
i=1

N−1

sisi+1. s2.1d

According to the Gibbs distribution, the probability of this
configuration is given by

WN„hsij… =
1
ZN

e−bEN„hsij…, s2.2d

where b denotes the inverse temperature measured in energy
units, and ZN=ohsij

expf−bENshsijdg is the partition function
of a chain. Using, e.g., the transfer matrix method f15g, ZN
can be evaluated exactly, yielding the well-known result

ZN = 2N coshN−1sbJd . s2.3d

In order to characterize the domain distribution in a chain,
we introduce the number of up spins, s, the number of up
domains, p, the number of domain walls, i.e., the number of
up-down and down-up spin pairs, k, and the number of spins
in the first up domain, l. These numbers satisfy the condi-
tions 0øsøN, 0øpøN /2, 0økøN−1, 0ø løN. These
numbers are not independent because, for example, if p=0
then s=k= l=0, and if p=N /2 then s=N /2, k=N−1, and l
=1. The introduced quantities are random due to thermal
agitation, and our main objective is to calculate the one-
variable probability functions PNskd, PNspd, and PNsld that
describe in detail domain statistics in a chain of N Ising
spins. sNotice that some features of the probability function
of magnetization have been studied in f16g.d To this end, we
also introduce the four-variable probability function
PNss ,p ,k , ld representing the joint probability that a chain is
characterized by the parameters s, p, k, and l. Taking into
account that

ENshsijd = ENskd = − JsN − 1d + 2Jk s2.4d

and

WNshsijd =WNskd =
1
ZN

e−bENskd, s2.5d

this probability function can be written as

PNss,p,k,ld =WNskdKNss,p,k,ld , s2.6d

where KNss ,p ,k , ld is the number of spin configurations pos-
sessing the same set of the non-negative integer variables s,
p, k, and l. In accordance with the basic laws of probability
theory f17g, all the one-variable probability functions can be
determined by fixing one variable and summing PNss ,p ,k , ld
over the admissible values of all remaining variables.

III. JOINT PROBABILITY FUNCTIONS

A. Number of spin configurations

The chain states that we describe in terms of the four
variables mentioned above are, in general, degenerate and
KNss ,p ,k , ld spin configurations correspond to each of those
states. The states with s=p=k= l=0 and s= l=N, p=1, k=0
are characterized by only one spin configuration hsi=−1j
and hsi= +1j for all i, respectively. Therefore KNs0,0 ,0 ,0d
=KNsN ,1 ,0 ,Nd=1. For counting KNss ,p ,k , ld in other cases,
when 1øsøN−1, we use combinatorial methods. Within
their framework, we consider an Ising chain with fixed s, p,
k, and l as an alternate sequence of p up boxes and k−p+1
down boxes in which s up spins and N−s down spins are
distributed.

Because the first up box must contain l up spins and in
each other up box must be at least one up spin shence the
condition s− lùp−1 must holdd, the number M↑ of different
distributions of s up spins over p up boxes equals Cs−l−1

p−2 .
Here, the binomial coefficients Cn

m with integers n and m are
defined as follows: Cn

m=n! / sn−md!m! if nùmù0, Cn
m=0 if

m.nù0 or if nù0 and m,0, and Cn
0=Cn

n=1 for all integer
n. Using these properties, we can represent M↑ in the form
M↑=Cs−l−1

p−2+Dspkl sDspkl=ds,0dp,0dk,0dl,0, dn,m is the Kronecker
symbold, which is valid for 0øsøN.

Similarly, the number M↓ of different distributions of N
−s down spins over k−p+1 down boxes, each of which con-
tains at least one down spin, is given by M↓=CN−s−1

k−p . By the
same reason as in the previous case, this formula is also valid
for all values of s. It may seem at first glance, due to the
multiplication principle of combinatorics, that the represen-
tation KNss ,p ,k , ld=M↑M↓ is valid. This is, however, gener-
ally not the case. To obtain the correct formula for
KNss ,p ,k , ld we note that for pù1 the variable k can take
only three values: k=2p, k=2p−1, and k=2p−2. If k=2p
sk=2p−2d then both the first and the last domains in a chain
belong to the down supd type, and the previous formula is
valid. However, if k=2p−1 then those domains belong to
different types and, since the first domain can be either of the
up or down type, we find for this case KNss ,p ,k , ld
=2M↑M↓. Collecting the above results, we obtain

KNss,p,k,ld = s1 + dk,2p−1dCs−l−1
p−2+DspklCN−s−1

k−p . s3.1d

Note that this representation of the function KNss ,p ,k , ld is
valid if the values of its variables are compatible with each
other.

