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Coherence Stabilization of a Two-Qubit Gate by ac Fields
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We consider a CNOT gate operation under the influence of quantum bit-flip noise and demonstrate that
ac fields can change the qubit Hamiltonian in such a way that it approximately commutes with the bath
coupling. Then the noise effectively acts as phase noise which improves coherence up to several orders of
magnitude while the gate operation time remains unchanged. Within a high-frequency approximation,
both purity and fidelity of the gate operation are studied analytically. The numerical treatment with a
Bloch-Redfield master equation confirms the analytical results.
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Despite the remarkable experimental realization of qu-
bits [1–3] and two-qubit gates [4] in condensed matter
systems, the construction of a working quantum computer
remains an elusive goal, not only due to deficiencies of the
control circuitry, but also due to the unavoidable coupling
to the environment. Several proposals to overcome the
ensuing decoherence have been put forward, such as the
use of decoherence free subspaces [5–9], coherence-
preserving qubits [10], quantum Zeno subspaces [11],
dynamical decoupling [12–15], and coherent destruction
of tunneling [16].

A single qubit under the influence of bit-flip noise can be
modeled by the spin-boson Hamiltonian H0 � �

�
2 �

z �

�x�, where �x;z denotes Pauli matrices and � is a short-
hand notation for the quantum noise specified below. The
influence of the noise is governed by its spectral density at
the tunneling frequency �=@. A possible driving field may
couple to any projection ~n of the (pseudo) spin operator ~�,
i.e., be proportional to ~n � ~�. In Ref. [16], two particular
choices have been studied and compared against each
other: A driving of the form H�t� � A�z cos��t� com-
mutes with the static qubit Hamiltonian but not with the
bath coupling �x�. For a proper driving amplitude, this
eliminates noise with frequencies below the driving fre-
quency. Therefore, the latter should lie above the cutoff fre-
quency of the bath. This scheme represents a continuous-
wave version of dynamical decoupling. By contrast, a
driving of the type H�t� � A�x cos��t� renders the
qubit-bath coupling unchanged but renormalizes the tunnel
splitting � towards smaller values and thereby causes the
so-called coherent destruction of tunneling (CDT) [17,18].
Then, decoherence is determined by the spectral density of
the bath at a lower effective tunnel frequency. For an
Ohmic bath being linear in the frequency, the consequence
is that both decoherence and the coherent oscillations are
slowed down by the same factor [16]. Therefore, the num-
ber of coherent oscillations is not enlarged and, thus, for
single-qubit operations, CDT might be of limited use.

In this Letter, we propose a coherence stabilization
scheme for a CNOT gate based on an isotropic Heisenberg
interaction [19,20]. Our scheme does not suffer from the
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drawbacks mentioned above because (i) it involves only
intermediately large driving frequencies that can lie well
below the bath cutoff and (ii) it does not increase the gate
operation time. Since we shall employ a driving field that
couples to the same coordinate as the quantum noise, the
present coherence stabilization is distinctly different from
the recently measured dynamical decoupling of a spin pair
from surrounding spin pairs [21].

CNOT gate with bit-flip noise.—We consider a pair of
qubits described by the Hamiltonian [19,20,22,23]

Hgate �
1

2

X
j�1;2

��j�
z
j � �j�

x
j� � J ~�1 � ~�2; (1)

with a qubit-qubit coupling of the Heisenberg type, where j
labels the qubits. In order to construct a quantum gate, the
tunnel splittings �j, the biases �j, and the qubit-qubit
coupling J have to be controllable in the sense that they
can be turned off and that their signs can be changed. Then,
a suitable sequence of interactions yields the CNOT opera-
tion [19,20,22,23]

UH
CNOT �UH��=8�U1z���UH��=8�; (2)

where U1z�’� � exp��i’�z1=2� represents a rotation of
qubit 1 around the z axis and UH�’� � exp��i’ ~�1 � ~�2�
describes the time evolution due to the qubit-qubit inter-
action. The symbol � denotes equality up to local unitary
transformations, i.e., transformations that act on only one
qubit. For single-qubit operations, it has been shown that
pulse sequences [12–15] and harmonic driving fields [16]
can suppress decoherence. Therefore, we focus in the
present work on decoherence during the stage of the
qubit-qubit interaction and, thus, take as a working hy-
pothesis that the coherence of one-qubit operations can be
stabilized ideally. Then the remaining decoherence takes
place while �j � �j � 0 and J > 0 during the required
total qubit-qubit interaction time tJ � �@=4J, which cor-
responds to twice the angle ’ � �=8.