B. Three-variable joint probability functions

By using Eqs. s2.6d and s3.1d, we next can determine all
the three-variable joint probability functions, namely,
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PNss ,p ,kd, PNsp ,k , ld, PNss ,p , ld, and PNss ,k , ld. In view of
our purpose, however, i.e., for determining the mentioned
above one-variable probability functions, we need only two
of them, PNss ,p ,kd and PNsp ,k , ld. According to the com-
mon rule, to calculate the joint probability function
PNss ,p ,kd we need to fix its variables and to perform the
summation of PNss ,p ,k , ld over the admissible values of l.
Since l=0 sand p=k=0d if s=0, and l=N sand p=1, k=0d if
s=N, and 1ø løs−p+1 if 1øsøN−1, we find

PNss,p,kd = HWNs0d, s = 0, s = N ,

P̃Nss,p,kd , 1 ø s ø N − 1.
J s3.2d

Here, we have used the conditions that PNs0,0 ,0 ,0d
=WNs0d and PNsN ,1 ,0 ,Nd=WNs0d, and introduced the nota-
tion

P̃Nss,p,kd = o
l=1

s−p+1

PNss,p,k,ld . s3.3d

In order to evaluate the above sum, we evaluate first the
sum S1=ol=1

s−p+1Cs−l−1
p−2 . If p=1 si.e., sù1d then, using the

properties of binomial coefficients, we obtain S1
=ol=1

s Cs−l−1
−1 =C−1

−1=1, and if pù2 si.e., sù2d then, using the
relation f18g,

o
m=0

n

Cc−m
b = Cc+1

b+1 − Cc−n
b+1, s3.4d

being valid when the binomial coefficients exist, we have
S1=Cs−1

p−1−Cp−2
p−1. Since Cp−2

p−1=0 if pù2 and Cs−1
p−1=1 if p=1,

we conclude that the formula S1=Cs−1
p−1 holds for all sù1 swe

recall that 1øpøsd. Therefore, substituting Eq. s3.1d into
Eq. s2.6d, from Eq. s3.3d we obtain

P̃Nss,p,kd = s1 + dk,2p−1dWNskdCs−1
p−1CN−s−1

k−p . s3.5d

Although this formula has been derived for 1øsøN−1, its
right-hand side exists also for s=0 swhen p=k=0d and s
=N swhen p=1 and k=0d. Furthermore, since P̃Ns0,0 ,0d
= P̃NsN ,1 ,0d=WNs0d, the desired joint probability function
s3.2d is given by the same expression, i.e.,

PNss,p,kd = s1 + dk,2p−1dWNskdCs−1
p−1CN−s−1

k−p . s3.6d

To evaluate PNsp ,k , ld, we need to find the admissible
values of s for fixed p, k, and l. If p=0 then s=0 sand p= l
=0d, if p=1 then s= l for k=1,2 and s= l=N for k=0, and if
2øpøN /2 then p+ l−1øsøN− sk−p+1d srecall that k
−p+1 is the number of down domains in a chaind. According
to this observation we get

PNsp,k,ld = 5WNs0d , p = 0,
PNsl,1,k,ld , p = 1,

P̃Nsp,k,ld , 2 ø p ø N/2,
6 s3.7d

where

PNsl,1,k,ld = s1 + dk,1dWNskdCN−l−1
k−1 s3.8d

and

P̃Nsp,k,ld = o
s=p+l−1

N+p−k−1

PNss,p,k,ld . s3.9d

By use of the relation f18g

o
m=0

n

Cc+m
c Cb−m

b−n = Cb+c+1
n s3.10d

in evaluating

o
s=p+l−1

N+p−k−1

Cs−l−1
p−2 CN−s−1

k−p = CN−l−1
k−1 , s3.11d

from Eq. s3.9d we obtain

P̃Nsp,k,ld = s1 + dk,2p−1dWNskdCN−l−1
k−1 . s3.12d

Comparing this formula with s3.8d, we check that, although
Eq. s3.12d is derived for pù2, it remains also valid for p
=1. Therefore, introducing the notation Dpkl=dp,0dk,0dl,0, the
result in Eq. s3.7d can be represented in the appealing form

PNsp,k,ld = s1 + dk,2p−1dWNskdCN−l−1
k−1+Dpkl. s3.13d

C. Two-variable probability functions

The four-variable joint probability function PNss ,p ,k , ld
generates six different two-variable joint probability func-
tions. But keeping in mind the one-variable probability func-
tions, we calculate only two of them, namely PNsp ,kd and
PNsk , ld. Because PNsp ,kd=WNs0d if k=0 and the parameter
s varies from p to N+p−k−1 if 1økøN−1, the former is
given by

PNsp,kd = HWNs0d , k = 0,

P̃Nsp,kd , 1 ø k ø N − 1,
J s3.14d

where

P̃Nsp,kd = o
s=p

N+p−k−1

PNss,p,kd . s3.15d

Taking into account that, according to Eq. s3.10d, the relation

o
s=p

N+p−k−1

Cs−1
p−1CN−s−1

k−p = CN−1
k s3.16d

holds swe used the condition Cn
n−m=Cn

md, we obtain

PNsp,kd = s1 + dk,2p−1dWNskdCN−1
k . s3.17d

The same expression for PNsp ,kd follows also from the
joint probability function s3.13d. Indeed, since for 1økøN
−1 the parameter l is varied from 1 to N−k sthe maximal
value of l corresponds to the case when all the remaining p
−1 up domains and all k−p+1 down domains consist of one
spind, we have
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P̃Nsp,kd = o
l=1

N−k

PNss,p,ld . s3.18d

Substituting Eq. s3.13d into Eq. s3.18d, and using the formula
ol=1
N−kCN−l−1

k−1 =CN−1
k −Ck−1

k , which results from Eq. s3.4d, and
granting the conditions Ck−1

k =0 skÞ0d and CN−1
0 =1, we

again arrive at Eq. s3.17d.
In order to find PNsk , ld from Eq. s3.13d, we first notice

that for fixed k the parameter p can take only one or two
values. More precisely, if k is odd, i.e., k=2h+1 s0øh
øN /2−1d, then the first and the last spins of a chain belong
to the different types. In this case, p=h+1, 1ø løN−2h
−1, and PNsk , ld=PNsh+1,2h+1, ld. On the contrary, if k is
even, i.e., k=2h, then the first and the last spins belong to the
same type. In accordance with this, at 1ø løN−2h, the pa-
rameter p takes two values p=h sif a chain begins and ends
by the down spinsd and p=h+1 sif a chain begins and ends
by the up spinsd, and so PNsk , ld=PNsh ,2h , ld+PNsh
+1,2h , ld. Moreover, if l=0 sp=k=0d or l=N sp=1, k=0d
then PNsk , ld=WNs0d. Combining these results yields

PNsk,ld = HWNs0d , l = 0, l = N ,

P̃Nsk,ld , 1 ø l ø N − 1,J s3.19d

where

P̃Nsk,ld = o
p=fsk+1d/2g

fk/2g+1

PNsp,k,ld s3.20d

wherein fxg denotes the integer part of x. Finally, taking into
consideration the following relation:

o
p=fsk+1d/2g

fk/2g+1

s1 + dk,2p−1d = 2, s3.21d

we find from Eqs. s3.19d, s3.20d, and s3.13d for the desired
probability function the result

PNsk,ld = s2 − dl,0 − dl,NdWNskdCN−l−1
k−1+Dkl s3.22d

sDkl=dk,0dl,0d.

IV. DISTRIBUTION OF DOMAIN WALLS

According to Eqs. s3.17d and s3.21d, the one-variable
probability function

PNskd = o
p=fsk+1d/2g

fk/2g+1

PNsp,kd , s4.1d

which characterizes the distribution of the number of domain
walls in a finite chain, is written as

PNskd = 2WNskdCN−1
k . s4.2d

The last formula reflects the fact that PNskd is the overall
probability of all 2CN−1

k spin configurations each of which
possesses k domain walls and has the probability WNskd swe
are grateful to an anonymous referee for this pointd. By using
Eqs. s2.3d–s2.5d and introducing the designation r= s1

+e2bJd−1 s0,r,1/2d, it can be recast to read as

PNskd = CN−1
k rks1 − rdN−1−k s4.3d

s0økøN−1d. This explicitly shows that a binomial distri-
bution for k emerges.