The bit-flip noise is specified by the system-bath
Hamiltonian H � Hgate �Hcoupl �Hbath where Hcoupl �
1
2

P
j�1;2�

x
j
P
�@c��a

y
j� � aj�� describes the coupling of qu-
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bit j to a bath of harmonic oscillators with frequencies !�,
Hbath �

P
j�@!�a

y
j�aj�, and the spectral density I�!� �

�
P
�c

2
���!�!��. Within the present work, we consider

the so-called Ohmic spectral density I�!� � 2��!e�!=!c

with the dimensionless coupling strength � and the cutoff
frequency !c. In order to complete the model, we specify
the initial condition of the Feynman-Vernon type; i.e.,
initially, the bath is in thermal equilibrium and uncorre-
lated with the system, �tot�t0� � ��t0� � Rbath;eq, where �
is the reduced density operator of the two qubits and
Rbath;eq / exp��Hbath=kBT� is the canonical ensemble of
the bath.

If the dissipation strength is sufficiently small, �	 1,
the dissipative system dynamics is well described within a
Born-Markov approach. There, one starts from the
Liouville–von Neumann equation i@ _�tot � 
H;�tot� for
the total density operator and obtains by standard tech-
niques the master equation [24]

_��
1

i@

Hgate;���

X
j


�xj ;
Qj�t�;����
X
j


�xj ;fPj�t�;�g�

�
1

i@

Hgate;�����t�� (3)

with the anticommutator fA;Bg � AB� BA and

Qj�t� �
1

4�

Z 1
0
d	

Z 1
0
d!S�!� cos�!	�~�xj�t� 	; t�:

(4)

Here, S�!� � I�!� coth�@!=2kBT� is the Fourier trans-
formed of the symmetrically ordered equilibrium correla-
tion function 1

2 hf�j�	�; �j�0�gieq of the collective bath
coordinate �j �

P
�c��a

y
j� � aj��. The notation ~X�t; t0� is

shorthand for the Heisenberg operator Uy�t; t0�XU�t; t0�
with U being the propagator of the coherent system dy-
namics. Note that S�!� and I�!� are independent of j due
to the assumption of two identical environments. Replac-
ing in Eq. (4) the term S�!� cos�!	� by I�!� sin�!	�
yields the operator Pj�t�. We emphasize that the particular
form (3) of the master equation is valid also for an explic-
itly time-dependent qubit Hamiltonian.

The heat baths, whose influence is described by the
second and third terms of the master equation (3), lead to
decoherence, i.e., the evolution from a pure state to an
incoherent mixture. Decoherence can be measured by the
decay of the purity tr��2� from the ideal value 1. The gate
purity (later referred to as ‘‘purity’’) P �t� � tr��2�t��,
which characterizes the gate independently of the specific
input, results from the ensemble average over all pure
initial states [25]. For weak dissipation, the purity is de-
termined by its decay rate at initial time
14050
_P �t�jt�0 � �2 tr����� � �
4

d�d� 1�

X
j

tr��xjQj�; (5)

where d � 4 is the dimension of the system Hilbert space.
In order to evaluate the purity decay, we need explicit

expressions for the operatorsQj and, thus, have to compute
the Heisenberg operators ~�xj�t� 	; t� for the Hamiltonian
H0 � J ~�1 � ~�2. This calculation is most conveniently per-
formed in the basis of the total (pseudo) spin ~L � 1

2 

� ~�1 � ~�2�. We finally arrive at _P � � 2
5 fS�0� � S�4J=@�g,

where we have ignored Lamb shifts and defined S�0� �
lim!!0S�!� � 4��kBT=@. In particular, we find that for
low temperatures, kBT & J, decoherence is dominated by
S�4J=@� such that _P � �16��J=5@. This part reflects the
influence of the so-called quantum noise, which is tem-
perature independent.

ac driving field.—In order to manipulate the coherence
properties, we act upon qubit 1 by an ac field that causes a
time-dependent level splitting according to

Hac�t� � f�t��x1; (6)

where f�t� is a 2�=�-periodic function with zero time
average. Since the driving acts only during the finite time tJ
while the Heisenberg coupling is switched on, its spectrum
has a dispersion �! � 1=tJ. To keep its influence small,
we have to choose �� 1=tJ.