The fact that the number of domain walls in an Ising
chain is binomially distributed has a simple interpretation. To
demonstrate this we first remind ourselves that the binomial
distribution gives the probability Cn

mqms1−qdn−m of m suc-
cesses in a sequence of n independent trials, called Bernoulli
trials, each of which has only one outcome, i.e., success with
probability q or failure with probability 1−q. In our case, we
consider a chain as a result of one-by-one addition of N−1
spins to the seed one. We treat each addition as a trial whose
outcome is either along or opposite the direction of the added
spin with respect to the direction of the nearest spin. If the
added spin has the opposite direction then the domain wall is
formed and we call such an outcome a success. Hence, a
chain of N Ising spins with k domain walls is equivalent, in
the above sense, to a sequence of N−1 Bernoulli trials that
have k successes. Due to the exchange interaction, the prob-
ability q of success equals e−bJ / se−bJ+ebJd=r, and so the
probability that a chain has exactly k domain walls is indeed
given by Eq. s4.3d.

The probability function s4.3d is properly normalized, i.e.,
ok=0
N−1PNskd=1, and, in accordance with well-known proper-

ties of the binomial distribution f17g, the average kkl
=ok=1

N−1kPNskd and the variance sk
2;kk2l− kkl2=ok=1

N−1k2PNskd
− kkl2 of the number of domain walls in a chain assume the
form

kkl = sN − 1dr, sk
2 = sN − 1ds1 − rdr . s4.4d

For bJ!1, we obtain kkl= sN−1ds1−bJd /2 and sk
2= sN

−1ds1−b2J2d /4 with linear and quadratic accuracy in bJ,
respectively. The relation limbJ→0kkl= sN−1d /2 makes ex-
plicit that in the high-temperature case, which is character-
ized by the condition r=1/2, approximately one domain wall
falls on two spins, implying that each domain contains, on
average, two spins ssee also Sec. VId.

The increase of bJ leads to the decrease of r and Eq. s4.4d
yields kkl<sk

2<sN−1de−2bJ for large enough values of bJ.
If 2bJ@ ln N then the condition kkl!1 holds, which indi-
cates that in this case the spin configurations hsi=1j and
hsi=−1j play the main role in determining the chain proper-
ties. Let ttr and tm be the transition time between these
states, i.e., the average time during which a chain passes
from the state hsi=1j to the state hsi=−1j, and the measure-
ment time, i.e., the total time necessary to perform a mea-
surement of the magnetization, respectively. Then, if 2bJ
@ ln N and ttr@tm, a chain possesses a spontaneous magne-
tization. In other words, these conditions form a criterion of
the ferromagneticlike behavior of a finite Ising chain. Notice
that in the thermodynamic limit sN→`d the second condi-
tion holds always, see just below, while the first condition
holds only if T=0. Therefore, in full agreement with f1g, the
long-range ferromagnetic order in an infinite chain occurs
only at zero temperature.
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In order to estimate the dependence of ttr on N, it is
necessary to go beyond the Ising model. To this end, we
consider the Ising spins as the classical Heisenberg spins
with large uniaxial anisotropy and use the Arrhenius-Neel
law f19,20g. According to it, the average time t between the
spin reversals can be evaluated as t,t0eb DU, where t0 is the
spin precession time, and DUs@b−1d is the height of the
potential barrier between two equilibrium directions of each
spin. Since a chain in a state with kkl!1 can be associated
with a single enlarged spin for which the potential barrier
height is given by N DU, we find that the transition time ttr
exponentially grows with N: ttr,tesN−1db DU. Note also that
because bJ→` and ttr→` as T→0, there is always a tem-
perature interval where a finite Ising chain exhibits the fer-
romagneticlike behavior.

We briefly discuss here also the problem of domain walls
distribution in an infinite chain. As is well known f21g, the
binomial distribution has no unique asymptotic as the num-
ber of Bernoulli trials tends to infinity. However, since in our
case the parameter r does not depend on N, the probability
function PNskd does have it. To characterize PNskd as N
→`, we assume in Eq. s4.3d that k= kkl+skz and define the
probability function Pkszd=limN→` skPNskkl+skzd of the pa-
rameter z. Applying a local limit theorem f21g, we immedi-
ately find that Pkszd has the standard Gaussian distribution:
Pkszd= s2pd−1/2e−z

2/2.

V. DISTRIBUTION OF UP DOMAINS

To derive the one-variable probability function PNspd that
describes the distribution of the number of up domains in a
finite chain, we again proceed from the joint probability
function PNsp ,kd. A simple consideration shows that k=0 if
p=0, k=2p− i si=0,1 ,2d if 1øpøN /2−1, and k=2p− i si
=1,2d if p=N /2. Hence, for fixed p the parameter k is varied
from 2p−2+2dp,0 to 2p−dp,N/2, and PNspd is given by

PNspd = o
k=2p−2+2dp,0

2p−dp,N/2

PNsp,kd . s5.1d

Substituting Eq. s3.17d into this formula and taking into ac-
count the properties of binomial coefficients, this probability
distribution is obtained as

PNspd = o
n=0

2

s1 + d1,ndWNs2p − ndCN−1
2p−n. s5.2d

Finally, using Eqs. s2.3d–s2.5d, from Eq. s5.2d we find the
desired probability function in the form

PNspd =
1
2o
n=0

2

s1 + d1,ndCN−1
2p−nr2p−ns1 − rdN−1−2p+n s5.3d

s0øpøN /2d. This distribution, due to its formal closeness
to the ordinary binomial distribution, will be termed the
modified binomial distribution.

Taking into consideration the results for the finite series
f18g,

o
k=0

fn/2g

Cn
2kxk =

s1 + Îxdn + s1 − Îxdn

2
, s5.4d

o
k=0

fsn−1d/2g

Cn
2k+1xk =

s1 + Îxdn − s1 − Îxdn

2Îx
, s5.5d

and the properties of the binomial coefficients, one readily
finds that the quantities

In
m = o

p=0

N/2

CN−1−m
2p−n−mr2p−ns1 − rdN−1−2p+n s5.6d

sn ,m=0,1 ,2d can be represented in the form

In
m =

rm

2
f1 + s− 1dn+ms1 − 2rdN−1−mg . s5.7d

With these results, it follows that the modified binomial dis-
tribution is also properly normalized, namely,

o
p=0

N/2

PNspd =
1
2o
n=0

2

s1 + d1,ndIn
0 = 1. s5.8d

The average of the number of up domains in a chain is
defined as kpl=op=0

N/2pPNspd. Using the probability function
s5.3d and the identity

2pCN−1
2p−n = nCN−1

2p−n + sN − 1dCN−2
2p−n−1, s5.9d

which can be verified directly, we find

kpl =
1
4o
n=0

2

s1 + d1,ndfnIn
0 + sN − 1dIn

1g , s5.10d

and substituting Eq. s5.7d into Eq. s5.10d we obtain

kpl =
1
2
+
1
2

sN − 1dr . s5.11d

It may seem strange at first glance that kpl=1/2 in the low-
temperature limit sr→0d, but in compliance with Eq. s5.3d at
r→0 only two states of a chain, namely hsi=−1j sp=0d and
hsi=1j sp=1d, have nonzero probabilities and they are equal
to 1/2. Notice also that, according to Eqs. s4.4d and s5.11d,
the general condition 2kpl=1+ kkl always holds.

To find the variance sp
2= kp2l− kpl2 of the number of up

domains in a chain, we first calculate the second moment
kp2l=op=0

N/2p2PNspd. By applying the identity

4p2CN−1
2p−n = n2CN−1

2p−n + s2n + 1dsN − 1dCN−2
2p−n−1

+ sN − 1dsN − 2dCN−3
2p−n−2 s5.12d

snote that last term equals zero at N=2d and the notation
s5.6d, this quantity can be expressed as
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kp2l =
1
8o
n=0

2

s1 + d1,ndfn2In
0 + s2n + 1dsN − 1dIn

1

+ sN − 1dsN − 2dIn
2g . s5.13d

Inserting Eq. s5.7d into this formula and performing straight-
forward calculations yields

kp2l =
3
8
+
3
4

sN − 1dr +
1
4

sN − 1dsN − 2dr2 +
1
8

s1 − 2rdN−1.

s5.14d

Therefore, using the definition of the variance sp
2, we find

sp
2 =

1
8
+
1
4

sN − 1ds1 − rdr +
1
8

s1 − 2rdN−1. s5.15d

The fact that kp2l→1/2 ssp
2→1/4d as r→0 has the same

interpretation as the low-temperature behavior of kpl given
above.