Next, we derive within a high-frequency approximation
analytical expressions for both the coherent propagator
U�t; t0� and the purity decay (5). We start out by trans-
forming the total Hamiltonian into a rotating frame with
respect to the driving via the unitary transformation

Uac�t� � e�i
�t��
x
1 ; 
�t� �

1

@

Z t

0
dt0f�t0�: (7)

This yields the likewise 2�=�-periodic interaction-picture
Hamiltonian ~H�t� � Uyac�t�HgateUac�t� and the S-matrix
S�t; t0� � Uy0 �t�U�t; t

0�U0�t0�. For large driving frequencies
�� J=@, it is possible to separate time scales and thereby
replace ~H�t� by its time average

�H � �J� J?��x1�
x
2 � J? ~�1 � ~�2; (8)

where the constant J? � Jhcos
2
�t��i2�=� denotes an
effective interaction ‘‘transverse’’ to the driving and
h. . .i2�=� the time average over the driving period.
Consequently, we find S�t; t0� � expf�i �H�t� t0�=@g,
such that the propagator of the driven system reads

Ueff�t; t0� � e�i
�t��
x
1e�i �H�t�t0�=@ei
�t

0��x1 : (9)

Having this propagator at hand, we are in the position to
derive explicit expressions for the operators �xj�t� 	; t�,
Qj, and Pj and, therefore, also for the generator of the
dissipative dynamics �. Again, the calculation is conven-
iently done in the basis of the total spin ~L and Lx which,
owing to the relation �x1�

x
2 �

1
2 ��

x
1 � �

x
2�

2 � 1, is an ei-
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FIG. 1. Purity loss 1� P during the interaction time tJ as a
function of the driving amplitude. The driving frequency is � �
32J=@ and the dissipation strength 2�� � 0:01. For A � 0, the
undriven situation is reproduced.
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genbasis of the Hamiltonian (8). We insert the resulting
expression for � into Eq. (5) and finally obtain the ma-
nipulated purity decay

_P � �
2

5
fS�0� � S�4J?=@�g: (10)

For f�t� � 0, we find J? � J such that Eq. (10) agrees
with what we found in the static case; otherwise, the
inequality jJ?j< J holds and, thus, the bath correlation
function S in Eq. (10) has to be evaluated at a lower
frequency. For an Ohmic or a super-Ohmic bath, S�!� is
a monotonically increasing function and, consequently, the
ac field reduces _P (unless J > !cutoff).

The purity decay assumes its minimum for J? � 0. This
condition marks the working points on which we shall
focus henceforth. For an Ohmic spectral density I�!� �
2��!, the purity decay at the working points becomes
_P � � 4

5 S�0� � �8��kBT=5. This value has to be com-
pared to the purity decay in the absence of driving: An
analysis reveals that for kBT > J, decoherence is essen-
tially independent of the driving. By contrast for low
temperatures, kBT < J, the driving reduces the decoher-
ence rate by a factor kBT=2J. This low-temperature be-
havior results from the fact that for J? � 0, the effective
Hamiltonian (8) commutes with the qubit-bath coupling
operators �xj , which are not affected by the transformation
(7). As a consequence, dissipative transitions become im-
possible and for the effective Hamiltonian, the bath acts as
pure phase noise whose influence is proportional to the
temperature. In that sense, the present scheme is comple-
mentary to coherence-preserving qubits [10], for which
heating errors are the only source of decoherence.

For a rectangular driving for which f�t� switches be-
tween the values �A=2, the condition J? � 0 yields A �
@�, which corresponds to two � pulses per period. For a
harmonic driving, f�t� � A cos��t�=2, one obtains J? �
JJ0�A=@��, where J0 denotes the zeroth-order Bessel
function of the first kind. Then, at the working points J? �
0, the ratio A=@� assumes a zero of J0, i.e., one of the
values 2.405. . ., 5.520. . ., 8.654. . ., . . ..

So far, we ignored that the driving also affects the
coherent dynamics and, thus, the pulse sequence of the
CNOT operation needs a modification: At the working
points of the driven system, the propagator (9) becomes
Ueff�t; t0� � exp
�iJ�x1�

x
2�t� t

0�=@�; i.e., it represents the
time evolution caused by a so-called Ising interaction
J�x1�

x
2. This allows one to implement the alternative

CNOT operation UI
CNOT � exp��i��x1�

x
2=4� � Ueff�t�

tJ; t� [22,26]. Note that the interaction time tJ � �@=4J
is the same as for the original gate operation UH

CNOT. Since
Uac�2�=�� is the identity [cf. Eq. (7)], we assume for
convenience that tJ is an integer multiple of the driving
period 2�=�, i.e., � � 8kJ=@ with integer k.