In conclusion, we note that if p= kpl+spz as N→` then
the parameter z again possesses a standard Gaussian distri-
bution ssee Appendix Ad.

VI. DISTRIBUTION OF DOMAIN LENGTHS

To find the probability function of domain lengths, PNsld,
we proceed from the joint probability function s3.22d. Since
for 1ø løN−1 the number of domain walls k can vary from
1 to N− l and k=0 if l=0 or l=N, this probability function
can be written as

PNsld = HWNs0d , l = 0, l = N ,

P̃Nsld , 1 ø l ø N − 1,
J s6.1d

where

P̃Nsld = o
k=1

N−l

PNsk,ld . s6.2d

In virtue of this, taking into account that WNs0d= s1
−rdN−1 /2 and using the standard series ok=0

n Cn
kxk= s1+xdn

which permits us to reduce Eq. s6.2d into the form P̃Nsld
=rs1−rdl−1, we obtain

PNsld = Hs1 − rdN−1/2, l = 0, l = N ,
rs1 − rdl−1, 1 ø l ø N − 1.J s6.3d

It is not difficult to verify, using the well-known relation
ok=0
n xk= s1−xn+1d / s1−xd, that this distribution, which we

term the finite geometric distribution, is normalized, i.e.,
ol=0
N PNsld=1. Note also that in the limit of an infinite chain

the domain lengths distribution s6.3d is reduced to the geo-
metric distribution, P`sld=rs1−rdl−1 sl=1,2 , . . . d, whose
mean and variance are 1/r and s1−rd /r2, respectively.

By applying the standard series, ok=0
n kxk= fx+ snx−n

−1dxn+1g / s1−xd2, the average length of an up domain, kll
=ol=0

N lPNsld, can be represented in the form

kll =
2 − Nrs1 − rdN−1 − 2s1 − rdN

2r
. s6.4d

An alternative derivation of this result is presented in Appen-
dix B. According to this expression, we find limN→`kll
=1/r, limr→0kll=N /2, and limr→1/2kll=2− sN+2d2−N. The
last condition shows that in the high-temperature limit the
average number of spins that form one up domain in a long
chain is approximately equal to 2.

All other moments of the finite geometric distribution
s6.3d are also calculated exactly. In particular, the variance of
domain lengths, sl

2= kl2l− kll2, is given by

sl
2 = s1 − rd/r2 − sN/2d2f2 + s1 − rdN−1gs1 − rdN−1 − Nf1 − 2r

+ s1 − rdNgs1 − rdN−1/r + fr − s1 − rdNgs1 − rdN/r2. s6.5d

With this result we immediately obtain sl
2→ s1−rd /r2 as N

→`, sl
2→N2 /4 as r→0, and sl

2→2− sN2−2d2−N− sN
+2d22−2N as r→1/2.

To gain more insight into the domain statistics, we also
introduce the probability function PN

+sld that describes the
domain lengths distribution in assemblies of Ising chains,
each of which contains at least one up domain of nonzero
length. In other words, we assume that the parameter l can
vary from 1 to N. In this case, in contrast with Eq. s3.22d, the
joint probability function PN

+sk , ld that a chain contains k do-
main walls and the first up domain contains l spins is written
as

PN
+sk,ld = s2 − dl,NdWN

+skdCN−l−1
k−1 , s6.6d

where WN
+skd=e−bENskd /ZN

+ and ZN
+ =ZN−ebJsN−1d is the parti-

tion function for such a chain. Therefore, the probability
function PN

+sld, which is defined as PN
+sld=ok=1−dl,N

N−l PN
+sk , ld,

assumes the form

PN
+sld =

2
2 − s1 − rdN−1Hs1 − rdN−1/2, l = N ,

rs1 − rdl−1, 1 ø l ø N − 1.J
s6.7d

One can again verify that the normalization condition
ol=1
N PN

+sld=1 holds, and that the average length of an up do-
main, kll+=ol=1

N lPN
+sld, can be represented as

kll+ =
2 − Nrs1 − rdN−1 − 2s1 − rdN

2r − rs1 − rdN−1
. s6.8d

As N→`, the averages kll+ and kll tend to the same limit,
but their low- and high-temperature limits are different:
limr→0kll+=N and limr→1/2kll+=2−N / s2N−1d. The former
confirms the possibility of the existence of the ferromagneti-
clike state in a finite Ising chain at low temperatures. We
note in this context that the condition 2bJ@ ln N, which we
introduced in Sec. IV is equivalent to the condition j@N,
where j is the spin-spin correlation length. According to
f22g, in the case of Ising chains with only exchange interac-
tion and free boundary conditions the correlation length is
given by the exact formula j=−ln−1s1−2rd. Since at low
temperatures the asymptotic relations j,1/2r and r,e−2bJ