Numerical solution.—Our analytical results for the pu-
rity decay rely on a high-frequency approximation that is
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correct only to lowest order in J=@�. Thus, they should be
compared to the exact numerical solution of the master
Eq. (3). An efficient scheme for that purpose is a modified
Bloch-Redfield formalism whose cornerstone is a decom-
position into the Floquet basis of the driven qubits [24]:
According to the Floquet theorem, the Schrödinger equa-
tion of a periodically driven quantum system possesses
a complete set of solutions of the form j ��t�i �
exp��i��t=@�j
��t�i, with the quasienergies �� and the
Floquet states j
��t�i � j
��t� T�i, which are computed
from the eigenvalue equation 
H�t� � i@d=dt�j
��t�i �
��j
��t�i. In the Floquet basis fj
��t�ig, the master
Eq. (3) assumes the form _��� � �

i
@
��� � ������ �P

�0�0���;�0�0��0�0 . Moreover, for weak dissipation, we
can replace within a rotating-wave approximation ��t�
by its time average [24]. Finally, we integrate the master
equation to obtain the dissipative propagator.

In our numerical studies, we restrict ourselves to purely
harmonic driving f�t� � A cos��t�=2. The resulting purity
loss during the interaction time tJ is depicted in Fig. 1. We
find that for kBT > J, decoherence is fairly independent of
the driving. This behavior changes as the temperature is
lowered: Once kBT < J, the purity loss is significantly
reduced whenever the ratio A=@� is close to a zero of
the Bessel function J0. Both observations confirm the
preceding analytical estimates. The behavior at the first
working point A � 2:4@� is depicted in Fig. 2(a). For
relatively low driving frequencies, we find the purity loss
being proportional to J=�. This significant deviation from
the analytical result for small � relates to the fact that the
low-frequency regime is not within the scope of our high-
frequency approximation. With increasing driving fre-
quency, the discrepancy decreases until finally decoher-
ence is dominated by thermal noise / T. The numerical
solution confirms the analytical results.

Still, there remains one caveat: The gate operationUI
CNOT

relies on the fact that Ueff is a good approximation for the
2-3
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FIG. 2. (a) Purity loss during the interaction time tJ as a
function of the driving frequency. The driving amplitude A �
2:4@� is adjusted such that 1� P assumes its first minimum; cf.
Fig. 1. The dotted lines mark the analytical estimate 1�
P �tJ� � � _P �0�tJ. (b) Corresponding fidelity defect 1�F .
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dynamics of the driven gate because any deviation results
in a coherent error. Therefore, we still have to justify that
such coherent errors are sufficiently small. As a measure,
we employ the so-called fidelity F � tr
�ideal��tJ�� [25],
which constitutes the overlap between the real outcome of
the operation, ��tJ�, and the desired final state �ideal �

UI��=4��inU
y
I ��=4� in the average over all pure initial

states. Here, UI�’� � exp��i’�x1�
x
2� is the propagator of

the ideal Ising qubit-qubit interaction, which is character-
ized by F � 1. Figure 2(b) demonstrates that the fidelity
defect 1�F at the first working point is even smaller than
the purity loss. Thus, we can conclude that coherent errors
are not of a hindrance.

For spin qubits in quantum dots [19] a typical exchange
coupling is J � 0:1 meV which for a temperature T �
10 mK corresponds to the solid lines in Figs. 1 and 2.
These results demonstrate that a driving with frequency
�� 2� 100J=@� 1012 Hz and amplitude A� 10 meV
already reduces the purity loss by 2 orders of magnitude
while the fidelity loss stays at a tolerable level.

In summary, we have shown that for two qubits, a suited
ac field turns a Heisenberg interaction into an effective
Ising interaction and that, moreover, the latter is less
sensitive to decoherence. For qubits with Heisenberg in-
teraction, like, e.g., spin qubits, this suggests the following
coherence stabilization protocol: Use for the CNOT opera-
tion a pulse sequence that is suitable for Ising interaction,
which is realized by a Heisenberg interaction with a suited
additional ac field. This coherence stabilization scheme
differs from previous proposals in two respects: First, it
14050
is different from dynamical decoupling because the driving
commutes with the bath coupling. By contrast, the central
idea of our scheme is rather to suppress the coherent
system dynamics transverse to this sensitive system coor-
dinate. Thus, the bit-flip noise acts as pure phase noise,
which is proportional to the temperature. Cooling, thus,
enables a further coherence gain. The second difference is
that the proposed scheme eliminates also the noise stem-
ming from the spectral range above the driving frequency
and, thus, is particularly suited for Ohmic noise spectra
with large cutoff frequencies. Moreover, the driven system
still allows one to perform the desired CNOT operation with
high fidelity and within the same operation time as in the
absence of the control field. Hence, the gained coherence
time fully contributes to the number of feasible gate
operations.
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‘‘Quanteninformation längs der A8’’ and by the Deutsche
Forschungsgemeinschaft through SFB 631.
2-4
*On leave from Departamento de Fı́sica, Universidad
Nacional, Bogotá, Colombia.
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