hold, the condition j@N is actually reduced to 2bJ@ ln N.
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VII. CONCLUSIONS

We have determined the domain statistics in a finite chain
of Ising spins that interact only through the exchange inter-
action. For a chain with an even number of spins and free
boundary conditions, we have calculated, via a combinatorial
approach, the joint probability function of four random vari-
ables snamely, the number of up spins, the number of up
domains, the number of domain walls, and the number of
spins in the first up-domaind that thoroughly describe the
domain statistics in a chain. Starting out from this result, we
derived the probability distribution functions for the number
of domain walls, number of up domains, and number of
spins in an up domain. The first corresponds to the binomial
distribution, the second to the modified binomial distribution,
and the third to the finite geometric distribution. For each of
them, we have calculated the corresponding thermal average
and variance, have analyzed the cases of low and high tem-
peratures, and, as well, have considered the thermodynamic
limit.

In addition, we have derived a criterion that a finite Ising
chain exhibits the ferromagneticlike behavior. According to
it, the transition time between the fully magnetized chain
states must exceed the measuring time, and the average num-
ber of domain walls must be much less than 1. These condi-
tions hold, i.e., a finite Ising chain does display a ferromag-
neticlike order on the measuring time scale, if the
temperature is sufficiently small.
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APPENDIX A: DISTRIBUTION OF DOMAINS IN AN
INFINITE CHAIN

To find the probability function of the parameter z,
Ppszd=limN→` spPNskpl+spzd, first we represent the bino-
mial coefficients in Eq. s5.3d as

Ca
b =

Gsa + 1d
Gsb + 1dGsa − b + 1d

sA1d

sGsxd is the gamma functiond and use the Stirling formula
f23g

Gsxd , Î2pe−xxx−1/2 sx → `d . sA2d

This yields

CN−1
2kpl+2spz−n ,

eRn
Î2pNs1 − rdN

S1 − r
r DNr+2spz+3/2−r−n

sA3d

and

Rn , S1 − 2spz + 1 − r − n
Ns1 − rd D−Ns1−rd+2spz+3/2−r−n

3 S1 + 2spz + 2 − r − n
Nr D−Nr−2spz−3/2+r+n

sA4d

as N→`, and so

Ppszd = lim
N→`

esp

2Î2prs1 − rdN
o
n=0

2

s1 + d1,ndRn. sA5d

Finally, taking into account that sp
2 /N→rs1−rd /4 and

ln Rn→−z2 /2−1 as N→`, we indeed find that Ppszd
= s2pd−1/2e−z

2/2.

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (6.4)

Using the joint probability function s3.6d, we can also
represent kll in the following form:

kll = o
p=1

N/2 1
p o

k=2p−2

2p−dp,N/2

o
s=p

N+p−k−1

sPNss,p,kd . sB1d

Since sCs−1
p−1=pCs

p, WNskd=rks1−rdN−k−1 /2, and according to
the result for the series s3.10d,

o
s=p

N+p−k−1

sCs−1
p−1CN−s−1

k−p = pCN
k+1, sB2d

Eq. sB1d can be rewritten as

kll =
s1 − rdN−1

2 o
n=0

2

s1 + d1,ndYn, sB3d

where

Yn = o
p=1

N/2 S r
1 − rD

2p−n
CN
2p+1−n. sB4d

Upon calculating these quantities with the help of the series
s5.4d and s5.5d,

Yn =
1 − r
2r FS 1

1 − rD
N
− s− 1dnS1 − 2r

1 − r D
N
− 2d1,nG − Nd0,n

sB5d

sn=0,1 ,2d, and substituting the corresponding expressions
into Eq. sB3d, we again obtain Eq. s6.4d.
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